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FOURIER MULTIPLIER THEOREMS FOR BESOV AND
TRIEBEL-LIZORKIN SPACES WITH VARIABLE EXPONENTS
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(Communicated by L. Pick)

Abstract. In this paper, we will prove Fourier multiplier theorems on Besov and Triebel-Lizorkin
spaces with variable exponents. It was shown by many authors that variable Triebel-Lizorkin
spaces coincide with variable Bessel potential spaces, variable Sobolev spaces and variable
Lebesgue spaces when appropriate indices are chosen. In consequence of the results, we also
have Fourier multiplier theorems on these variable function spaces.

1. Introduction

Recently, variable function spaces have been studied by many authors [3, 8, 5, 6, 9,
12, 13, 14] and in particular the papers about the variable Triebel-Lizorkin and Besov
spaces have been published in [1, 7, 10, 17, 18, 19, 20]. More additional references
about variable exponent spaces are in the book [6] written by L. Diening, P. Harjulehto,
P. Histo and M. Ruzicka.

We state Fourier multiplier theorems on Triebel-Lizorkin spaces with variable ex-

ponents F;E()) (_)(Rn) and Besov spaces with variable exponents BZ((.'))_q(_)(R") in sec-

4
tion 3 and prove the main theorems in section 5, where the spaces FIZSL(_)(R”) and
BZ((,')).L](.)(R”) were introduced by L. Diening, P. Hiisté and S. Roudenko [7] and A.
Almeida and P. Histo [1], respectively.

J. Xu [18] showed that variable Bessel potential space L"VI’(')(R") coincides with

F;(.)_z(R") if >0 and p(-) € Z(R"). L. Diening, P. Histo and S. Roudenko [7]

showed that the variable Lebesgue space LP()(R") coincides with Fp(.)_z(R”) under
suitable assumptions on p(-). P. Gurka, P. Harjulehto and A. Nekvinda [9] showed that
LFPO)(R™) coincides with variable Sobolev spaces W5P()(R") if k € N and p(-) €
Z(R™). In consequence of these results, we also have Fourier multiplier theorems on
these variable function spaces.

Mathematics subject classification (2010): 42B15.
Keywords and phrases: Fourier multiplier theorem, variable exponents Besov spaces, variable expo-
nents Triebel-Lizorkin spaces.
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2. Definition of variable function spaces

We first introduce the variable Lebesgue spaces L) (R"). Let p(-) be a measur-
able function on R” with range in (0,0). Let L”()(R") denote the set of measurable
functions f on R” such that, for some A >0,

/n (@)p(ﬂdx<w.

The set becomes a quasi Banach function space when it is equipped with the Luxemburg—

Nakano norm
p(x)
o =infazo [ (L) arca .

If p(x) = p is a constant function, then the above norm coincides with the usual L? -
norm and so the notation is not confusing. It is remarked that one can define variable
Lebesgue spaces on any measurable subset of R” ([12]).

Denote by Z)(R") the set of measurable functions p(-) on R" with range in
(0,00) such that

0 < p_ =essinfp(x), esssupp(x) = p+ < co.
xeR? xeR”n

We also denote by Z(R") the set of measurable functions p(-) on R”" with range in
(1,00) such that 1 < p_ and py <-eo. If f(-) is a complex-valued locally Lebesgue-
integrable function on R”", then

(@ =sw 110y

is called Hardy-Littlewood maximal function, where the supremum is taken over all
balls B centered at x. There exists some p(-) € Z(R") such that the Hardy-Littlewood
maximal operator .7 is not bounded on L(") (R™) ([13]), although the operator .# is
bounded on LP(R") for p > 1. Let A(R") be the set of p(-) € Z(R") such that
the Hardy-Littlewood maximal operator .7 is bounded on L” (')(R"). There are some
sufficient conditions on p(-) for the maximal operator ./ to be bounded on LP()(R")
(see [3, 4]). We denote by C'°2(R") the set of all real valued functions p(-) : R" — R
satisfying following conditions: There exist constants Ciog(p) and p.. € R such that

Clog (p)

[p(x) = p(y)| < logle+ x—y[ 1) (,yeR", x#y) (1)
and Coalp)
_ log\P n

Cruz-Uribe et. al. [2] showed that C'°¢(R") N 2 (R") C Z(R").
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Let %y(R") be the set of p(-) € Zy(R") for which there exists a positive number
o > 0 such that ./ is bounded on L&) (R™).

Let . (R") be the Schwartz space of all complex-valued rapidly decreasing and
infinitely differentiable functions on R”. Let .#/(R") be the set of all tempered dis-
tributions on R”. If ¢ € .(R"), then .% ¢ denotes the Fourier transform of ¢, and
Z 1o denotes the inverse Fourier transform of ¢. We write Z 'mZf = .7 [m-
Z f] for the sake of simplicity.

Let s >0 and p(-) € Z(R"). The variable exponent Bessel potential space
LP0)(R™) is the collection of f € LP()(R") such that

Al = || #7141 P 710

Let k€ N and p € Z2(R"). The variable exponent Sobolev spaces W*»()(R") is
the collection of f € LP()(R") such that the derivatives (in the sense of distribution) up
to the order k belong to LP()(R") and

HfHWk~p(-) = 2 HDafHLP(*) < oo,

<k

oo,

Lp()

where o is a multi-index and |ot| = a; + -+ 0 .
The set ®(R") is the collection of all systems 6 = {6,}7_, C .#'(R") such that

supp .6y C {x: |x| <2},
supp Z0; C {x : 2771 < |x| <2/} for j=0,1,2, -,

and, for every multi-index o, there exists a positive number ¢, such that
2719 D> 76, (x)| < cq
for j=0,1,--- and x € R" and
Y 76;(x) =
Jj=0

for x e R".

