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ON THE p–MIXED AFFINE SURFACE AREA

XIAO-YAN LI AND CHANG-JIAN ZHAO ∗

(Communicated by J. Pečarić)

Abstract. Some new inequalities for i -th mixed p -affine surface area are established. The re-
sults in special cases yield some of the recent results on inequalities of this type.

The setting for this paper is n -dimensional Euclidean space R
n (n > 2) . Let K n

denote the subset of all convex bodies (compact, convex subsets with the origin in its
interiors) in R

n . Let K n
s denote the set of origin-symmetric convex bodies in R

n .
We reserve the letter u for unit vectors, and the letter B is reserved for the unit ball
centered at the origin. The surface of B is Sn−1 . The volume of the unit n -ball is
denoted by ωn. We use V (K) for the n -dimensional volume of convex body K . Let
h(K, ·) : Sn−1 → R, denote the support function of K ∈ K n ; i.e. for u ∈ Sn−1

h(K,u) = Max{u · x : x ∈ K},

where u · x denotes the usual inner product u and x in R
n .

Let δ denote the Hausdorff metric on K n , i.e., for K,L ∈ K n, δ (K,L) = |hK −
hL|∞, where | · |∞ denotes the sup-norm on the space of continuous functions C(Sn−1).

1. Notation and preliminaries

1.1. The i-th mixed affine surface area

A convex body K is said to have a positive continuous curvature function, f (K, ·) :
Sn−1 → [0,∞), if for each L ∈K n , the mixed volume V1(K,L) = (K, . . . ,K,L) has the
integral representation (see [1]).

V1(K,L) =
1
n

∫
Sn−1

f (K,u)h(L,u)dS(u),

where dS is the (n−1)-dimensional volume element on Sn−1.
The subset of K n consisting of bodies which have a positive continuous curvature

function will be denoted by F n . Let F n
s denote the set of all bodies in K n

s , and have
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a positive continuous curvature function. The i th mixed affine surface area of K ∈F n ,
Ωi(K) , is defined by

Ωi(K) =
1
n

∫
Sn−1

f (K,u)
n−i
n+1 dS(u), i ∈ R. (1.1)

In 1987, Lutwak [2] established the following circle inequality and Brunn-Min-
kowski inequality for i-th mixed affine surface area, respectively.

THEOREM 1.1. Let K ∈ F n , i, j,k ∈ R, and j < i < k , then

Ωi(K) � Ω j(K)
k−i
k− j Ωk(K)

i− j
k− j , (1.2)

with inequality if and only if K is a ball.

THEOREM 1.2. Let K,L ∈ F n , i, j,k ∈ R.
(i) If i < −1 , then

Ωi(K+̆L)
n+1
n−i � Ωi(K)

n+1
n−i + Ωi(K)

n+1
n−i , (1.3)

with inequality if and only if K and L are homothetic.
(ii) If i > −1 , then

Ωi(K+̆L)
n+1
n−i � Ωi(K)

n+1
n−i + Ωi(K)

n+1
n−i , (1.4)

with inequality if and only if K and L are homothetic. The sum +̆ is Blaschke sum.

The definition of Blaschke combination for convex bodies can be stated that (see
e.g. [3]): For K,L ∈ K n, the Blaschke combination of K and L , K+̆L ∈ K n , defined
by

S(K+̆L, ·) = S(K, ·)+S(L, ·),
where S(K, ·) is a positive Borel measure on Sn−1 , called the surface area measure of
convex body K (see e.g. [4]).

