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RELATIONS BETWEEN TWO CLASSES OF REAL FUNCTIONS

AND APPLICATIONS TO BOUNDEDNESS AND COMPACTNESS

OF OPERATORS BETWEEN ANALYTIC FUNCTION SPACES

BENOÎT F. SEHBA AND STEVO STEVIĆ

(Communicated by I. Franjić)

Abstract. Some relations between two classes of real functions, the class of positive lower type
p , denoted by Lp , and the class of positive upper type q , denoted by Uq , which naturally
appear in the definition of some Hardy-Orlicz and Bergman-Orlicz type spaces, are given. Some
applications in characterizing the boundedness and compactness of an integral-type operator
introduced by S. Stević, from Hardy-Orlicz and Bergman-Orlicz type spaces to a weighted-type
space are given.

1. Introduction

We say that a function Φ �≡ 0 is a growth function, if it is a continuous and non-
decreasing function from the interval [0,∞) onto itself. Clearly, these conditions imply
that Φ(0) = 0. Such functions were used to extend classical Lebesgue spaces and their
properties (see [13, 14, 15, 16, 17] and the references therein). They also appear in
many other areas of mathematics, among others in the definition of Hardy-Orlicz and
Bergman-Orlicz type spaces and related problems (see, e.g., [2, 3, 4, 5, 19, 20]).

It is said that function Φ is of positive upper type (resp. negative upper type) if
there are q > 0 (resp. q < 0) and C > 0 such that

Φ(st) � CtqΦ(s), (1)

for every s > 0 and t � 1.
By Uq we denote the family of all growth functions Φ of positive upper type q ,

(for some q � 1), such that the function

F(t) :=
Φ(t)

t
(2)

is nondecreasing on the interval (0,∞) .
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It is said that function Φ is of positive lower type (resp. negative lower type) if
there are p > 0 (resp. p < 0) and C > 0 such that

Φ(st) � Ct pΦ(s). (3)

for every s > 0 and 0 < t � 1.
By Lp we denote the family of all growth functions Φ of positive lower type p ,

(for some 0 < p � 1), such that function (2) is nonincreasing on (0,∞) .
The notation A � B means that A is less than or equal to a constant times B

independently of involving variables. If A � B and B � A , then we write A � B .
Our aim here is to give some relations between classes of functions Lp and Ur for

some values of p and r , and to apply obtained results in characterizing the bounded-
ness and compactness of an integral-type operator introduced by S. Stević, from Hardy-
Orlicz and Bergman-Orlicz type spaces to a weighted-type space. For more on func-
tions in the above mentioned classes and results similar to some of those in Section 2
related to them, see [13, 14, 15, 16, 17].

2. Some results on classes of functions Lp and Uq

Our first result deals with classes of functions Lp and Uq for the case pq = 1,
when only the continuity is assumed.

PROPOSITION 1. Assume that Φ is an increasing growth function and p ∈ (0,1] .
Then the following assertion holds:

Φ ∈ Lp if and only if Φ−1 ∈ U1/p.

Proof. Since Φ is an increasing growth function then there is Φ−1 which is also
increasing and continuously maps [0,∞) onto itself, so that Φ−1 is also a growth func-
tion. Since for every t ∈ (0,∞) there is a unique s ∈ (0,∞) such that t = Φ−1(s) and
since Φ−1 is onto, the condition

Φ(t2)
t2

� Φ(t1)
t1

,

for every t1, t2 ∈ (0,∞) such that 0 < t1 < t2 , is equivalent to

s2

Φ−1(s2)
� s1

Φ−1(s1)
,

for every s1,s2 ∈ (0,∞) such that 0 < s1 < s2 (here ti = Φ−1(si), i = 1,2), which is
equivalent to

Φ−1(s1)
s1

� Φ−1(s2)
s2

,

0 < s1 < s2 , that is, Φ−1(t)
t is nondecreasing.
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Now we prove that Φ is of lower type p if and only if Φ−1 is of upper type 1/p .
Suppose that there is a C � 1 so that for every s � 1 and all t > 0, we have

Φ(st) � CspΦ(t). (4)

