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WEIGHTED ESTIMATES FOR ITERATED
COMMUTATORS OF MULTILINEAR OPERATORS
WITH NON-SMOOTH KERNELS

XIUXIANG PENG, ZENGYAN SI AND QINGYING XUE*

(Communicated by J. Pecari¢)

Abstract. Let T be the multilinear Calderén-Zygmund operator with non-smooth kernels and 7%
be its corresponding maximal function. In this paper, we give the weighted strong type estimates
and weak end-point estimates for the iterated commutators of multilinear operator 7. . Similar
results still hold for the operator T .

1. Introduction

Multilinear Calderén-Zygmund operators were introduced and first studied by
Coifman and Meyer [6], [7], [8], and later by Grafakos and Torres [15], [16]. In analogy
with the linear theory, the class of multilinear singular integrals with standard Calderén-
Zygmund kernels provides a fundamental topic of investigation within the framework
of the general theory. The study of this subject was recently enjoyed a resurgence of
renewed interest and activity. In particular, the study of multilinear singular integral
operators with non-standard kernels have recently received increasing attention.

First, we give some background for the multilinear singular integral operators with
standard Calderén-Zygmund kernels. Let 7 be a multilinear operator initially defined
on the m-fold product of Schwartz spaces and taking values into the space of tempered
distributions,

T: SR % x S (R") — .7 (R

Following [15], we say that T is an m-linear Calderén-Zygmund operator if, for some
1 < gj < oo, it extends to a bounded multilinear operator from L9 x --. x LI to L9,

where }1 = fILl +-- 4 qu’ and if there exists a function K, defined off the diagonal
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x=y; =+ =yy in (R")"" satisfying
Tf(x)zT(fl,---7fm><x>:/(  KC1 3 i) = om)d o, (1.1

for all x ¢ (}_; suppf;;
A

IK(yo,y1, > ym)| < 7= (1.2)
(ZkJ:O |y — i)™
for some A >0 and all (x,yi,--,yn) With x # y; for some j. and
Aly;j—Yjl?
[K(Y0,V15 055+ ¥m) = K (Y0, V15 005Y 5 o005 ¥m) | < ( . (1.3)

22’5120 ‘yk _ yl|)mn+£

for some € >0 and all 0 < j <m, whenever |y; — yj| 1 5 MaXo<k<m |yj— Vk|. Suchker-
nels are called m— linear Calderén-Zygmund kernels and the collection of such func-
tions is denoted by m — CZK (A, €) in [15]. The maximal multilinear singular integral
operator is defined by

-,

T(f)(x) = sup [T5(fi,--- fm) ()],

6>0

where Ty are the smooth truncations of T given by

Tﬁ(fla"'afm)(x) :/ I((x’yla"'7ym)f1(yl)"'fm(ym)d.)7

[x=y1 |24 r—ym 2> 82

Here, dy =dyy---dy,,.

As is pointed in [16], T, (f)(x) is pointwise well-defined when f i€ L1 (R") with
I<gj<oo

Recently, the theory of weighted multilinear Calderén-Zygmund type operators
was established in [18], [5], [20]. Two different kinds of commutators associated with
multilinear Calderén-Zygmund singular integral type operators were studied in [18],
[25] and [28], weighted strong and weak LlogL type estimates were obtained.

DEFINITION 1.1. (Commgtators in the j-th entry) ([18], [5]) Given a collection
of locally integrable functions b = (by,---,by,), we define the commutators of the m-
linear Calderén-Zygmund operator 7' to be

B, 7)) = Ty(fiy- - fon) = ZTJ'

where each term is the commutator of b; and T in the j-th entry of T, that is,

-,

L) =b;T (fiseesfseesSor) =T Do fn)-
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In [25], the following more general iterated commutators of multilinear Calderén-
Zygmund operators and pointwise multiplication with functions in BMO are defined
and studied in products of Lebesgue spaces, including strong type and weak end-point
estimates with multiple A; weights.

T (F)(x) = b1, b2 Bt [ Tl m—1 -+ J2]1 () (%)

= i=1

Still more recently, in [28] the author studied the iterated commutators of maximal
multilinear singular integral operator defined by

-,

T, 13 (/) (x) = sup |[by, (b2 [by—1 (b Ts|mlm—1---]2]1 () (x)

6>0
m m
—sup| [ [1(6) = b)) [T i) a5
550 |/ [x=y1 2+ x—ym 2> 62 =1 i1

(1.5)
We list some results for 7. as follows:

THEOREM A. ([16]) Let 1 < g; < oo, and q be such that é = il +- Lm, and
€Ay N---NAy,. Let T be an m-linear Calderon-Zygmund operator. Then there
exists a constant Cy, < oo so that for all =1 fm)

m

1T (F)llzo(@) < Cug(A+W) TT Al (),
i=1

where W is the norm of T in the mapping T- L' x --- x L — L1/m=

THEOREM B. ([4]) Assume that % 44 me = % and w e Aj (see section 2 for
the definition of Ay ), then

(i) If 1 < p1y.ceypm < oo, then Ty is bounded from LP'(w;) X --- X LPm(wy,) to
L (®);

(ii) If 1 < p1yeceypm < oo, then T. is bounded from LP'(w;) x --- X LP"(wy,) to
LP=(®).

Recently, many mathematicians are concerned to remove or replace the smooth-
ness condition on the kernel [1], [10], [19], [13]. In order to state clearly, we first give
some preparation, We will work with a class of integral operators {4, },, that plays
the role of an approximation to the identity as in [10]. We assume that the operators A,
are associated with kernels «, (x,y) in the sense that

S0 = [ alero)dy
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for every function f € LP(R"), 1 < p < e, and the kernels a,(x,y) satisfy the following
size conditions

an(e.9)] < ylxy) =1~ <|xt;sy |> , (1.6)

where s is a positive fixed constant and % is a positive, bounded, decreasing function
satisfying
lim " Mh(r) =0 (1.7)

r—0

for some 1 > 0. These conditions imply that for some C > 0 and all 0 < 1 < 1’ ,the
kernels a;(x,y) satisfy

lar (x,y)| < Ct 5141 S| —y) 0

It can be verified that
A< [ (o)l 0)ldy < CMF (). (18)

forevery f € LP(R"), 1 < p < oo(see for instance,[ 1 1]).