To define the variable Besov spaces, we first define the mixed Lebesgue sequence
space £40)(LP()).

Let p(-), q(-) € Po(R"). The space £40)(LP1)) is the collection of all sequences
{g;}§ of measurable functions on R” such that

o . fil”
{8} 5=ollwa0) @p00) = mf{u > 05 Pyt (0 ({ﬁj} ) < 1} < oo,
j=0

p(x)

Pty ({fj}j 0) = ?Z)inf Aj /n ‘fj(i” dr<1

q(x)
AJ'

where
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Since we assume that g < oo, we have

P ((170) = 3 151

) - 3)
qa()

DEFINITION 2.1. Let p(-),q(-) € C°¢(R") N Zy(R") and o(-) € C'8(R"). Let
6 = {0;}7_o € ®(R"). The variable Besov spaces BZ((,')) q(,)(R") is the collection of
fe Y’(R") such that

Ity = [[{20er},

£aC)(Lp())

The variable Triebel-Lizorkin space F OE()) 0 (R") is the collection of f € .7 (R")
such that

A =||{27 8 r},

P()q

< oo,
LP0)(pa())

Here LP()(¢41)) is the spaces of all sequences {g j}o of measurable functions on
R" such that

- o)
I} ooy = N 11835 e ll s = (;ﬁﬂmm> .

r()

Almeida et. al. [1] showed that the quasi norm ||f H(?X)( of BZ((,')).q(.) does not
p().a(- '
depend on 6 € ®(R"). Diening et. al. [7] showed that ||f]|

—~

0
), and [|f]|®)

OC

F
r() q ) p()a()
are equivalent quasi norms on F OE()') ()(Rn) where 0, p € ®(R"). Hence we write
0
1 llger =175 and (11l ao =111
r().a() p()q() " )‘1 p( )‘q(*)

3. Main results
Let N € N and o be a multi-index. Following [16], we write

o
[lml|y = sup sup (1+ |x*) > [D%m(x)|
|ot| <N x€R”

for an infinity differentiable function m(-). Then we have the following Fourier multi-
plier theorem which is proved in Section 5.

THEOREM 3.1. Let p(-),q(-) € C°5(R") N Py (R") and a(-) € C'°¢(R™).
() 1f N > max{ | or, [} + 2wl )
itive number ¢ such that

+n+2, then there exists a pos-

|Z 7 mZ [l aey < cllmlIn[If]] o 4)
p(-).a() p q()
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Sor all infinitely differentiable functions m(-) and all f € F;EF') (,)(R").

)q
6}’1+9C10g(06) min{P—’tI—} .
min{p_qg_} +n+2, then there exists a

(i) If N > max{|o_|,|ot|} +
positive number ¢ such that
1F 7 mF fl] yoiy < cllmlIn]Lf1] ot (5)
p().a() p()q()

Sor all infinitely differentiable functions m(-) and all f € BZ((")) q(,)(R").

This theorem corresponds to [16, p. 57, Theorem].
For a real number s,

H3(R") = {f € L' R") : ||l = |1+ -2 (F )]z <}
Let y(-) € Z(R") and ¢(-) € .Z(R") such that
0<y <1, suppw C fv: [y <4}, w() = 1if b <2, (©)

and

1
<|y|<4}, (p(x):lif§<|x|<2. (7)

1
0<o<l, SUPP(PC{)“Z

Following [16], we write

[l = [yrml|s + sup[[@()m(2")][ps-

Then we obtain the following Fourier multiplier theorem which is proved in Sec-
tion 5.

THEOREM 3.2. Let p(-),q(-) € C°5(R") N Py(R") and a(-) € C'°¢(R™).

(1) If‘ V> % + }’1+3C10g(06)min{p7,q7}

: , then there exists a constant ¢ such that
min{p_.q—}

|7 mF fl| oty < cllmllug] [ £1] (®)
p().al) p().al)
for m(-) € L™(R") and f € Fyf) (R").
2}’1+3C10g(06)min{p7,q7}
min{p_.q—}

() Ifv> 35+ , then there exists a constant ¢ such that
Hf*lmff\lgap

< climllig 1] 9)
p().a() P()s

q()
oo n OC() n
for m(:) € L*(R") and f € Bp(-),q(~)(R ).

REMARK 3.3. It is shown by Triebel [16] that, in the case where a(-), p(-)
and ¢(-) are constants, Theorem 3.1 and 3.2 holds under the condition N > |o| +
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3n/min{p,q} +n+2orv>n/2+n/min{p,q}, respectively. Let p(-) € Z(R"). If
q(-) € A (R") is not a constant function, Almeida et al. [1] showed the inequality

KA fic35 1o (00 S T3S o) 20

does not hold for all sequences { fi}7 o C L? ()(R"), and so Theorem 4.10 are applied
to prove Theorem 4.13. Hence, main results above do not recover the constant cases in
the case of B ;. However, if we want to prove directly the theorems where g(-) and
o(+) are constants, the proofs are as follows:

Let p(-) € Zo(R") and g € (0,). Then we set

Fp g = sup{rG R :0<r<min{p_,q}and @ € %’(R”)}

Since the definition of Z((R"), the condition on m in the (ii) of Theorem 4.13 is
weakened to m > n. Hence, the conditions on N and v in the case of Bg‘(') are

a
weakened to N > |ot|+3n/r,_4+n+2and v>n/2+n/r,_, respectively.
The next theorem is proved by many authors [18, 7].

THEOREM 3.4. Let s > 0 and p(-) € B(R"). Then F;(,).z(]R") coincides with

L5PC)(R™). Let k€N and p(-) € B(R"). Then F;‘(,).Z(R") coincides with WoPO) (R").

The next corollary is an immediate consequence of Theorem 3.1, 3.2 and 3.4.