Let x � 1 and y > 0. Applying inequality (4) to

s =
1

(Cx)1/p
and t = Φ−1(y)(Cx)1/p,

we obtain

y � 1
x

Φ
(

Φ−1(y)(Cx)1/p
)

,

and consequently
Φ−1(xy) � C1/px1/pΦ−1(y), (5)

for every x � 1 and y > 0, that is, Φ−1 is of upper type 1/p .
Now assume that Φ−1 ∈ U1/p. Then, for some C > 0, p ∈ (0,1], and for every

x � 1 and y > 0
Φ−1(xy) � Cx1/pΦ−1(y). (6)

Let K = max{C,1} . Plugging

x =
1
sp and y = Φ(t)sp,

where t > 0, into (6) (note that s ∈ (0,1]), we obtain

t � C
s

Φ−1 (Φ(t)sp) � K
s

Φ−1 (Φ(t)sp) , (7)

for s ∈ (0,1] and t > 0.

Since Φ−1(u)
u is nondecreasing, from the first part of the proof we have that Φ(u)

u
is nonincreasing. From this and since K � 1, we have that

Φ(u) � KΦ
( u

K

)
, (8)

for every u ∈ (0,∞) .
From (7) and (8) and some simple calculations, we obtain

Φ(ts) � KΦ
( ts

K

)
� KspΦ(t), (9)

which means that Φ is of lower type p , completing the proof of the proposition. �
REMARK 1. Note that from the proof of Proposition 1, we see that condition (4)

implies directly (5) without using the monotonicity of function (2), unlike the part of
the proof which shows that (6) implies (9). We also observe that Proposition 1 was
stated in [20] but the proof there is not complete.
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In what follows we will use the following condition:

c1
Φ(t)

t
� Φ′(t) � c2

Φ(t)
t

, (10)

for some positive constants c1 and c2 and every t ∈ (0,∞) .

When Φ satisfies (10), we will sometimes write c1(Φ) and c2(Φ) to specify that
the constants depend on the function. By using the functions Φa(t)= Φ(at) , a∈ (0,∞) ,
which satisfy the equalities

c1

a
Φa(t)

t
� Φ′

a(t) � c2

a
Φa(t)

t
,

we may always assume that c1 � 1 � c2 . Note also that functions Φa(t) satisfy in-
equalities (1) and (3) if Φ satisfies them, and that the monotonicity of Φa(t)/t is also
kept in the case when Φ(t)/t is monotone.

The next two results give relations between classes Uq and L1/q , under some
additional assumptions connected to the inequalities in (10).

PROPOSITION 2. Let Φ ∈Uq∩C1[0,∞) , q � 1 , and Φ satisfies inequalities (10).
Then Φ−1 ∈ L1/q and there are positive constants ĉ1 and ĉ2 such that for any t ∈
(0,∞) ,

ĉ1
Φ−1(t)

t
� (Φ−1)′(t) � ĉ2

Φ−1(t)
t

. (11)

Proof. By Remark 1.2 in [19] we have that Φ is increasing so by Proposition 1,
Φ−1 ∈ L1/q . Plugging t = Φ−1(s) , s ∈ (0,∞) , in (10), and using the fact that Φ−1 is
onto, we get

c1
s

Φ−1(s)
� Φ′(Φ−1(s)) � c2

s
Φ−1(s)

, (12)

for every s ∈ (0,∞) .
From (12) and since

(Φ−1)′(s) =
1

Φ′(Φ−1(s))

we obtain
1
c2

Φ−1(s)
s

� (Φ−1)′(s) � 1
c1

Φ−1(s)
s

,

for every s ∈ (0,∞) , from which (11) follows with ĉ1 = 1/c2 and ĉ2 = 1/c1. �

PROPOSITION 3. Let Φ ∈ Lp ∩C1[0,∞) , p ∈ (0,1] , and satisfies inequalities
(10). Then Φ−1 ∈ U1/p and

ĉ1
Φ−1(t)

t
� (Φ−1)′(t) � ĉ2

Φ−1(t)
t

, (13)

for every t ∈ (0,∞) and ĉ1 and ĉ2 as in Proposition 2.
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Proof. By Remark 1.3 in [19] we have that Φ is increasing so by Proposition
1, Φ−1 ∈ U1/p . The rest of the proof is similar to the proof of Proposition 2 so is
omitted. �

Now note that if Φ ∈ Lp , then by using the monotonicity of function (2) we have
that ∫ t

0

Φ(s)
s

ds �
∫ t

0

Φ(t)
t

ds = Φ(t) (14)

and ∫ t

0

Φ(s)
s

ds =
∫ 1

0

Φ(tu)
u

du � C
∫ 1

0

Φ(t)up

u
du =

C
p

Φ(t), (15)

for every t ∈ (0,∞) .
From (14) and (15) it follows that the functions Φ(t) and

F̂(t) :=
∫ t

0

Φ(s)
s

ds

are comparable.
From this reason, since F̂ is differentiable and

F̂ ′(t) =
Φ(t)

t
(16)

for t ∈ (0,∞), and by using (14) and (15) we see that

p
C

F̂(t)
t

� F̂ ′(t) � F̂(t)
t

, (17)

that is, function F̂ satisfies inequalities (10) with c1 = p/C and c2 = 1.
Moreover, from (16) and since Φ(t)/t is nonincreasing we have that F̂ is concave.

Hence, in the definitions of Hardy-Orlicz and Bergman-Orlicz type spaces ([2, 19]) that
use functions from the class Lp we may also assume that they are concave C1 ones and
satisfy inequalities (10) for some positive constants c1 and c2 .

A natural question is: may we assume for Φ ∈ Uq that they are convex C1 func-
tions satisfying inequalities (10) for some positive constants c1 and c2 ?

In [19] the authors considered the subclass of Ls of the form Φ(t p) , with Φ ∈Uq ,
but the subclass was not considered in detail. Note that if Φ(t) = tq , then Φ(t p) = t pq,
and clearly it belongs to class Lpq, when pq � 1. Since the inverse of tq is t1/q , and
since (t1/q)′ = q−1t1/q/t , we see that tq satisfies inequalities (10) for c1 = c2 = 1/q.
Hence, the condition pq � 1, can be written in the form p � c1(t1/q). In the next result
we prove that the condition is in a way optimal. Namely, for Φ ∈ Uq , we give a range
of powers p for which the function Φ(t p) is in Ls as well as a concrete value of s .

PROPOSITION 4. Assume that Φ ∈ Uq is such that Φ−1 ∈ L1/q ∩C1[0,∞) and
satisfies (10) with constants c1(Φ−1) � 1 � c2(Φ−1) . Then for any p � c1(Φ−1) , the
following assertions hold.
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(a) The function t �→ Φ(t p)
t is nonincreasing on (0,∞) .

(b) The function t �→ Φ(t p) is a growth function of lower type s = p/q � 1 .

Proof. (a) For simplicity, we write c1 in place of c1(Φ−1) . To prove that Φ(t p)
t is

nonincreasing, we only have to check that the function (Φ−1(t))1/p

t is nondecreasing on
(0,∞) . Set m = 1/p and observe from our hypothesis that mc1 � 1. It follows that(

(Φ−1(t))m

t

)′
=

mt
(
Φ−1(t)

)′ (Φ−1(t)
)m−1 − (Φ−1(t)

)m
t2

�
(mc1−1)

(
Φ−1(t)

)m
t2

� 0.

(b) As Φ−1(t) is of lower-type 1/q , we have by definition that there is a constant
c > 0 such that

Φ−1(at) � ca1/qΦ−1(t),

for any 0 < a � 1, and any t > 0.
Hence from the fact that Φ and Φ(t)

t are nondecreasing, and by using (1), we
obtain

at � Φ
(
ca1/qΦ−1(t)

)
� c̃a1/qt

where

c̃ =
{

1 if c � 1
Ccq if c > 1

,

C being the constant in (1).
Using again that Φ and Φ(t)

t are nondecreasing, and (1), it follows that

Φ(apt p) � Φ(c̃pap/qt p) � ˜̃cap/qΦ(t p)

with
˜̃c =
{

1 if c̃ � 1
Cc̃pq if c̃ > 1

,

which means that Φ(t p) is of lower-type p
q � 1, as claimed. �

The next result provides an analog of Proposition 4 when we interchange the
classes Lp and Uq .