An m-linear operator T : .7 (R") x --- x Z(R") — ./ (R") is linear in every entry
and consequently it has m formally transpose. The jth transpose 7%/ of T is defined
via

<T*7j(fl7"'7fj7"'7.f;ﬂ)7g> = <T(f17"'7fj717g7ff+17'"7fm)7fj>7

forall fi, -+, fn,g in 7 (R"). Itis easy to check that the kernel K*/ of T*/ is related
to the kernel K of T via the identity

K*’j(&}’h'"7)’j—1’}’j7)’j+1,"'a}’m) :K()’ja}’la"'7)’j—1’x7)’j+1,"',}’m)~

Note that if a multilinear operator 7 maps a product of Banach spaces X; x --- x X,
into another Banach space X, then the transpose 7%/ maps the product of Banach
spaces Xj X --- X Xj_1 x X* X Xj 1 X --- x X, into Xj* Moreover, the norms of 7 and
T*J are equal. To maintain uniform notation, we may occasionally denote T by 7*°
and K by K*0.

ASSUMPTION (HO). We always assume that there exists some 1 < g, -+, qm <o
and some 0 < g < oo with é = qll—f—---—i—qLW such that 7, and T both map Lt x --- X
Lqm to Lq7°°.

ASSUMPTION (H1). Assume that for each i = 1,---,m there exist operators
{A;(l)}»o with kernels a!(x,y) that satisfy condition (1.6) and (1.7) with constants s

and 7 and that for every j = 0,1,2,---,m, there exist kernels I(,*"f’(i)(x,yl,~~~,ym)

such that

<T*j(f1? 7At(l)ﬁa 7fm)7g>

= [ J K1 3 F101) ) 00 v,
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forall fi, -, fin,g in . with NJ'_ suppf; Nsuppg = ¢. There exists a function ¢ €
C(R) with supp¢ € [—1,1] and a constant € > 0 so that for every j=0,1,---,m and
every i=1,2,---,m, we have

|K*7j(xayla"' 7yWL) _I(t*h,’(l)(x Vi ,ym)‘

A i ¢<|yz ykl) €5
(|.X yl‘+ +|.X ym k ki 1/s (|x_yl|_|_..._|_|x_ym|)mn+£
(1.10)

whenever 11/5 < |x —y;| /2.

Kernels K that satisfy the size estimate (1.2) and assumption (H1) with parameters
m,A,s,mn,€ are called generalized Calder6n-Zygmund kernels, and their collection is
denoted by m — GCZK (A, s,n,¢€). We say that T is of class m — GCZO(A,s,n,€) if T
has an associated kernel K in m — GCZK(A,s,n,€).

ASSUMPTION (H2). Assume that there exist operators {A;},~o with kernels
a;(x,y) that satisfy condition (1.6) and (1.7) with constants s and 7, and there exsit

kernels K,(O) (X,¥1,-+,¥m) such that for all x,yi,---,y, € R" and t > 0 the representa-
tion is valid

K (e, vm) =/RHK(Z,yl,---,ym)ar(x,Z)dZ- (1.11)

Assume also that there exist a function ¢ € ¥ (R) and ¢ C [—1,1] and a constant € >0
such that

0
|K<x,y1,---,ym>—1<( Yyt )

< 2 (x ykl) Arels (1.12)
= \x yel)mm s (X [x — yx|)mnte
k#/

for some A > 0, whenever 2¢!'/° < maxj< <y |x — y;|. Moreover, assume that for all
X, V150 Ym € R",

(0) A
K 7 (x,y1,00,y S TR T— 1.13
| t ( 1 m)‘ (221:1 \X—yk|)m” ( )
whenever 2¢'/* < minj< < [x — y;|, and for all x,x’,y1, -,y € R",
0 0 Aréls
|I(t( )(x,y1,~--,ym)—K,( )(x/,)’1,"'a>’m)| < ( (114)

il o= yf)mmre’
whenever 2¢'/* < minj je ¥ —y;| and 2)x — x| <1/,

THEOREM C. Assume that T be an m-linear operatorin m-GCZO(A,s,n,€) and

its kernel K satisfies assumption (H2). Moreover, for some 1 < qi, -+ ,qm—1 < oo,
qm € (1,00) satisfying %—i—---—i—# = é and T maps L1 x --- x LI to 1. Let
1<P1f"aPm<°°,%:%‘F""Fpim,(z‘) (wh'"a m)EAﬁWZthﬁ:(pla”'7pm)a

then
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(i) T, can be extended to a bounded operator from LP'(®;) X --- X LPm(@,,) to
LP(vg) if all the exponents pj are strictly greater than 1;

(ii) T. can be extended to a bounded operator from LP1(®;) X -+ x LP"(@y,) to
LP=(vg) if some exponents p; is equal to 1.

Similar results hold for T.
In 2009, Gong and Li [19] obtained the following weighted estimate for Ty :

THEOREM D. Let T be an m-linear operator associated with a kernel K satisfy-
ing assumption (H1) and (H2), and let T; be a multilinear commutator with b € BMO™.
Let 1 < pl,---,pl,,p' < o be given numbers satisfying

1 1 1
— Tt et === (1.15)
pl Pm 14
Assume that T maps LP1 (R") . Lp;" (R") 1o LF' (R"). Let p,p ; be numbers sat-
isfying 1 < pj,p <o and —|— = % and let ® € Ay, then there is a constant

C so that for all f = ( fl, oy fm), where each f; is a smooth function with compact
support,

TPl l1ow) < CllBlImston L1l
=1

and hence, Ty extends as a bounded operator from LP'(®) x --- x LP" (@) into LP (o),

= sup; ||bi||smo-

where
In 2010, Anh and Duong in [1] obtained the following estimates for 7.