COROLLARY 3.5. Let p(-) € Z(R") and s >0
() If N > |s| +4n+ 2, then there exists a positive number ¢ such that

Hﬂ_lmﬂfﬂmp(_) < CHmHNHfHLw’(-)

for all infinitely differentiable functions m(-) and all f € L>PC)(R™).
(ii) If v = n/2 + n, then there exists a constant ¢ such that

17~ mF £l st < ellmlluglf 1] s
for m(-) € L”(R") and f € L>PC)(R").

We can prove the next corollary by the same arguments in the proof of [16, p. 58,
Theorem 2.3.8] with lifting property (Corollary 4.22) and Theorem 3.1 which takes
the place of [16, p. 57, Theorem 2.3.7].

COROLLARY 3.6. Let p(-),q(+) € C¢(R") N Zy(R"), o) € C°¢(R") and m €

N.
(i) Let B be a multi index. Then
8’"]‘
S (195 e an Il + > 2]
B|<m () POt j1|] 9% || get)m

p(-).a()
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. . o(-) n
are equivalent quasi-norms on Bp(')’q(,)(]R ).

(ii) Similarly,
871’!‘]('
) \Dﬁfoa(.>,m and ||l i
|Bl<m p().a() F)—m
P()q()

are equivalent quasi-norms on FOE(') (R™).

p ')’q(')
4. Preliminaries

We need the following fundamental properties of LP()(R").

THEOREM 4.1. ([5, Theorem 8.1]) Let p(-) € Z(R"). Then the following condi-
tions are equivalent to each other:

@ p() € BR).

() p(-)/t € BR") for some 1 <t < p_.

(©) p'(-) € B(R"), where

In [3, 5], some other equivalent conditions are given.

REMARK 4.2. Let p(-) € Z(R") and ¢ be the same as Theorem 4.1. Then, for
any w € (1,#], we have p(-)/w € B(R"). Furthermore, for any w € (0, 1], we have
also p(-)/w € Z(R") by Jensen inequality. The proof and the details are found in [5].
Consequently, if p(-) € Z(R"), then, for any r € (0,r,_), p(-)/r € Z(R"). For any
re (0,7,_4), we have also p(-)/r € B(R").

The next theorem gives a generalized Holder inequality which is shown in [12, 14].

THEOREM 4.3. ([12, 14, Generalized Holder inequality]) Let p € £ (R"). Then

1 1
()] dr < (1 L ;) Allolellro

R’l
for every f € LPO(R") and g € LF'C)(R").

Let p(-) € Z(R") such that p(-) is not a constant function. Then, according
to [12, Example 2.9, Theorem 2.10], for every Lp('), there exists a function f(-) €
LPU)(R") such that its any translation f( +-) & LPC)(R"), where B € R"\ {(0,0,---,0)}.
The next theorem shows that all elements of .(R") and any of their corresponding
translations belong to LP()(R") for every p(-) € Zo(R").
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THEOREM 4.4. Let f(-) be a measurable function on R" satisfying

sup {(14 [x2) 7 |f(x)[} < oe.

xeR?

Then, for any p(-) € Z(R"),

[1£llp0 < 77 sup {(1+ x?) 7= | ()]}

xeR"

Furthermore, for any a € R\ {0} and B € R",

sup [|£(B+ o)l < el "7 P sup {(1+x2) 7 [£(x)]},

BeRn xeRN

where
o [p-iiel
. p+ otherwise.
Proof. We put fo = sup,cpa{ (14 |x>)"/?=|f(x)|}. Then

n (x) &
0P = <<1+|x|2>v |£<x>>” . 7

(14 kP T+

since (14 |x[?)~! <1 and p_ < p(x). So, we have
px) P(x)
/(fgx>|> dx</< fcnnl> "
\n N+ 2 g

p(x)
1 1
- ( " ) dx
(1)
1 o n
<
= o (/ 1+ 2dt)

=1
where we use (11), 7= PW"/P- < g7 and (1+x2)(1+x3) - (1 +x2)

)

(10)

(1)

12)

< (L+ ).

By (12), we have ||f][ ) < 7"/7~ supyepa{(1+[x*)"/7~| f(x)[} <. By (10) with

x replaced by f 4 ox, we have

£(B+0ax)| < (1+ B+ ox) P | £(B + o)
< sup {(1+ B+ ox?) 7 |f (B + o)[} < oo

xeR”

forany o € R\ {0} and B € R". We put f{4 g} = sup,cpn{(1+ |B+ ax|?)"/P-| f(B +

ox)|}. Let
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p(x)
L, <M> <1

lo| P = fropy

by the same calculation as in (12). Hence we have

Then we have

£ (B + o)l ey < || 7 P~ sup {(1+ 1B+ ax?) 7 | (B + ax)[}

<ol 77 sup{(1+ )7 |f @)} (13)

z€R®

by (10). Finally we have

sup [|f(B+ )| o0 < a7 P~ sup {(1+ )7~ |f(x)[} < eo
BeR" xER?

by (13). O

COROLLARY 4.5. Let p(-) € Zy(R").
(i) The inclusion . (R") C LPC)(R™) holds. Furthermore, we have

1fllpo <77 Sup{(1+|X| )= £}

Jor f(-) € Z(R").
Gi) If f(-) € L (R"), then f(B+a-) € LPC)(R™) forany oo € R\ {0} and B € R".
Furthermore, we have

sup [|f(B+ o)l o) < lof "7 P sup {(1+ )= | f()]},
BeR? xeR?

where
o [p-iiel
: p+ otherwise.