PROPOSITION 5. Assume that Ψ ∈Ls∩C1[0,∞) and satisfies (10) with constants
c1(Ψ) � 1 � c2(Ψ) . Then for any p � 1/c1(Ψ) , the following assertions hold.

(a) The function t �→ Ψ(t p)
t is nondecreasing on (0,∞) .
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(b) The function t �→ Ψ(t p) is a growth function of upper-type p/s � 1 .

Proof. (a) Note that our hypotheses imply by Proposition 3 that Ψ−1 ∈ U1/s and
satisfies (10) with constants

c1(Ψ−1) =
1

c2(Ψ)
and c2(Ψ−1) =

1
c1(Ψ)

.

Now let us prove that the function (Ψ−1(t))1/p

t is nonincreasing which is enough to con-
clude that (a) holds. Set m = 1/p and observe that our hypotheses imply mc2(Ψ−1) =

1
pc1(Ψ) � 1. We have

(
(Ψ−1(t))m

t

)′
=

mt
(
Ψ−1(t)

)′ (Ψ−1(t)
)m−1− (Ψ−1(t)

)m
t2

�
(mc2(Ψ−1)−1)

(
Ψ−1(t)

)m
t2

� 0,

from which the statement follows.
(b) Note that as Ψ ∈ Ls , we have from Proposition 1 that Ψ−1 ∈ U1/s . Hence

there is a constant C > 0 such that for any a � 1, and any t > 0,

Ψ−1(at) � Ca1/sΨ−1(t).

Since Ψ is nondecreasing and Ψ(t)
t is nonincreasing, it follows that

at � Ψ
(
Ca1/sΨ−1(t)

)
� C̃a1/st,

where C̃ = max{1,C} .

Using once more again the assumption that Ψ is nondecreasing and Ψ(t)
t is non-

increasing, we obtain from the latter inequality that

Ψ(apt p) � Ψ(C̃pap/st p) � C̃ap/sΨ(t p),

that is, t �→ Ψ(t p) is of upper-type p
s � 1, as desired. �

We can now prove that functions constructed in Proposition 5 are examples of
functions in Uq that answer positively the question above.

THEOREM 1. Assume that Ψ ∈ Ls ∩C1[0,∞) and satisfies (10) with constants
c1(Ψ) � 1 � c2(Ψ) . Then for any p � 1/c1(Ψ) , the function t �→ Ψ(t p) is comparable
to a convex C1 function G satisfying the inequalities in (10) with some constants c1(G)
and c2(G) depending on G.
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Proof. Let

G(t) =
∫ t

0

Ψ(sp)
s

ds.

Then using that the map s �→ Ψ(sp)
s is nondecreasing, we obtain

G(t) =
∫ t

0

Ψ(sp)
s

ds � Ψ(t p)
t

· t = Ψ(t p). (18)

Since s �→ Ψ(s)
s is nonincreasing, we have that

G(t) =
∫ t

0

Ψ(sp)
s

ds =
∫ t

0

Ψ(sp)
sp sp−1ds � Ψ(t p)

t p

∫ t

0
sp−1ds =

1
p

Ψ(t p). (19)

From (18) and (19), we obtain

1
p

Ψ(t p) � G(t) � Ψ(t p), for any t > 0,

which proves that the function t �→ Ψ(t p) is comparable to the function G .
Next, observing that G is differentiable and

G′(t) =
Ψ(t p)

t
, for t ∈ (0,∞),

we conclude with the help of (18) and (19) that

G(t)
t

� G′(t) � p
G(t)

t
for t ∈ (0,∞),

that is, G satisfies (10) with constants c1(G) = 1 and c2(G) = p > 1.

Finally, since Ψ(t p)
t is nondecreasing, we have that G is convex, completing the

proof of the theorem. �

3. Applications

In this section we extend some of the results in [19] to Hardy-Orlicz and Bergman-
Orlicz spaces on the unit ball B

n of the complex vector space C
n defined for growth

functions of the form Ψ(t p) where Ψ ∈ Ls and p ∈ (1,∞) is large enough. We start by
recalling some definitions.