THEOREM E. Assume that T satisfies (H1) and (fIZ). Let @ be an_’Aoc weight,
function ®(t) =1t(1+log"t) and p > 0. Suppose that b € BMO™ with ||b||pyo = 1.
Then, there exists a constant C > 0, depending on the A constant of @, such that

[ PP owas < [ TTMi i) o0ds (116)
and
P 1) o({y eR": [T;(F))| >1™})
| B (1.17)
< Csup——0({y € R": [ [Myr1og1) i(y) > 1"})
>0 D(7) i=1

for all bounded vector function f: (fi,:+, fm) with compact support.
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THEOREM F. Assume that T satisfies (HI) and (H2). Let b € BMO™ with ||b||syo
=1 and 11—7 = ﬁ—l—---—i—# with 1 <pj <eo, j=1,---,m. Then we have
(i) There exists a constant C such that

T (Dl vg) < CTTIAN e (b0
i=1
(i) If each w; € Ap, then there exists a constant C such that

HTB(f)HLI’(v(;,) < CHHfiHLPi(w,-)~
=1

P
Pj
Here vy =1L, ;7 .

Comparing with the results for standard multilinear Calderén-Zygmund operators,
one may naturally ask the following questions: Can we obtain the similar results for
the iterated commutators of multilinear Calderén-Zygmund operators with non-smooth
kernels? In particular, does the result hold for maximal operator 7, with non-smooth
kernels? It is obviously that estimates involving the maximal function 7, lead to non-
linear type analysis, which in turn adds the difficulty of dealing this type operators.

Inspired by the above results, we first establish the following estimates for iterated
commutators with non-smooth kernels for 7, -, which give positive answers to the
above questions. These results are new, even in the case for the commutators in the
Jj-th entry.

THEOREM 1.2. Assume that T is an operator in m-GCZO(A,s,n,€) and its ker-
nel satisfies assumption (H2). Let ® be an A. weight, function ®(t) =t(1+1log™ ¢)
and p > 0. Suppose that b € BMO™. Then, there exists a constant C > 0, depending
on the A constant of @, such that

- T, ()P 0(x)dx < CTT | Ibil[smo /Rn [ TM1g10g1) /i ()7 0(x)dx; (1.18)
i1 i1

At the endpoint, we have

1 n 7 m
fgg@w({yER T, ()W) >1"})
| m (1.19)
< Csup —=0({y e R" : [[Myiogr) fi(y) > 1"});
t>0 d)(?) i=1

for all bounded vector function f = (f1,--*,fm) with compact support.
Similar results still hold for T, 3.

As for the multiple weights w € A3, we have
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THEOREM 1.3. Assume that T is an operator in m-GCZO(A,s,n,€) and its ker-
nel satisfies assumption (H2). Let b e BMO™, % =Ll4...4 me with 1 < pj < e,

2
j=1,--- m. Then we have
(i) There exists a constant C such that

m m
T, 15 (D)l (vg) < CTT 1Bl lBso TTHA 7 e
i=1 i=1

(ii) If each @; € Aj;, then there exists a constant C such that
m m
T, 15 ()l 2o (vg) < CTT 118l lmaeo TT11illri (@)
i=1 i=1

where vg =1, wl-p/pj.
Similar results still hold for T, ;.

COROLLARY 1.4. The results in Theorem 1.1 and 1.2 still hold for T, which

extend the results in [ 1] significantly.

5’

As for one weight w € A, we get

THEOREM 1.5. Assume that T is an operator in m-GCZO(A,s,n,€) and its
kernel satisfies assumption (H2), and b € BMO™. Let p,p; be numbers satisfying
1 <pj,p<eco and ﬁ"’""",%m = 117 and let @ € Ap. Then there is a constant C so

that for all f = (f1,**,fm), where each f; is a smooth function with compact support,
1715 (Pl (@) CHHbHBMOHHfJHL”/

and hence, Ty extends as a bounded operator from LP' (@) X - - - x LP"(®) into LP (®).

REMARK. The above theorem gives the results for the iterated commutators of 7
with the weight w € A, thus it improves the results in Theorem D for the commutators
in j-entry significantly.

The article is organized as follows. Initially, some definitions and preliminaries
are given in section 2. Next, we will focus on the main results Theorem 1.1-1.4 after
established some main lemmas in section 3.

2. Preliminaries

DEFINITION 2.1. A locally integral function b on R” is said to be in BMO(R")
if and only if

1
sup = [ [b() — baldy <
8 |Bl /s



WEIGHTED ESTIMATES FOR THE ITERATED COMMUTATORS 481

where bg = % Jzb(y)dy. The BMO norm of b is defined by

1
1]l = sup - [ 1b(s) — baldy < .
B |B| /B

The classical John-Nirenberg inequality shows that functions in BMO are locally ex-
ponentially integrable. This implies that, for any 1 < g < oo, the function in BMO can
be described by means of the condition

1
sup{—/ |b(x) — bp|? dx}q < C < oo
|B| /5

Given a Young function @, we define the ®-average of a function f over a ball
B by

f||<1>B—1nf{7L >0: |B| d)(‘f;”)dxé 1}

My iogr) (fi)(x) = ZUP | fill LgogL).,B5

My 0gr) (f) () = = sup H Ifill Lrog .50

Bax =1

We prepare some lemmas which will be used later. The following Holder’s inequality
on Orlicz spaces can be seen in [27, p. 58].