Proof. 1t is sufficient to prove that (10) holds for f(-) € .(R"). We recall that
the topology in the complete locally convex space .(R") is generated by semi-norms

pn(f)=sup Y (1+]P)D*f(x)], NeN.
XERM || k<N

Then, for any x € R"” and any N > [n/p_]+ 1, we have

] < sup {(1+ )P [£(01} < pw(f) < oo

xeRn?

for fe S(RY). O
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DEFINITION 4.6. (i) Let Q be a compact subset of R”. Then .7“}(R") denotes
the space of all elements ¢ € .(R") which satisfies supp.Z ¢ C Q.
(i) Let p(-) € Cl°¢(R") N Zy(R"). If Q= {4}, is a sequence of compact
subsets of R”, then Lg(.) are the spaces of all sequences { fi}r_, of .”(R") such that
supp-Z fi C (14)
and || fil[; () < oo for k=0,1,2,---.

The next theorem gives a relationship between L) and L") normof ¢ € .7 (R™).

THEOREM 4.7. Let B, = {x € R": |x| < b}, b >0 and a be an arbitrary multi-
index.

(i) Let p(-), q(-) € Po(R") satisfy 0 < p(-) < q(-) <eo. If @ € B0 (R"), then
there exists a positive number ¢ such that

41 n
!l a0 <cb"(” ‘ )\|<p|\L,,<4> and ||@|[= < b7 [|@|] ),

where

* p*lfb>17 Kok qulfb>I7
P = ) and q" = )
p+ If b<1, g- if b<l,

and c is independent of b.

(i) Let p(+), q(-) € Po(R") satisfy 0 < p(-) < q(-) < e and let p* and g™ are
the same function as above. If ¢ € .#Bb (R™), then there exists a positive number c
such that

ot ( L — L al+2%
1070l < ™" ) 1gll o and 11D%0lli= < B F [1gl]p0,

where c is independent on b.

Proof. We prove only the b > 1 case because we can prove the b < 1 case by the
same argument.
Step 1. First we will prove that

ol écb”_*H(pHL,,(.) (15)
for ¢ € ZR") and p(-) € Py(R"). Without loss of generality, we can assume

llo||lz==1. Let y(y) € L (R") such that (Fy)(§) =1 for & € {x e R": |x| < 1}.
Then there exists a some positive number ¢; such that

o) =ci [ 9O w(blx—y)dy,
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where ¢; depends only on the definition of Fourier transform .% . Then we have

lp()]

C1

< [, o wible—y)ldy

—/ Plo0)b—ldy+ [ Blomwblr—y)lds
Q(p>1) Q(p<l)
=L+, (16)

where Q(p>1)={xe€R": p(x)>1} and Q(p<1)={x € R": p(x) <1}. Let

_ v )p(x) (x€Q(p>1)),
p(x>_{1+e (xeQ(p<l)),

where € > 0 is an arbitrary fixed number with 1+ € < p. By Corollary 4.5, we have

sup || 5"y (b(x =) xa(ps1) ()0 <7700 7 sup {(1+ )™ [y}
xeR”? yeR”

where Yq(,~1)(x) is a characteristic function on Q(p > 1). Hence we have
L | < db™|y(b(x—))xap=1) )70 leC)xamsn Ol 0

_n_ n<l—%> o
<d0275”/’b z H(PHLP(') :dCZEPI’bP’H(PHLP(‘)
<deant”= b7 |00 (17)

by Holder inequality, where d = (1+ ﬁ% — ﬁ) and ¢ = sup, g { (1+[y[?) ly(y)]}.
By |||z~ =1, we have

Bl [ oWl lo() ) dy
Q(p<1)

<Olvll- [ o)
Q(p<1)

<Vl /RnW(y)l”(y) dy <B"[|lle=llell]) (18)

P g4

where

_ )P+ if H(pHLI’(') =1,
p— if [|o]|0 <1

Hence we have
I < dclc27rp/ibp_7”§0”m(-) + 1"yl || Z;()

by ||@||z= =1 and (16)—(18). It follows that

Sderean”=br=|@| 0 or 5 <eib|lyll=[lo][?:

N —
N =
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Hence we have .
ll@||r= < cbP- H(pHLI’(')7
where

o= max {2dcrcst’ (ellwl) . el vl |
By ¢(x) — p(x) > 0 and (15), we have

o) "
o(x
/n ,, ; 1) dx
bm H(pHLI’
9(x) N
o(x
L,L ( n(¢,¢) dx
p b H(pHLI’ cb \r—ax H(pHLI’(')
q(x)—p(x) p(x)
\|<p|\Lw ( 9(x) N
1 oL _ L
- ‘H H(pHLI’ cb (1), (H)H(pHLI’(')
p(x)
< [ ( (x)|> ar< i<t
R clloll 0 c
Hence we have
)
@l]Lq0) < cb TN @l o0 (19)

which implies (i).
Step 2. We will prove (ii). Let y € .(R") be the same function as in the Step 1.
Then we see that

Do) =1 [ oB™ D y(b(x—y))dy

Hence, we have
JrL
D% |- < b= ]
and

1
\a|+n(pf—

1
1Dl 0 < cb =)ol o,

where

n_ e L L
c:max{mcl”"' sup (1 ) Dy el D) e [yl } '
y€ n

O

This theorem is corresponding to [16, p. 17, Theorem].

D. Cruz-Uribe et al. [3] proves the boundedness of classical operators, for exam-
ple, singular integral operators and fractional integral operators, on the space L") (R™).
The next theorem is corresponding to the well-known maximal vector-valued inequality
in the classical setting.
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THEOREM 4.8. ([3, Corollary 2.1]) If p(-) € B(R"), then, for all q € (1,0),
there exists a constant ¢ such that

KA 130 1 ro gy < €30 | ppo) 0y (20)

for all sequences { fi}i_, C LPO(R™).

Itis well-known that (20) does not hold if ¢(-) € Z(IR") is not a constant function.
However, Diening et al. [7] showed the following helpful theorem, which takes the place
of Theorem 4.8.