By dν we denote the Lebesgue measure on Bn , dσ the normalized measure on
Sn = ∂Bn (the boundary of Bn ), H(Bn) the space of all holomorphic functions on Bn,
and S(Bn) the class of all holomorphic self-maps of Bn . Let z = (z1, . . . ,zn) and w =
(w1, . . . ,wn) be points in Cn and 〈z,w〉= z1w1 + · · ·+znwn, the standard scalar product
on Cn. By dνα , α > −1, we denote the normalized Lebesgue measure dνα(z) =
cα(1−|z|2)αdν(z) (i.e. να (Bn) = 1).
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Let Φ be a growth function. The weighted Bergman-Orlicz space AΦ
α (Bn) = AΦ

α
is the space of all f ∈ H(Bn) such that

‖ f‖AΦ
α

:=
∫

Bn
Φ(| f (z)|)dνα (z) < ∞.

On AΦ
α (Bn) is defined the following quasi-norm

‖ f‖lux
AΦ

α
:= inf

{
λ > 0 :

∫
Bn

Φ
( | f (z)|

λ

)
dνα(z) � 1

}
. (20)

As observed in [19], if Φ ∈ Uq or Φ ∈ Lq , then the quantity in (20) is finite
for every f ∈ AΦ

α (Bn) . The standard weighted Bergman space Ap
α(Bn) = Ap

α , p > 0,
α > −1, corresponds to Φ(t) = t p , and for p � 1 it is a Banach space, while for
0 < p < 1 it is a translation-invariant complete metric space.

Let Φ be a growth function. By HΦ(Bn) = HΦ we denote the Hardy-Orlicz space
consisting of all f ∈ H(Bn) such that

‖ f‖HΦ := sup
0<r<1

∫
Sn

Φ(| f (rξ )|)dσ(ξ ) < ∞.

On HΦ(Bn) is defined the next quasi-norm

‖ f‖lux
HΦ := sup

0<r<1
‖ fr‖lux

LΦ ,

where fr(ξ ) = f (rξ ) , 0 � r < 1, ξ ∈ Sn , and ‖g‖lux
LΦ is the Luxembourg quasi-norm

defined by

‖g‖lux
LΦ := inf

{
λ > 0 :

∫
Sn

Φ
( |g(ξ )|

λ

)
dσ(ξ ) � 1

}
.

The quasi-norm is finite for every f ∈ HΦ(Bn) . For Φ(t) = t p , 0 < p < ∞ , it becomes
the Hardy space Hp(Bn) = Hp . For some results on Hardy-Orlicz and Bergman-Orlicz
spaces and operators on them, see, e.g., [2, 3, 4, 5, 19, 20] and the related references
therein.

Motivated by the fact that Hp(Bn) space is the limit case of Ap
α(Bn) as α →−1+

0, if not specified otherwise, we will be using the notation AΦ
α (Bn) for all −1 � α < ∞ ,

where for α = −1 the space corresponds to HΦ(Bn) .

DEFINITION 1. ([19]) We say that a function ω : (0,1]→ [0,∞) belongs to class
Ω1 if ω is nonincreasing, 1

ω is of some positive lower type and the function tω(t) is
increasing.

An f ∈ H(Bn) is said to be in H∞
ω (Bn) = H∞

ω if

‖ f‖H∞
ω := sup

z∈Bn

| f (z)|
ω(1−|z|) < ∞. (21)

It is easy to see that H∞
ω (Bn) is a Banach space.
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Let f ∈ H(Bn) . The radial derivative R f of f is given by

R f (z) =
n

∑
j=1

z j
∂ f
∂ z j

(z).

An f ∈H(Bn) belongs to Λω(Bn) = Λω if R f ∈H∞
ω
t
(Bn) (here ω/t is an abbre-

viation for the function ω(t)/t ), that is

bΛω ( f ) := sup
z∈Bn

(1−|z|)|R f (z)|
ω(1−|z|) < ∞.

It is also easy to see that Λω is a Banach space under the following norm

‖ f‖Λω := | f (0)|+ sup
z∈Bn

(1−|z|)|R f (z)|
ω(1−|z|) .