LEMMA 2.2. (Generalized Holder’s inequality) ([27]) Let ¢(t) = (1 +1log™t)
and y(r) = ¢ — 1 and suppose that

sl 2 int{a>0: [ (L Yau<1} <o

s tlrs0: [ p(E) }
el 2 ntfa>0: [ w(E)au <} <

with respect to some measure L, then for any ball B

1
@/B\fg\ <20/ o) 8118 lexp L5 2.1)

Some other inequalities are also necessary.
LEMMA 2.3. ([5]) Suppose that r > 1 and b € BMO, then for any f satisfying

the condition of generalized Holder’s inequality there is a C > 0 independent of f and
b such that

1
& 11 < e 22

Wl < (o [157)' @3
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1
T [ 16=b8)11 < Clbllpwol o 5 (24)

1
l r—1
sup— [ |b—b r‘l) < Cllb . 25

Similar inequalities still hold for My o) (fi) (see p. 84, [1]).

DEFINITION 2.4. The Hardy-Littlewood maximal operator M is defined by

M(7)) = sup o [ 1)l

xeB

For r > 0, we define the non-centered maximal operator

s 0) = (g f 007 )

M, is the standard Hardy-Littlewood maximal operator M.

For any f € LP(R"), p > 1, the sharp maximal function Mf‘ f associated the
generalized approximations to the identity {e~*4,# > 0} is given by

x€B

where tp = r% and rp is the radius of the ball B.

PROPOSITION 2.5. [19] Assume that there exist operator {A;};~o with kernels
a;(x,y) satisfying conditions (1.6) and (1.7) with constants s and 1. Let ® € A,
A >0 and f € LP(R") for some 1 < p < eo. Then for every 0 < ¢ < 1, we can find
Y > 0 independent of A, f in such a way that

® ({x ER": Mf(x) > CA M f(x) < y)L}) <oco({xeR": Mf(x) > 1}),

where C > 1 is a fixed constant depending only on n.
As a consequence, we have the following estimate:

f1lzr (0ax) < [IMFIlLr(0ax) < CHMf\fHLP(wdx)

Jorevery f € LP(R"),1 < p < oo,

DEFINITION 2.6. [18] (Multilinear Az condition) Let 1 < py,--+, pp <eo. Given
o= (wla"'7wm)’ set

m
L lep/p,-
i=1
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We say that @ satisfies the Aj condition if

L 1
o
i

S“"(B/H ) (g et ™) " <=

1
1-pI\ 7. . _
when p; =1, (%I Jz o, p’) "i is understood as (infp ;)"

DEFINITION 2.7. For 0 > 0, Mg is the maximal function defined by

1

1 1 3§
M5 109 =M(71%)5 ) = (sup o [ 1700 )
B>x |B| B
In addition, M 1 is the sharp maximal function of Feffeman and Stein,
" 1
M f(x) —supmf /|f —c\dyzsup—/ |f(y) — fBldy.
B>x |B| B>x |B| B

and . .
M3 f(x) = M*(|f1°)3 (x).
We will use the Fefferman-Stein inequality just the same as in [12].

Let 0 < p,0 < e and ® be any Mackenhoupt A.. weight. Then there exists a
constant C independent of f such that the inequality

[ sswyomar<c [ (M) ol 2.6)

holds for any function f for which the left-hand side is finite.

3. Proof of Theorem 1.1-1.4

To proof the main results, we need the following lemmas. We just consider the
case m =2 for simplicity, our method still hold for general m with little modifications
on Lemma 3.1 and Lemma 3.2.

LEMMA 3.1. Assume that T is a bilinear operator in 2-GCZO(A,s,n,€) and its

kernel satisfies assumption (H2). Let bi € BMO, i =1,2, 1 <r,q1,q2 <. Then there
exists a constant C > 0 independent of fi and f> such that

M T (fi, o) (x C{HHb ||BsoM-(T (f1,£2))(x)

+Hb1”BM0M ([b2, T](f1,/2)) (%)
+1|b2|[BrmoM: ([b1, T1(f1, f2)) (x)

2 2
+ [ TlIbillsso [ [Mq. fi(x) },
i=1

i=1

3.1)
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and

M3[b1,T)(f1,£2)(x) < ClIB1 ||Bro {M (T (11, 12)) HM it (G2
and

Mo T ) 0) < Clballaio (T )W+ TTMG ), B
where o

(b1, T](f1,2)(x) = b1 ()T (f1,/2)(x) = T (b1f1, f2)(x),
(b2, T](f1,/2)(x) = b2(X)T (f1,/2)(x) = T (f1,b2./2) (%),

Sfor any function f\, f> belong to L7 and for every x € R".

Proof. We should point out that [b,T|(f1,/2)(x) = TBI (fi,f>)(x) and
(b2, T)(f1, /2)(x) = T;(fhfg)(x). So we can apply Theorem D to obtain (3.2) and
(3.3) respectively. For any x € R" and a ball B containing x, to prove (3.1), it suffices
to prove

|B|/‘ 5(1,/2) (@) = Ay (T (1, £2)) (2) dz

<C{ HHbi‘|BM0Mr(T(f1af2))(x) +|1b1|[BoM([b2, T](f1. /2)) (x) (3.4)

2 2
+[1b2/lBmoM:([b1, T1(f1, £2)) (x) + l} |1Bil|Bmo HMq,-fi(x)}'

Note for any constant 4;, i = 1,2. we have

nb(flny)( )
—/ (b1(2) = b1(y1))(b2(z) — b2 (¥2))K(2,y1,32) f1 (V1) f2(y2)dy1dy2

= [ B = At A= b)) 620 At A b2(32)

XK (z,y1,y2) f1(v1) f2(v2)dy1dy>
= (b1(z) — 1) (b2(2) = M)T (f1, /2)(2)