Let

M (x) = (L4 [x) ™™ and 1y (x) = 2""10(2"x)

for v € Ny and a positive real number m.
THEOREM 4.9. ([7, Theorem 3.2]) Let p(-),q(-) € C°¢(R") with 1 < p_ < py <
oo and 1 < g_ < g4+ < oo. Then the inequality
K 1km * fiedioll oo a0y <l A0 o) a0y

1
loc

holds for every sequence { fi}r_o of L. -functions and m > n.

Almeida et al. [1] showed the following helpful theorem for éq(')(Lp(')) quasi
norm.

THEOREM 4.10. ([1, Lemma 4.7]) Let p(-),q(-) € C°¢(R") with 1 < p_ < p; <
oo and 1 < g < g4 < oo. Then the inequality
KMk * fic Yol l oo o0y < €l{Sic0 a0 200

1
loc

holds for every sequence { fi}7_ of Ly, -functions and m > 2n.

We can generalize [7, Lemma A.6], which is called “the r trick”, to following
lemma.

LEMMA 4.11. Let r>0, v €Ny and m > n+ 1. Then there exists ¢ = c(r,m,n) >

0 such that A )|
xX—z p
W <c(Mum*|fI"(x))

forall x e R", z € R" and every f € '(R") with supp Zf C {E: |E] <2VH1Y,

1
-

Proof. We use the same arguments in the proof of [7, Lemma A.6]. Let k =
(ki,---,k,) € Z" and | € Z". Fix a dyadic cube 2 = 2, ; =1\, [2"k;,2" (k; + 1)]
and x—z € 2. Then we have

[fx=2)I" < sup [f(0)]" <er2™ 3 (1+|l|)_’"/g FO)I"dy

we2 le7n
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form>n+1.Lety€ 2, ;. Thenwehave 142V |x—z—y|~ 1+|l| by x—z€ 2, .
Since
(142" =y)" < (1+2%x—z—y))" (1 +2"[z))",

splf(O) <2 3, [ (12— el
Cen2" [ (142" lr=y]) (1 +2"e])" ) dy
= cea(12"[2])" (o /1)),

For x —z€ 2, , we have

[f(x—2)|

Q2 ? Sclmn) (eI @)"

where c¢(r,m,n) depends only on r, m and n. For any x,z € R", then, there exists a
k' € Z" such that x —z € 2, p. Hence we have the desired inequality for all x € R"
and ze R*. O

We often use the following relation between c(x) and o(y), which is proved in

[L1].

LEMMA 4.12. ([11, Lemma 19]) Let o(-) € C'2(R"). Then there exists a posi-
tive constant ¢ such that

ko (x) Memsr(X—Y) < c2kel) Mm(x =)

forall x,y € R" and R > Ciog(t).

THEOREM 4.13. Let p(-),q(-) € C°¢(R") N Zy(R") and o(-) € C'%(R"). Let
Q= {Q}7_, be a sequence of compact subsets of R" such that Qi C {& e R": |&] <
2k+1}‘

() If 0 <r<min{p_,q_} and m > n+2Ce(0) min{p_,q_}, then there exists
a constant ¢ such that

Zka _
p 2 —2)
ZER? 1+ ‘2k2| T =0

forall {fi}5 € Lff(.).
(i) If 0 < r <min{p_,q_} and m > 2n+2Coe(a) min{p_,q_}, then there exists
a constant ¢ such that

Zka _
up 2 —2)
ZER? 1+ ‘2k2| T =0

forall {fi}5 € Lff(.).

<el{2Vfid§ sty 2D
Lr0) (¢aC))

<el{2Vf§ e oty (22)
2a0) (L))
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Proof. Let {fi}5 € L;z(,) and R > Ciog(0r). It is easy to see that

2k =3)| f (x — 2)|
(1+]2kz))

2RI fi(x —2)|

i < max 2%—171
1+ |2kz| 7 { )

m ka(x)
Smax{2771,1} |fk( — R2|
(14 |2kz]) "7

m__ ¥ r 1
<max{2r 1,1}2ka (le,m—Rr*|fk| (x))r

< max{2% L1} (M- 0) 5 270 i) ()

for k=0,1,--- by Lemma 4.11 and 4.12. Hence we have

2k0( _
up 24N —2)
z€Rn I+ |2kZ|7 0

1
-

LPO)(pa())
< el (Mmozrr () * 27O i) ()} o||‘/r 0, (23)
and
ko(- _
Hsupz AL z>|}
ek 14[2%]7 k=0l le% L2
< el 20 0) <27 DO Ol o (24)

By 0 < r<min{p_,q_}, p(-)/r and g(-)/r satisfy the assumption of Theorem
4.9 and 4.10. If m > n+ 2Rr, then we have

2k0( _
up 2l =2)
Zz€Rn 1+ |2kZ| T 0

by (23) and Theorem 4.9.
If m > 2n+ 2Rr, then we have

2k0( _
up 2= 2)
ZER® 1+ |2kZ| T 0

by (24) and Theorem 4.10. O

<cl[{2 O Ry
Ol e a0

LPO)(pa())
— Il oka() e
| {2 fedioll oo gaoy

<20 pryeltr
0 e@(L’()

£aC)(LP())
=c| ‘{Zka(.)fk};c=0| |/jq(-)(Lp('))
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THEOREM 4.14. Let Q be a compact subset of R", p(-) € %y(R") and q(-) €
Po(R") satisfy 0 < p(x) < g(x) < eo. Then there exists a positive constant ¢ such that

HDafHLq(-) < CHfHLI’(') (25)

and
D £l < cllf1] ey (26)

forany f € LI?(_) and any multi index o.