The following result was proved in [19].

LEMMA 1. Suppose that ω ∈ Ω1 . Then H∞
ω (Bn) = Λω with equivalent norms.

For ϕ ∈ S(Bn) , and g∈H(Bn) with g(0) = 0, we consider the following integral-
type operator defined on H(Bn) by

Pg
ϕ f (z) =

∫ 1

0
f (ϕ(tz))g(tz)

dt
t

. (22)

Operator Pg
ϕ was introduced by S. Stević in [21] and later studied between various

spaces of holomorphic functions, for example, in [7, 19, 22, 23, 24, 25, 27, 28, 29, 36].
For ϕ(z) = z and g = Rh where h ∈ H(Bn) , it is reduced to operator Th := PRh

z ,
so-called, extended Cesàro operator, introduced in [6] and later studied, for example,
in [1, 8, 10, 11, 12] (see also the references therein). Operator theoretic properties of
related operators between various spaces of holomorphic functions on several domains
have been recently considerably studied (see, for example, [9, 26, 30, 31, 32, 33, 34, 35]
and the related references therein).

Let X and Y be topological vector spaces whose topologies are given by translation-
invariant metrics dX and dY , respectively. It is said that a linear operator T : X → Y is
metrically bounded if there exists a positive constant K such that

dY (T f ,0) � KdX( f ,0) for all f ∈ X .

When X and Y are Banach spaces, the metrical boundedness coincides with the bound-
edness of operators between Banach spaces.

Operator T : X → Y is said to be metrically compact if it takes every metric ball
in X into a relatively compact set in Y.

Here we will study the metrical boundedness and compactness of operator (22)

from the Hardy-Orlicz space HΨp(Bn) and the weighted Bergman-Orlicz space A
Ψp
α (Bn)
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to the weighted-type space H∞
ω (Bn) , when Ψ ∈ Ls , p ∈ (1,∞) is large enough, and

ω ∈ Ω1 . We use the following notation

Ψp(t) := Ψ(t p). (23)

Note that due to Theorem 1, if Ψ ∈ Ls we may also assume that the function given
by (23) is convex, belongs to the class C1(0,∞), and satisfy (10). Then, Ψ(t p)/t =
Ψp(t)/t is nondecreasing, and A

Ψp
α (Bn) (−1 < α < ∞) embeds continuously into

A1
α(Bn) . We also have that HΨp(Bn) embeds continuously into H1(Bn) and conse-

quently that any f ∈ HΨp(Bn) admits radial limits f ∗(ξ ) = limr→1 f (rξ ) for almost
every ξ ∈ Sn . As a consequence, for −1 � α < ∞ , if ‖ f‖lux

A
Ψp
α (Bn)

= 0, then f ≡ 0 a.e

on Sn (see also [19] for more comments).
Now we give several auxiliary results which are incorporated into the lemmas

which follow.
Using that Ψp(t) is convex, we obtain as in [4, Proposition 1.9] the following

lemma.

LEMMA 2. Let Ψ ∈Ls , p∈ (1,∞) is large enough, and −1 < α < ∞ . Then there

is a constant C > 0 such that for every f ∈ A
Ψp
α (Bn) and a ∈ Bn

| f (a)| � CΨ−1
p

((
4

1−|a|2
)n+1+α

)
‖ f‖lux

A
Ψp
α

. (24)

The next lemma is obtained similarly to [3, Proposition 1.6].

LEMMA 3. Let Ψ ∈ Ls , and p ∈ (1,∞) large enough. Then there is a constant
C > 0 such that for every f ∈ HΨp(Bn) and a ∈ Bn

| f (a)| � CΨ−1
p

(
4

(1−|a|2)n

)
‖ f‖lux

HΨp . (25)

The next lemma provides a useful class of test functions in A
Ψp
α (Bn) .

LEMMA 4. Let Ψ ∈ Ls , and p ∈ (1,∞) large enough, −1 < α < ∞ . Then the

following function is in A
Ψp
α (Bn)

fa(z) = Ψ−1
p

((
4

1−|a|2
)n+1+α

)(
1−|a|2
1−〈z,a〉

)2(n+1+α)

. (26)

Moreover

sup
a∈Bn

‖ fa‖lux

A
Ψp
α

� 1.
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Proof. Let

ga(z) =
(

1−|a|2
1−〈z,a〉

)2(n+1+α)

.