(1) = 2) [, (b2052) = BK 2 31.32) i (1) fav2)dvdy
—(02() = 22) [, (B1051) = 2K 31,32y 01) a2y
[ B100) = M) Ba2) = K 31,32 i 1) a2 )

= (b1(z) = M) (b2(z) = )T (f1,./2)(2)
—(bi(z) - ll)/RZn (b2(y2) = b2(2) + ba(2) — 22)K(z,y1,52) f1(v1) f2 (y2)dy1dy2
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—(b ()-M)/R (b1(y1) = b1(2) +b1(2) — M)K(z,y1,52) f1(v1) f2(y2)dy1dy2

+/ (b1(y1) = 21)(b2(y2) — A2)K (2, 31,52) f1 (1) L2 (v2)dy1dy2

bi(z) — Al)(bz(z) M)T (f1,12)(2) + (b1(z) — A1) [b2, T](f1, /2)(2)
( 2(2) = 22)[b1, T](f1,2)(2) + T((b1(-) — M) f1, (b2(-) — X2) 2) (2)-

By multilinearity, we can write

T (f1,./2)(2) = Ay (Ti (f1,£2)) (2)
=[=(b1(2) = M) (b2(z) = 2)T (1, 2)(2)] + A [(b1(2) — A1) (b2(2) = 22)T (f1, /2)(2)]
+[(b1(2) = M) [b2, T1(f1, 2)(2)] = A [(B1(2) — A1) b2, T] (1, /2) (2)]
+[(b2(2) = 22)[b1, T1(f1, 2)(2)] = A [(b2(2) — A2) [b1, T] (1, /2) (2)]
+{T((b1(-) - 7L1)f1 (b2(+) = 22) 2)(2) = A [T (b1 () = A1) f1, (b2(+) — A2) 2) (2)]}
=1(z) +1I(z) +111(2) +V(2) +1V(2) +VI(z) + VII(z).
(3.5)
Thus, we have
37 o T 2)(0) = Ay (T (1. 1)) 2 o
SCU+I+IT+1V+V +VI+VII),
where I = ulsf‘fB |1(z)|dz, and II, 111, 1V, V, VI, VII are similar.
By the Holder’s inequality, we get
1 y Lo\
I< (E/wl A dx) <|B|/|b2 N dx)
(|B| LI >|dz) 37
SCH||bi||BM0Mr(T(f1,f2))(X),
i=1

where r, r;, r; > 1, such that %4—%4—% =1.

For 111, we have
1

< (o |b1<z>—zl|-*'dx)% (i flenim@re) g

< Clb1llBmoMy([b2; T(f1, f2)) (%),

where s > 1 such that %4—% =1.
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Similarly, we have

1

( LS ;Lzsczx) (;)'/B|[b1,T}(f17f2)(z)|’dz)r )

< C|ba2llsmoM;([b1, T1(f1, £2)) (%)

For II, we have
1< o [ al(01(2) = 20026~ T (5 )0
< C‘%' / IM[(b1(2) — A1) (b2(2) = M) T (1, 2)(2)]dz

B

=

< / M1~ ) 620~ BT (1)) )

C<B| — M) (b2(z) = )T (f1, fz)(Z)}I‘sle>5 (3.10)

C<B|/ (o= ) '”dz> (1 fm-ac)’
(51 rn >|’dz)l
2

< CTT11illsmoM, T (f) (%),

i=1

N

N

X

1 1 1 / /
where 1 5 _7+Z+72 and 0, 7, 5, r> 1.
For IV, we have

v < ‘},7 [ 14al(01(2) = 20) b2, T, ) @z

< cﬁ /B IM[(b1(2) — A1) b2, TY (1, £2)(2)]ldz

. S
<C(m/B|M[(b1(Z)_A’l)[bz’T](fl’fz)(z)}|6dz> (3.11)

1

1

S AR ENATE R

<c(g fie@-arta) " (5 [ ritsira:)’

< C||b1|[BroM([b2, T](f1, 12)) (%),

111
whereg:;—i—r—,l, and 8, r{, r>1.



WEIGHTED ESTIMATES FOR THE ITERATED COMMUTATORS
Similarly, we have

VI < Cl|b2| oM ([b1, T](f1, /2)) (%)

To estimate the last term VII, we split function f; = f0 + f°, where f0 =
1,2. By multilinearity, we can write

vir< Y (T((bl(-)—ll)ffl,(bz(-)—?Lz)f?)(Z)

ki ko
—A,Bm(bl(-)—Anff%(bz(-)—M)f?)(z)}),

where each k; = 0 or < in each term.
Case (A). If k; = kp = oo, we claim for z € B

487

(3.12)

f‘l‘%B*? l:

(3.13)

(T((br() = AT (b2(1) = M) 137)(2) = Asg [T ((b1.() = A)STs (b2(1) = 22) 1) (2)])

2 2
< CTTbillamo [ My, fi(x)
i1 i1

(3.14)

Let us prove (3.14), First note that |z —y;| > 2té/s for y; € (B*) and x € B. Using

Assumption (H2) and Holder’s inequality, we have

(T((01(-) = M) (b2() = A2) 17°) () = A [T (b1 () = A) ST, (b2() = 22)/77)(2)])