1.2. The p -mixed affine surface area

In 1996, p -mixed affine surface area of K ∈ F n , Ωp,i(K) (p � 1) , is defined by
(see [5])

Ωp,i(K) =
1
n

∫
Sn−1

fp(K,u)
n−i
n+p dS(u), i ∈ R, (1.5)

where fp(K,u) is Lp -curvature function. A convex body K ∈ K n is said to have a
Lp -curvature function fp(K, ·) : Sn−1 → R , if its Lp -surface area measure Sp(K, ·) is
absolutely continuous with respect to spherical Lebesgue measure S , and

dSp(K, ·)
dS

= fp(K, ·). (1.6)
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Moreover, Lp -surface area measure Sp(K, ·) is absolutely continuous with respect to
spherical Lebesgue measure S(K, ·) , and has Radon-Nikodym derivative

dSp(K, ·)
dS(K, ·) = h(K, ·)1−p.

In 2007, inequalities (1.2), (1.3) and (1.4) were extended to the following inequal-
ities, respectively (see [6]).

THEOREM 1.3. Let K ∈ F n , p � 1 , i, j,k ∈ R and j < i < k , then

Ωp,i(K) � Ωp, j(K)
k−i
k− j Ωp,k(K)

i− j
k− j , (1.7)

with inequality if and only if K is a ball.

THEOREM 1.4. Let K,L ∈ F n
s , p � 1 , i, j,k ∈ R .

(i) if i < −p, then

Ωp,i(K+̆pL)
n+p
n−i � Ωp, j(K)

n+p
n−i + Ωp,k(K)

n+p
n−i , (1.8)

with inequality if and only if K and L are homothetic.
(ii) If i > −p, then

Ωp,i(K+̆pL)
n+p
n−i � Ωp, j(K)

n+p
n−i + Ωp,k(K)

n+p
n−i , (1.9)

with inequality if and only if K and L are homothetic. The sum +̆p is Lp -Blaschke
sum.

The definition of Lp -Blaschke combination for convex bodies was given by Lut-
wak (see [7]). For K,L ∈ K n

s and n �= p � 1, Lp -Blaschke combination of K and L ,
K+̆pL ∈ K n

s , defined by

Sp(K+̆pL, ·) = Sp(K, ·)+Sp(L, ·). (1.10)

2. Statement of results

The aim of the present paper is to establish the following new inequalities for
mixed p -affine surface area. Our results in special cases yield (1.7), (1.8) and (1.9),
respectively.

THEOREM 2.1. Let K,L ∈ F n
s and let i �= j , p � 1 and i, j, p ∈ R .

(i) If i � −p � j � n, then

(
Ωp,i(K+̆pL)
Ωp, j(K+̆pL)

) n+p
j−i

�
(

Ωp,i(K)
Ωp, j(K)

) n+p
j−i

+
(

Ωp,i(L)
Ωp, j(L)

) n+p
j−i

, (2.1)

with equality if and only if K and L are homothetic.
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(ii) If −p � i � n � j, then

(
Ωp,i(K+̆pL)
Ωp, j(K+̆pL)

) n+p
j−i

�
(

Ωp,i(K)
Ωp, j(K)

) n+p
j−i

+
(

Ωp,i(L)
Ωp, j(L)

) n+p
j−i

, (2.2)

with equality if and only if K and L are homothetic.

REMARK 2.2. Taking for j = n in (2.1) and (2.2), and from (1.1) and in view of∫
Sn−1 dS(u) = nωn is a constant, then (2.1) and (2.2) change to (1.8) and (1.9), respec-

tively.

REMARK 2.3. Taking for p = 1 in Theorem 2.1, we get the following result.
If K , L ∈ F n and let i �= j , i, j ∈ R .
(i) If i � −1 � j � n, then

(
Ωi(K+̆L)
Ω j(K+̆L)

) n+1
j−i

�
(

Ωi(K)
Ω j(K)

) n+1
j−i

+
(

Ωi(L)
Ω j(L)

) n+1
j−i

, (2.3)

with equality if and only if K and L are homothetic.
(i) If −1 � i � n � j, then

(
Ωi(K+̆L)
Ω j(K+̆L)

) n+1
j−i

�
(

Ωi(K)
Ω j(K)

) n+1
j−i

+
(

Ωi(L)
Ω j(L)

) n+1
j−i

, (2.4)

with equality if and only if K and L are homothetic.
Taking for j = n in (2.3) and (2.4), (2.3) and (2.4) change to (1.3) and (1.4),

respectively.