Proof. We use the same arguments in the proof of [16, p. 22, Theorem]. Let
o € L (R") with ¢(0) =1 and supp-Z ¢ C {y: |y| < 1}. Let f5(x) = @(0x)f(x)
with 0 < § <1 and f € L?(_). By the Paley—Wiener—Schwartz theorems [16, p. 13,
Theoreml, Theorem?2], we have f5 € B where B is a closed ball, centered at the

origin, such that
{y : IxeQand|x—y| <1} CB.

We apply Theorem 4.7 to ¢ = fg to obtain

1D f5 140 < sl oo < ellf oo -

Similarly as in the first step of the proof of [16, p. 22, Theorem], D% f5(x) — D*f(x)
(pointwise convergence) if § | 0 and D*f € L. Hence we have (25). This completes
the proof of Theorem 4.14. [

Let f(-) € L% |(R") and #~'M € L'(R"). Then

(F MR =c [ (F M=) )y

n

make sense for any x € R" by the classical Holder inequality and (26).

THEOREM 4.15. Let p(-),q(-) € CP°¢(R") N Zy(R") and o(-) € C'%(R"). Let

Q= {Q}7_, be a sequence of compact subsets of R" such that Qi C {& e R": |&] <
k+1 } .
(1) If- > n + n+3C10g(oc)min{p7,q7}
2

: , then there exists a number ¢ such that
min{p_.q—}

{220 Z M Z fi ool ot a0

S esup 1M, 2 1z 14250 £33 1 o gaoy

Jor {fi@)}io € Ly and {My(x)}_o € Hy(R").

(ii) If v > & + 23 Co()minip g}

: , then there exists a number ¢ such that
min{p_.q—}

{250 77 M 7 fi Yoo |a) (100

S csup|[M; @' g L2 Fid 5 e ot

for {fe0)}io € Ly and {Mi(x)}_o € H3(R").
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Proof. As we mentioned above, .# ~M;.Z f; is well-defined. By the same argu-
ments in the proof of [16, p. 31, Theorem], using Theorem 4.13, we have

250 F ML F fi(x —2)]

< [ 2o (FTMIC=Z N ke 2 g
B (112
‘(6‘7le)( X—27— y)| ka ki, mth
</ A A1 2 )y

m+Rr

(F 7 M) (x = 2= y)|(1+ 2= y)| 7 ) dy.

2k0£
S sup |fk( )|m
wern (14 2K|x —ul) 7 Jre

Since
m+Rr m+Rr m-+Rr
1+ 24— y)| 57 < e+ 25—y =" ) (1 + 25 *7),
1 + |2kz| m+Rr < 2(1 + |2kz|)m+Rr

the arguments in the proof of [16, p. 31, Theorem] implies that

2k Z M F fi(x —2) < 03| fi(x —

3 k
m+Rr ~ m 2 . v (27)
R Z€R" 1+ |2k | H ( )||H2

sup
ZER? 1+ |2kz|

for 0 < r < min{p_,q_} and v > % + ™R Hence Theorem 4.15 is an immediate
consequence of (27), Theorem 4.13 and the estimate

2600 Z M T fi(x —2)

m+Rr

20| F T MLF fi(x)] < sup
ZER™ 14 |2%z)

DEFINITION 4.16. [16, p. 45, Definition1] The set W(R") is the collection of all
systems ¢ = {;}7_, C . (R") such that

{wMWMC&:M<2L

supp @; C {x: 2771 < x| <2771} for j=1,2,---,

for every multi-index o, there exists a positive number ¢, such that
2/1%D%;(x)| < ca

for j=0,1,--- and x € R" and

3 05(x) =
=0

for x € R".
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DEFINITION 4.17. ([16]) For a natural number L, Let 277 (R") denote the collec-
tion of all systems ¢ = {¢;(x)}7_y C . (R") of functions with compact supports such
that

Co) =sup [x|" 3 [D%@o(x)]

xeR? lo|<L

+ sup (fF a7 Y ID%i(27x)] < e
X,€R1">{0} lee|<L
J=12,

All elements {¢;} € W(R") belong to 27 (R") for any natural number L.

DEFINITION 4.18. For a natural number L, ¢ = {@;(x)}7 € #(R"), f €
' (R"), and a > 0, we set

ZF 0. F F)(x—
(@) = sup T &7 N=y)

. . xcR", (28)
yeRn 1+ ‘ij‘a

(Peetre maximal function), for j =0,1,2,---.

The next proposition corresponds to [ 16, p. 53, Proposition] in the classical setting.

PROPOSITION 4.19. Let a >0 in (28) be fixed. Let p(-),q(-) € Zo(R"), a(-) €
C'°2(R") and L a natural number larger than max{|o_|, oty |} +3a+n+2.
(1) There exists a positive number ¢ such that

12500 sup (@F ) (It < CosuplC(q)T)l\Zk"‘(x)((P;?f)(X)\IW) 29
<7<

0<r<1
for 0 = {o(x)}7, € YR"), o' ={pf(x)}7 o€ A (R") with 0 <1 <1, f€
! (R") and x € R".
(ii) There exists a positive number ¢ such that

1250 sup (97" 1))ty gy < © SUPIC(<PT)||2k°‘(')(<l>;ff)(')|\eqw(m‘)) (30)

0o<t<1 0<t<

for ¢ = {oc(x)}io € Y(R"), 0" ={of(x)}r o€ A (R") with 0<t<1and f €
S (R,

Proof. (i) is the same as [16, p. 53, Proposition]. In particular, we remark that
there exists a positive number d > 0 such that