<cf.. T T ey )~ AilbG) — Al o) )iy
r:
/ n+s|b(>’1) ll\fl()’l)dh/ L [b(y2) — A2l fi (32)dy2
B¢ |Z yl B¢ ‘Z_y2‘ 5
&
<C / —B ___|b(y)—2 d
kél g st \z—yl\’”?‘ 1) =l fi(yi)dy
o AL TSR
= s g Iz—yz\”% Y2 21J1\2)ay2
= 1
<CcY 3 kls/zm/fﬁww(ﬂ) — byt + by — bagl[ fi ()] dyt
k=1
X z 3*k28/2‘3k2+1B| 3k2+13‘b(y2)_b3k2+lB+b3k2HB_b3BHf2(y2)|dy2
=1
= 1
<CX3 k1£/2<m /3 oy |P0) = bl i ()
k=1

|baky+15 — b3l
+W it |f1(v1)ldy1
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« e 1
* L3 "25/2(|3,QHB S, 1602 = bazsigllfa(r2)ldy

|baky+15 — b3l
TR B Jyarp |f2(v2)|dy2

2 2 N
S CHHbiHBMOHMqifi(x) 2 37k1£/2 2 37k25/2
i=1 P

k=1 k=1
2 2

< CTT11Bilsmo [T Mq. fi(x), (3.15)
i=1 i=1

which yields

3 TGO =) 20~ 22) )0

AT (1) = 207 (b2) = )5 )]z
2 2

< CTTIbillsmo [ [ My, fi(x)- (3.16)
i=1 i=1

Case (B). If k; = k, = 0, by Holder’s inequality and the boundedness of T, we
get

|?{| /B IT((b1(-) = A2, (b2() — A2) ) (2)|dz

< (@ L@ -2 020 - )0z

1

< (f/B(bl(yl)—xl)ff)(yl)wldw)W (%/B(bl(yz)—)L2)f20(y2)|/~tzdy2)E

2 2
< CTTbillmo [ TMy, fi(x), (3.17)
i=1 i=1

where 1 < u, uy, Hp such that L = L+L

Case (C). If ky =0, ky =0 or lq = oo, ky =0, we just consider the case k| =0,
ky = 0. For z € B, we have

IT((01() = M) 7, (02() = M) f37)(2) = A [T (b1 () = AT, (b2() = 22)5) (D)

1
<Ol Ty P Al0) ~ Rl G0 02y,

<C [ Iotr) =l [

mu’(h) — | f2(y2)dya

|B|/ 1b(y1) — A1l f1 (0 d)’ﬂB\/ 7‘2n| (v2) — A2 f2 (v2)dy2
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1
<C|b1|BM0<B/ |f1(v1) [“dy1> |B|
- 1
<3 [ b))~ alfa(2)dys
=1

IR\ |2 — ya |2

< Cl|b1||BmoMy, f1(x)

1b(y2) — 2| fo(y2)dy2

3k+1p

& 1
< Cllb M, X ——/ b —A d
l|b1][BMOMy, f1( )]{;3,{" BETg 3“13\ (v2) = Aol f2(y2)dy2

2 2
< CITbillsmo [ My fi(x). O (3.18)
i=1 i=1

To prove Theorem 1.1 and Theorem 1.2, we need the following estimates for

15 (1, f2) and TX(fi, f2).

LEMMA 3.2. Assume that T is a bilinear operator in 2-GCZO(A,s,n,€) and its
kernel satisfies assumption (H2). Let T* be a multilinear commutator with b € BMO?

and let 0 < § < min{r,3}. Then, there exists a constant C > 0, depending on & and
r, such that

3 Hh(fl;fZ)( )
<C{ HHbiHBMoMr(T(fl,fz))(x) +[1b1llmoM-([b2, T](f1, £2)) (x)

i=1

(3.19)

2
+||b2||BMoM,([b1, T](f1, f2))(x) +Hl |1bil | BroM(10g 1) (fi) () }5

2
METS (f1,£2)(x) < ClIBllsyon { [TMigogr) (£) () + MAT (f1, £2)) ()} (3.20)

i=1

Proof. Similarly as in [28], we control the iterated commutators of T, by another
two operators.
Let u,v € C*([0,0)) such that |u/(t)| < Ct~!, |V/(¢)] < Ct~! and satisfy

X)) Su(t) < xpe(t),  xp2)(t) < () < xp1j23(1)-

We define the maximal operators

-,

U™(f)(x) = sup

n>0

/(Rn)mK(xayla'"7ym)u(\/|x_y1‘+7. +|x ym‘/n)H (yl)dy
i=1

-,

V*(f)(x) = sup

n>0

/(n)mK()@yl,---,ym)V(\/IX—yll-h- |x ym|/n)1m_[ (yz)dyl

i=1



490 X. PENG, Z. ST AND Q. XUE

For simplicity, we denote

X,Yh"'7)’m)u(\/|x—}’1|+7'":+|X—)’m|/7‘l>7
X,Yh"'7)’m)"(\/|x_>’1|+:'"7+|X—Ym|/’"l)7

=K
=K

—~

KMJ] (xaylf HYm
Kvﬂ (x7YI7' HYm

Un(f) = /(Rn)m Ku.,n(x,yl,---7ym)]j[1ﬁ(yi)dy

—~

and

m

W)= [ Kl s TLAGAS.

[b17 [b27"'[bm—17 [bWHUTI]m}m—l ]2]1(1?)()6)

Ui (f)(x) = sup
n>0

=sup| [ Kun(eie) [T0,0 = b0 [T fil)ds],
n>01J (R)™ j=1 i=1
Vit () (%)) = sup (b1, B2, (b1, [, Vi1 -+ a1 (F) (%)
= Kv s Ym i i i(vi)dy).
sup /() (61,0, ,1;[1 )gf(y) y

We just need to prove that Lemma 3.2 holds for Ul’_‘IB and Uy Let ¢ =supy- | 2.?:1 cn,jl-

As in Lemma 3.1, it is easy to see
U751 )@ — € < |(B1(2) = ) (Ba(2) = A)U" (1, o) @)
+sgp|(b1(z) — M) [b2,Un(f1, £2)(2)]

—|—Sl;p|(b2(z) —A2)[b1,Un(f1, £2)(2)]

+[UH((br = M) 1, (b2 = A2) f2) (= —SHPIZCnJH

n>0 ;=

=Ti(2) + Ta(2) + T3(2) + Ta(2).
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Thus, we have

1

(131 [ 105 2P - lenliaz)

< (& [t 0 —coac)’
< (e -waeste - )U*(fl,fz)(z)|6dz>6
<B|/ (B1()— A2 U)o fo) 2 de)
<B|/ (52() — A1 U)o fo) 2 de)

1
+ <|B|/B,S,li%|U”(( —M)f1,(ba—22) 2) (2 chﬂ dZ)

=N+hLHh+T+1T,.