REMARK 2.4. Taking for i = −p and j = 0 in (2.1), (2.1) changes to the follow-
ing interesting result.

(
Ωp,−p(K+̆pL)

Ωp(K+̆pL)

) n+p
p

�
(

Ωp,−p(K)
Ωp(K)

) n+p
p

+
(

Ωp,−p(L)
Ωp(L)

) n+p
p

, p � 1,

with equality if and only if K and L are homothetic.
Taking for i = −n and j = 0 in (2.1), (2.1) changes to the following interesting

result.

(
Ωp,−n(K+̆pL)

Ωp(K+̆pL)

) n+p
n

�
(

Ωp,−n(K)
Ωp(K)

) n+p
n

+
(

Ωp,−n(L)
Ωp(L)

) n+p
n

, 1 � p � n,

with equality if and only if K and L are homothetic.
On the other hand, taking for i = 0 and j = n in (2.2), (2.2) changes to the fol-

lowing interesting result.

Ωp(K+̆pL)
n+p

n � Ωp(K)
n+p

n + Ωp(L)
n+p

n , p � 1 (2.5)

with equality if and only if K and L are homothetic.
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Taking for p = 1 in (2.5), (2.5) becomes the following inequality established by
Lutwak[8].

Ω(K+̆L)
n+1
n � Ω(K)

n+1
n + Ω(L)

n+1
n ,

with equality if and only if K and L are homothetic.

REMARK 2.5. Taking for i = −p and j = n in (2.1) and (2.2), then (2.1) and
(2.2) change to the following result, respectively.

Ωp,−p(K+̆pL) � Ωp,−p(K)+ Ωp,−p(L), p � 1, (2.6)

with equality if and only if K and L are homothetic.

Ωp,−p(K+̆pL) � Ωp,−p(K)+ Ωp,−p(L), p � 1, (2.7)

with equality if and only if K and L are homothetic.
From (2.6) and (2.7), we get the following interesting result.

Ωp,−p(K+̆pL) = Ωp,−p(K)+ Ωp,−p(L), p � 1.

3. Proof of results

LEMMA 3.1. ([9], p. 28) If p � 1 � r � 0 , f ,g � 0, and φ is a distribution
function, then

(∫
( f +g)pdφ∫
( f +g)rdφ

) 1
p−r

�
(∫

f pdφ∫
f rdφ

) 1
p−r

+
(∫

gpdφ∫
grdφ

) 1
p−r

, (3.1)

with equality if and only if the functions f and g are proportional.

In order to prove main result, we yet need to derive a new inequality below by a
similar way in [9].

LEMMA 3.2. If 1 � p � 0 � r , f ,g � 0, and φ is a distribution function, then

(∫
( f +g)pdφ∫
( f +g)rdφ

)1/(p−r)

�
(∫

f pdφ∫
f rdφ

)1/(p−r)

+
(∫

gpdφ∫
grdφ

)1/(p−r)

, (3.2)

with equality if and only if the functions f and g are proportional.

Proof. If α1 � 0, α1 � 0, β1 > 0 and β2 > 0, and −1 < λ < 0, from Radon’s
inequality (see [10], p. 61), we have

αλ+1
1

β λ
1

+
αλ+1

2

β λ
2

� (α1 + α2)λ+1

(β1 + β2)λ , (3.3)

with equality if and only if (α) and (β ) are proportional.



448 X-Y LI AND C-J ZHAO

Let α1 = (
∫

f pdφ)1/p , β1 = (
∫

f rdφ)1/r , α2 = (
∫

gpdφ)1/p , β2 = (
∫

grdφ)1/r ,
and let λ = r

p−r , we obtain

(∫
f pdφ∫
f rdφ

)1/(p−r)

+
(∫

gpdφ∫
grdφ

)1/(p−r)

�

[
(
∫

f pdφ)1/p +(
∫

gpdφ)1/p
]p/(p−r)

[
(
∫

f rdφ)1/r +(
∫

grdφ)1/r
]r/(p−r) .