Then, we have∫
Bn

Ψp(| fa(z)|)dνα (z) �
∫

Bn
Ψp

(
Ψ−1

p

((
4

1−|a|2
)n+1+α

)
|ga(z)|

)
dνα(z)

= I + J

with

I =
∫
{z∈Bn:|ga(z)|�1}

Ψp

(
Ψ−1

p

((
4

1−|a|2
)n+1+α

)
|ga(z)|

)
dνα(z)

and

J =
∫
{z∈Bn:|ga(z)|>1}

Ψp

(
Ψ−1

p

((
4

1−|a|2
)n+1+α

)
|ga(z)|

)
dνα(z).

Since the function Ψp(t)/t is nondecreasing on [0,∞) , we have

Ψp(t|ga(z)|)
t|ga(z)| � Ψp(t)

t
, when |ga(z)| � 1,

which along with [18, Proposition 1.4.10] gives

I =
∫
{z∈Bn:|ga(z)|�1}

Ψp

(
Ψ−1

p

((
4

1−|a|2
)n+1+α

)
|ga(z)|

)
dνα(z)

�
∫
{z∈Bn:|ga(z)|�1}

|ga(z)|Ψp

(
Ψ−1

p

((
4

1−|a|2
)n+1+α

))
dνα(z)

� 4n+1+α
∫

Bn

(1−|a|2)n+1+α

|1−〈z,a〉|2(n+1+α) dνα(z)

� 1.

Using that Ψp is of upper-type p/s � 1, inequality (1), and [18, Proposition
1.4.10], we have that

J =
∫
{z∈Bn:|ga(z)|�1}

Ψp

(
Ψ−1

p

((
4

1−|a|2
)n+1+α

)
|ga(z)|

)
dνα(z)

�
∫
{z∈Bn:|ga(z)|�1}

|ga(z)|p/sΨp

(
Ψ−1

p

((
4

1−|a|2
)n+1+α

))
dνα(z)

=
(

4
1−|a|2

)n+1+α ∫
Bn

(
1−|a|2)2 p

s (n+1+α)

|1−〈z,a〉|2 p
s (n+1+α)

dνα(z)

� 1.
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From this and the inequality ‖ f‖lux

A
Ψp
α

� ‖ f‖
A

Ψp
α

(see [19]) the lemma follows. �

In a similar way, is obtained the following auxiliary result.

LEMMA 5. Suppose that Ψ ∈ Ls and p ∈ (1,∞) is large enough. Then for each
a ∈ Bn the function

ga(z) = Ψ−1
p

((
4

1−|a|2
)n)( 1−|a|

1−〈z,a〉
)2n

, (27)

belongs to HΨp . Moreover
sup
a∈Bn

‖ga‖lux
HΨp � 1.

Now we formulate the main consequence of our results in Section 2.

THEOREM 2. Let ϕ ∈ S(Bn) , g ∈ H(Bn) , g(0) = 0 , ω ∈ Ω1 ,−1 � α < ∞ , Ψ ∈
Ls , and let p ∈ (1,∞) be large enough. Then

(a) Pg
ϕ : A

Ψp
α (Bn) → H∞

ω (Bn) is metrically bounded if and only if

sup
z∈Bn

(1−|z|)|g(z)|
ω(1−|z|) Ψ−1

p

((
4

1−|ϕ(z)|2
)n+1+α

)
< ∞.

(b) Pg
ϕ : A

Ψp
α (Bn) → H∞

ω (Bn) is metrically compact if and only if g ∈ H∞
ω
t

and

lim
|ϕ(z)|→1

(1−|z|)|g(z)|
ω(1−|z|) Ψ−1

p

((
4

1−|ϕ(z)|2
)n+1+α

)
= 0.

The proof of Theorem 2 follows the lines of the proofs of Theorems 3.3, 3.6 and
3.7 in [19], and uses Lemmas 2–5 so we leave it to the interested reader.
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