I—

For Ti, by Holder’s inequality, we get

1
T g 1 n
1 <|B|/B|b1( M| dZ) ( /\bz — | dZ)

x (% / IU*(fl,fz)(Z)I’dZ> (321)

2
< CTTIIbillByoM (U (f1, /) (x),

i=1

~I— 4|

where ry, r» > 1, such that —+ +— (13
For 75, we have

T < (%'/Bbl(z)—hst) (B / (b2, U] (f1,/2) (@) d2>l (3.22)
),

|B|
< C|b1|[BmoM;([b2, U™ |(f1, f2)) (x

where s > 1 such that 1 + =
Similarly, we have

T3 <<113|/b2() A’ dZ) (B/ |[61,U fl,fz)()|dz>l

< C|b2||BuoM([b1, U™|(f1, £2)) (x).-

For T4, choose

3

(3.23)

ena =Un((b1 = M) (b2 = 22) 5) (%),
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cna = Un((b1— M) 7, (ba— 1) ) (%),
cn3 =Un((b1 = A) ST, (b2 — 22) f77) (x).

We may split it in the following way
Ty < Tyy + Tayp + Tyz + Tag,

where
1

T = (17 107 (1= 20 2= ) Do) ar)

Tyn= <|ll;|/supUn((b1 AT (b2—12)f;)(2)—Un((bl—ll)ffc,(bz—lz)fém)(x)édz)g;

1

Tia= (g7 s9plUn (01 =20) £, (02 3a) F7)0)~Un () 9. (2= Aa) ) 0 )

and

1

Ty= <|llg|/supUn((b1 ll)fim:(bz—lz)fzo)(Z)—Un((bl—ll)ff"’(bz_;tz)fzo)(x)5dz)6

For Ty, take 6§ < %, we get

T41<C\|U*((b1—Al)f07(b2—7tz)f0)||y/zﬁm( )

B

IBI / ® |dZ|B| / I (2)|dz (3.24)

< HHb ||BMOM 10 1) (fi) (%)

i=1

For Ty, since x,z € B, yj e R"\ (8y/n+4)B, we get |z—x| < /nl(B) < 2tr;
lvj —z| > (4y/n+1)I(B) > 2t , hence q)(ly’ Z‘) =0, for j =1,2. We can use As-
s
sumption (H2) to get

T < L/SHP|Ur:((bl—7tl)fix’7(1?2—7L2)f5<’)(1)—Un((bl—?h)ffq»(bz M) f37)(x)|dz
|B| J

1 2
g—// KZ,_’ +KOZ ztddZ
Bl s (n\B*)Z(I (2.9) =K (@ 9) [+ (2,3) =K (6, 3)) TT(0i(vi) = 2a) fi (i) 5

i=1
=T+ T
(3.25)
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Let us estimate T, first.

B .

5 ), 2 /WBV(bl(m—mfl(yl)(bz(yz)—M)fz(yz)dydz
L L ) A

<3 ka* i Lo @00 =20fi 0y [ (ba2) = 22)fa(r2)dvs

I
<C Z ZWW /QMB* (Bilyi) = Aa)filyi)dys

<C] 2 e Hb |Byol|fill Logr) 2+ 15+

;1~ 1:1~

|billBMoM0g ) (fi) (%)

—

72 can be estimated in the same way. For Ti3, we have

T3 < L/Sup|Un((bl — MY (b2 = 22) £5°)(2) = Un (b1 — M) Y, (b2 = X2) /57) (x) |z
B J

012 (02) (b2 — o) | dy
< [ 1000 -a0s00ian( [, | T

| f2(v2) (b2 — A2)|dys
o )

|z —ya|?

|f2(y2) (b2 — A2)|dy>

< [ 1) =mfinlan [

R"\B* |z — ya| "
1 |2(v2) (b2 — A2)|dy2
< — b -1 dvy|B*
\B*\/B*K 1(v1) = A1) f1(v1)|dy1|B”| - 2=y
‘o |f2(32) (b2 — A2) |dy>
<cllb B /
[b1llBmollf1l|Logr) 5+ |k§,1 S -7

i 1
<cllb B —/ by — 2o)|d
1b1[Bmol | f1l|Log L), |k§,1 25 Jycgoaige |f2(v2) (b2 — A2)|dy

o1 1
<cllp . —7/ by —2)|d
[1b1[Bmol | f1llLog L), kglzk" B e |f2(32) (b2 — A2)|dy>
2

< CT 1Bl lBmollfil]Logry.s+ 121 togry 24+ 15+
i=1

2
< CTTIBillBroMyogr) (fi) ().
=1

Similarly as T3, we can get the estimates for Ty4. Thus we proved (3.19).
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We use the method in [1]. By linearity it is sufficient to consider the operator with
only one symbol. Fix b € BMO and we consider the operator

U;(f)(x) = Zli%‘b(x)UrI(fla7fm) _Un(bfhaﬁn)(x)‘

Fix x € R". For any ball B with center at x, set A = bg+ where B* = (8,/n+4)B. We
have

-,

Uy (f)(x) = sup |(b(x) = 2)Un (f1,-++ fn) = Un((b=A) fr,- -+, fm) (X)].

n>0

Let c = SUPp~0 ‘ 23:1 Cn’j|'

%/B'U5<f17fz>(z>5—|c|5|dz)é
< (%/B|Ulj(f1,f2)(z)_c|5dz)%
< (g o0 -2 s )|5d2>%

1
+ (B /Bsup\Un((b M) f2)(z chj\ dz) = (P +Py).