240 (o ) (x) < dC(9") 3, 20N ) (g7 ) ), (31)
(=0

where 0 =max{|a_|,|o|}+3a+n+2 and L > o, which follows from the arguments
in [16, p. 53, Proposition]. Hence we have (29) because g(x) € (0,c) for any fixed
xeR".
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We will prove (ii). Let p(-),q(-) € Zo(R") and

oo

n=||{ze 000}

Jj=0 [Q(')(LI’(')).
Let
fx f(x
glx) = 7 (x) —~— and h(x) = Q
Suppr<1 C(@T )1 u
Then we have
zka(x) Oiugl(qolz:*g)(x) < 2 2(67L)|éfk\2(,a(x)((p;h)(x)
T (=0
by (31).
Hence we have
q(x) oo . , a(x)
{Zko‘(x) sup ((p,f*g)(x)} <c Z 24~ (0+e —L)|(—k| {zfa(X)((pg‘h)(x)} (32)
0<t<l (=0
with € >0 and L > o + €, where
- q+
c= (Z 2_81]‘) .
k=0
Let
< Dl (), e 140)
A’ 2622q7(0'+82 L)‘k kl {2/0(()(('0/}1)} )
(=0 LaC)
with & > € and L >0+ 6.
Then we consider the following integrand
px)
- ({2'“1@ supo«d(qo,z*g)(x)}ﬂﬂ) 7
=/ 7 .
Let Q(g > 1) and Q(g < 1) be the same as (16). Then we have
p(x)
L[ (B ),
Q(L>1) A
p(x)
oka(x) T q(x) '\ a@)
+/ { supy <1 (P 8)(x)} de=1+hL. (33)
Q(2<1) A

First we estimate I .
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p(

Let % be the same as in the proof of Theorem 4.7. Then L<0) -norm has the

()

triangle inequality property because Fo) is a measurable function on R” with range in

(1,00). Hence we have

q(*)
‘ {zka<'>0sup (w;f*g)(-))cg<5>1>(~>} o <A,
<1<l Lat)

where

o o o) e q(*)

A’:cZZH‘”@ LK {Zm()((Péh)(')XQ(§>1)(')} ()

) L40)

This implies

P&

({zk ) SUpg et (97 ) (X)X 251y (1) 11 ><
/. ~ dr < 1.

Hence we have

({2’“"@sup0<f<1<<p,f*g><x> ()t )‘)
I = / n dx

A

{2 SuP0<r<1((Pk 8) ) xa ( )}q _)

by A’ <A.
Next we estimate the I,. By (32), we have
a0\ 5
) ) X q(x
027:02q,(0'+£1—L)|(—k\ {Z(Q(x)((th)(x)}
b </ dx.
(<) A
. (o+&—L)|0—K| ta() (e 190
Since 207 {2 (o) h)} p() <A, itis easy to see that
Lat
C < - Dk q(x)
Igz)zqf((ﬂrsl L)|0—k| {2/,06( )((P( h)(x)}
()
. L0i(x) ( g
<3 aaich {20 gime) }
= | {20@m ™|

(34)

(33)
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for £ =0,1,---, where &5 = & — & > 0. By (35) and Jensen inequality, we have

)\
) X q(x
R E RG]
L < / , Yy 2745 3 dx
acz<n | 5 H{zfa(')((pz«h)(.)}q ‘ "
La()
p(x)
{2fa<x>((p*h)(x)}q(x) "
/ 22 q— £3|[ k‘ dx
2 q(-
i "\ Temmmor T,
2(06 7
< 22 g-&sl=k|(5)- / { x)(} dr
—0 R" H{z/a )( )}‘1 ‘ M
Lat)
_(Z)_
_ 22 rele-HE)- _ 0830~ (§) .
=0 28311—(17;)7 -1
By (33), (34) and (36),
&q-(4)-
1<11+12<1+2£q(£) X
(&)~
holds. This implies
{250 sup (9" g)()}1)| ot
0<t<1 Lal )
& ‘ ‘ )
DIPA {zm(')((l’gh)}q Pl s
(=0 Lal)
where 1
o I+ &q-(5)- (5-
= 242*811C 1_|_22% ! .
0 283517(5)7 -1
By (3), we have
oo L . q(-)
5| [{2e0 swp (o000} ||
k=0 0<r<1 a0
al) s w190
CZ qu (o+&—L)|[(—k| {2[0(()((p[h)} ()
k=0/(= La0)
o o " ‘1() o
ey |2 e 3 g0 (e bk
=0 M L'q’((_'g k=0

69

(36)

<6, (37)
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5 .x,zﬂlk q+ s 734~ (§)- <§T2 74— (L—(0+))

} ol . q(*)
2 {2 ¢ SUPO<T<1((PI;E e }
1 /

k=0 09-dsupy.p-1 C(¢7)u

o . )
—Z 2Osupycci (98 NO || _ |
6 k=0 dsupy.y C(@7 )”

Hence we have

H{zka(') sup (¢;f*f)(-)}2°:o|w»(m-))

0<r<1

1 . « -
<87 d sup C(o")|{2 Nt 1)) eollwo) 1ot

0<t<1
by (3). This proves (29) and (30) provided

L > max{|o_|,|o|} +3a+n+2. (38)

REMARK 4.20. Let p(),q(-) € Zo(R") and (-) € C¢(R"). Let £(-) € B*"
and 6; € ®(R") such that supp.#6; C Q;. Then, for any j=0,1,---, 6
Li}(’: ) (R™), which is an immediate consequence of definition of BZ((,')).L](.) -norm. If f(

F;Fj?q(,)(R"), then, forany j=0,1,---,

1

1 oo q(x)
{6, f(x) )19} ™ < {2(2"“ B+ £ () )70 } :

k=0

This implies

16 fllpr S 27| flay <o
p)qU

forany j=0,1,---. Hence, we have 6;x f € Lp()(R”) forany f € A. Here A be either

of:) n ol:) n
B ).q()R") or F iy (R).