(3.4)
We have assumed p > 0 > r , since −1 < λ = r

p−r < 0.
On the other hand, by Minkowski inequality with 1 � p > 0 and r < 0 respec-

tively, both [(∫
f pdφ

)1/p

+
(∫

gpdφ
)1/p

]p

�
∫

( f +g)pdφ , (3.5)

with equality if and only if f and g are proportional, and[(∫
f rdφ

)1/r

+
(∫

grdφ
)1/r

]r

�
∫

( f +g)rdφ . (3.6)

with equality if and only if f and g are proportional.
From (3.4), (3.5) and (3.6), (3.2) follows. �

We will need combine inequalities (3.1) and (3.2) to prove the following Theorem.

THEOREM 3.3. Let K,L ∈ F n
s and let i �= j , p � 1 and i, j, p ∈ R .

(i) If i � −p � j � n, then

(
Ωp,i(K+̆pL)
Ωp, j(K+̆pL)

) n+p
j−i

�
(

Ωp,i(K)
Ωp, j(K)

) n+p
j−i

+
(

Ωp,i(L)
Ωp, j(L)

) n+p
j−i

, (3.7)

with equality if and only if K and L are homothetic.
(ii) If −p � i � n � j, then

(
Ωp,i(K+̆pL)
Ωp, j(K+̆pL)

) n+p
j−i

�
(

Ωp,i(K)
Ωp, j(K)

) n+p
j−i

+
(

Ωp,i(L)
Ωp, j(L)

) n+p
j−i

, (3.8)

with equality if and only if K and L are homothetic.

Proof. (i) From (1.5), (1.6) and (1.10), we have

Ωp,i(K+̆pL) =
∫

Sn−1
fp(K+̆pL,u)

n−i
n+p dS(u) =

∫
Sn−1

( fp(K,u)+ fp(L,u))
n−i
n+p dS(u)

(3.9)
and

Ωp, j(K+̆pL) =
∫

Sn−1
( fp(K,u)+ fp(L,u))

n− j
n+p dS(u). (3.10)
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Since i � −p � j � n , we have

0 � n− j
n+ p

� 1 � n− i
n+ p

. (3.11)

From (3.9), (3.10) and (3.11) and in view of the in Lemma 3.1, we obtain that

(
Ωp,i(K+̆pL)
Ωp, j(K+̆pL)

) n+p
j−i

=

⎛
⎝∫Sn−1( fp(K,u)+ fp(L,u))

n−i
n+p dS(u)∫

Sn−1( fp(K,u)+ fp(L,u))
n− j
n+p dS(u)

⎞
⎠

1
n−i
n+p−

n− j
n+p

�

⎛
⎝∫Sn−1 fp(K,u)

n−i
n+p dS(u)∫

Sn−1 fp(K,u)
n− j
n+p dS(u)

⎞
⎠

n+p
j−i

+

(∫
Sn−1 fp(L,u)

p
n+1 dS(u)∫

Sn−1 fp(L,u)
r

n+1 dS(u)

) n+p
j−i

=
(

Ωp,i(K)
Ωp, j(K)

) n+p
j−i

+
(

Ωp,i(L)
Ωp, j(L)

) n+p
j−i

.

The sign of equality holds if and only if the functions fp(K,u) and fp(L,u) are pro-
portional. Hence, the sign of equality holds if and only if K and L are homothetic.

(ii) Similarly above proof, in view of −p � i � n � j ⇒ 1 � n−i
n+p � 0 � n− j

n+p , and
from (3.9) and (3.10) and by using the inequality in Lemma 3.2, inequality (3.8) easily
follows.

We finally remark that inequalities for affine area and mixed surface area were
established in [11–15] and et al. Some new inequalities for mixed p -surface area were
recently established in [16–19] and et al. �
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