n>0

For P;, by Holder’s inequality, we get

ri< (o fotd |”dz) (1 fhfz)()l’dZ)l 526)

< C|[b||BpoM- (U™ (f1,£2))(x),

where r, r; > 1, such that %4—% = % choose

e = Un((b= )1, 1)
n2 = Un((b_l)fim:fg) .X),
ens = Un((b =7, 127) (%)
For P,, we may split it in the following way
Py < Poi + Poo+ Pr3 + Py,

where

e (ﬁ/B'U*«b—A)fP,f?)(z)édx) "
P = (g7 fisuplUn (b= A7)0 - U (6= M )0z

1

P = (157 [ suplUn (= )6 - Uy (0= R W)
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and
1

P2 = <;|/S“p"’"“’ )@~ Un (b= W) f7 ) (x )5d1>6

Noting that § < Z» we get

Py <Y (0 =)D

1 0 1
SR PATICIE 327
2
< |bllamo [ [ Mraogr) (fi) ().
i=1

Since x,z € B, y,ER"\(S\/_+4)B,weget lz—x| < /nl(B) < 2tr; lvj—z| >
(4y/n+1)I(B )>2tr hence ¢>(‘yf ZI) 0, for j =1,2. We can use Assumption (H2)
to get

2= <|zle|/ sup [Un (b= A)f77.£57)(2) — Un«b—7L>ff°,f;°><x>m)‘s

< H/BsgplUn((b—l)ﬁ,f?)(Z)—Un((b—l)ﬁ,f?)(X)\dZ

ST o o (K G) ~ K| K ) K5
B J(R™\B*)"
X (b(y1) = A) fiy1) f2(v2)dyrdyadz
= P}, +P5.
The estimate of P, is similar to 7y, we have

|B*[ "
\B| /Bkz Wf(zkﬂlg)z(b(yl)_k)fl(YI)f2(y2)dyldy2dZ

(3.28)

o B
< 2 WAA+IB(b(Yl)_A)f1(YI)dYI zkHsz()’z)d)’z

1
< - _ -
< C X 5 T fy 1 OO0 DA OND gy [ PO
k
<Cy, ot |10l ol fillLog ) 2415+ f2 ot
k=1

2
< Cl1bllsmo [ [Mrogr) (i) (x)- (3.29)
i=1

Similarly,

2
P35, < C||bllso [ [ Mraogr) (f) (x)- (3.30)

i=1
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1

P = <B|/Sup|Ur, b— lfofz Un((b—)L)fP,f;)(x)édZ>5

<E/Bsgpwn<<b—z>ff’,f;°><> Un((b= D). £5) ) dz

€5 fo(y2))|dya |f2(y2)|dy2
e B e
/ | yl fl(y1)| Y1 ( R\ B¢ ‘Z_y2|2n+8 + R\ B* \Z—y2|2"

/' () fl()’l)|dy/ |2 (2)ldy

RO\B* 2= y2|*"
|f2(v2)|dy2
RO\B* 2= y2|*"

|f2(y2)|dy2
< C|lb «|B* / e
|1B]1Bmo|f1llLaogL) B+ \k; 2kt gkgs |7 — Y|

|B*\/ [(b(y1) —A)f1(y1)|dy1|B"|

i 1
< Cl|b||smol| 1l L(iogr) 5+ 1B Z . /2“13*\2,(3* | f2(v2)|dy>

1
< Cl[blmoll fillLiogL) B+ 2 2""W g |f2(v2)|dy2

2

< C‘ |b‘ |BM0 H ‘ |f1 | ‘L(logL),B* ‘ |f2 | ‘L(logL),2k+lB*
i=1

CHbHBM()HML (logL),8(fi) (x). (3.31)
i=1

We can estimate P4 in the same way. Thus we finish the proof of (3.20). Then Lemma
3.2isproved. [J

Now we prove Theorem 1.4 first.

Proof. By Lemma 3.1, we have
T3] (@) < IIME T3l o)

2
C[U |1BillBmol M- T (f1, £2) o () + 11011 Bmo | My (162, TV (f1, o)l 10 (o)

b2 lsmol|Mr([b1, T)(f1, L)L (0 +H|\b |IByol My, fiMg, 2| |Lr (e)]-
i=1
We canchoose 1 <r<p,1<q; <pj,1<gs<ps, by Theorem 1.1 in [19], we get

M T (f1, £2) |0 (@) < CIT (fis f2) 0 (@) CHI\szm

My, iMg, 2| |Lr(w) < ClIMg, filler1 () 1M, fill 192 (@) < CHHfiHL”i(a))
i=1
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Similarly,

2
M, ([b2, TY(f1, ) 1r (o) < 102, TY(f1, )l r(w) < ClIB21 Bmo [T 11 il s (@)
i=1

2
1M, (161, T)(f1, f2)|ee (@) < ClIb1lBso [T 11 ill 7 ()
i=1

Therefore, we obtain
N 2 2
1T o) < CTTNBllBato TTI11 2 (@)
i=1 J=1

Let by € BMO and b, € BMO, as the argument as in [24], b; and b, can be ap-
proximated by bounded functions. Therefore, by taking limit there exists a constant C
independent of f; and f> such that

2 >
1T o) < CTTNBllBato TTI 2 (@)
i=1 =l

hold for all fi, f> € LY. The density of LY in LP(w) together with a standard argument
implies Theorem 1.4. [

Proof of Theorem 1.1 and Theorem 1.2.

Proof. By Lemma 3.2, we can use the same argument as in [1] to finish the proof
of Theorem 1.1 and Theorem 1.2 without any difficulty. We omit the proof. [

Acknowledgements. The authors want to express their sincerely thanks to the un-
known referee for his or her valuable remarks which made this paper more readable.
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