THEOREM 4.21. Let p(-),q(-) € CP°%(R") N Py (R") and a(-) € C'°¢(R").
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o

larger than max{|o_|, ||} +
number ¢ such that
12570 sup (9 )Mty oy < € sup C(@F)If]] et (39)
0<t<1 O0<z<l p()al)
for 0 = {@(x)}0 € P(RY), 0 = {@F(x) )7y € F(RY) with 0< 7 < 1 and f €
o) n
Bp).a0)®"): |
(ii) Let g(-) € CO¥(R") N Po(R"). If a > 2 mnle—0-) 4y (38) and L >
6n+9C10g(oc)min{p7,q7}

n (28) and the natural number L as in (38) is
3n+9C10g(oc)min{p7,q7}
min{p_,q-}

+n+2, then there exists a positive

max{|o_|,|at|} + +n+2, then there exists a positive number c

min{p_q_]
such that
12590 sup (97 £)( )|y aatry < ¢ sup C@OIIA] (40)
0o<t<l1 0<t<l p q()

for ¢ ={o(x)}7_o € ¥(R"), 0° = {@f(x)}o € ZL(R") with 0 <t <1 and f €
Fyt ) (BY)-

Proof. We use the same arguments in the proof of [16, p. 56, Theorem] with
Proposition 4.19. First, we will prove (ii). By (29), it is sufficient to show that

12O 1) Oy ey < ellZO(F ™ @i 1) Ol oo oy “1)

for f € Fpoég)q(,)(R"), where ¢ is independent of ¢ € W(R"). Recall that the right hand
side of (41) is [ f]] ac) - by {F 1o}y € P(R"). Let R > Ciog(0t). Then, it is
p().a)

easy to see that

1y 7
kot (x < kax—2) | (FQeF f)(x —2)|
2K (g £)(x) < 05552 T

because
—1 -1
ke |(F QT [)(x—2)| gmax{zaflJ}zka(x)Ky oZf)x—2)|
1+ |2k (14 [2k¢[)e
(T o ) (x=2)|
(14 [2kz])a—R

(7' T f)(x—2)|
1+ |2kz]a—R

< max{2¢7 !, 1} 2z

< max{2%,2}2k=3)

by Lemma 4.12. Hence (41) is an immediate consequence of Remark 4.20 and The-

orem 4.13 with fy = Z @7 f = Z '@+ f and a > 23Ci0g (@) min{p g -}

. , Where
0<r< min{p,,q,}.
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Finally we will prove (i). By (30), it is sufficient to show that

125V £l a0y < ell2OF 7 QT f] sty 10y (42)
for feB (()) o )(Rn) and a > 2n+3cl°g(a)rmin{p ~4) iy (28), where c¢ is independent
of ¢ € ¥(R") and k=0,1,2,---. The estimate (42) follows from the Theorem 4.13
(ii). O

We can prove the Lifting property by the same argument in [16, p. 58, Theorem
2.3.8] with Theorem 4.21 which takes the place of [16, p. 56, Theorem2.3.6].

COROLLARY 4.22. (Lifting property) Let %° denote the Bessel potential oper-
ator B° = F V(1 +|E2)"2F for 6 €R. Let p(-),q(-) € C(R")N Py(R") and
o(-) € C'°¢(R"). Then the Bessel potential operator %° is an isomorphism between
F:(,)'.q(,) and Fpoé'(i);(,(;. The Bessel potential operator 9B8° is an isomorphism between

o) of)+o
B gty A By 40y

We note that Lifting property for F;E'(i)q B (R™) is already proved in [7, Lemma 4.4]
by the atomic decomposition techniques.

5. Proof of Fourier multiplier theorems

Proof of Theorem 3 1. We use the same arguments in the proof of [16, p. 57,
Theorem]. Let f € F 0 ()( ") and m( ) € C*(R"). Let {6} € ®(R"). Then
{F710)r € ‘P(R") So we write .% ~16;(x) = @i(x). It is obvious that

O (F 'mZf)=F YT O m - Ff)=F oumFf (43)

and
(Z {0 < (of f) (%) (44)
with @f =mey. By (43), (44) and Theorem 4.21 (ii) with N > max{|a_|,|ots|} +

3}’1+9C10g(06) min{p, vq*}
- n+ 2, we have
min{p_.q—} Tat

127 mZ fl] s = 2O F " GEZ L) O o e,
P

)q()
||2ka(')(§0]f* )(')HLP- )(4(0))
¢ sup C(QO)Ifll a0
0 1 Fy q()
where ¢° = {m@y}_,. Hence (4) holds. Finally we prove (ii). By Theorem 4.21 (i)

with N > max{|o_|,|o|} + 6””%%?;?;“}57"{7} +n+2, we have
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|7 'm7 f] |B“(<')) L 12°O(F QL )l gato oy
p()al:

<1220 sup (@F ) ()t 10y

0<r<1

<c sup C((PT)I\fHBa((-)
(-

0<t<l1 ).a()

This implies (5). This completes the proof of Theorem 3.1. [J

Proof of Theorem 3.2. We use the same arguments in the proof of [16, p. 74,
Proposition]. Let f € .%/(R") and {6(x)}7_, € P(R"). If ¥ and ¢ are the functions
as (6) and (7), then we have

and

for j=1,2,---.
Hence we have
0;+(F 'mFf)=0;«F 'mxf=F"{M;-F(0;%f)}, (45)
where
M) = {m(x)w(x% if j=0,

m(x)@(27/x), otherwise.

By (45), we have

17~ mF f]

p().a(-

= {2407 My F (0 )} ol oo

al) n
for f € FP(')H(')(R ) and
177 m gy = 1202 (M- 7 O N ol

p().a()

for f € Bg((_'))q(.)(R"). Using Theorem 4.15 with f; = 6y * f, we have (8) and (9).

This completes the proof of Theorem 3.2. [
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