DETERMINANTAL INEQUALITIES OF POSITIVE DEFINITE MATRICES

Daeshik Choi

(Communicated by I. Perić)

Abstract. Let $A_{i}, i=1, \ldots, m$, be positive definite matrices with diagonal blocks $A_{i}^{(j)}, 1 \leqslant j \leqslant$ k, where $A_{1}^{(j)}, \ldots, A_{m}^{(j)}$ are of the same size for each j. We prove the inequality

$$
\operatorname{det}\left(\sum_{i=1}^{m} A_{i}^{-1}\right) \geqslant \operatorname{det}\left(\sum_{i=1}^{m}\left(A_{i}^{(1)}\right)^{-1}\right) \cdots \operatorname{det}\left(\sum_{i=1}^{m}\left(A_{i}^{(k)}\right)^{-1}\right)
$$

and more determinantal inequalities related to positive definite matrices.

1. Introduction

Notation. Throughout the paper, we will use the following notation:

- I denotes the identity matrix of a proper size. We do not specify its order.
- $A \prec B(A \preccurlyeq B)$ is used to imply that A and B are Hermitian matrices such that $B-A$ is positive definite (semidefinite). In particular, a positive definite (positive semidefinite) matrix A can be expressed as $A \succ 0(A \succcurlyeq 0)$.
- $\operatorname{diag}\left(D_{1}, \ldots, D_{k}\right)$ denotes the block diagonal matrix whose diagonal blocks are D_{1}, \ldots, D_{k}.

Fischer's inequality [1, Theorem 7.8.3] states that if A is a positive definite matrix with diagonal blocks A_{1}, \ldots, A_{k}, then

$$
\operatorname{det} A \leqslant \operatorname{det} A_{1} \cdots \operatorname{det} A_{k} .
$$

Let $A_{i}, i=1, \ldots, m$, be positive definite matrices whose diagonal blocks are n_{j}-square matrices $A_{i}^{(j)}$ for $j=1, \ldots, k$. Then the relation

$$
\operatorname{det}\left(\sum_{i=1}^{m} A_{i}\right) \leqslant \operatorname{det}\left(\sum_{i=1}^{m} A_{i}^{(1)}\right) \cdots \operatorname{det}\left(\sum_{i=1}^{m} A_{i}^{(k)}\right)
$$

follows directly from Fischer's inequality. The main result of the paper is to show

$$
\operatorname{det}\left(\sum_{i=1}^{m} A_{i}^{-1}\right) \geqslant \operatorname{det}\left(\sum_{i=1}^{m}\left(A_{i}^{(1)}\right)^{-1}\right) \cdots \operatorname{det}\left(\sum_{i=1}^{m}\left(A_{i}^{(k)}\right)^{-1}\right) .
$$

Mathematics subject classification (2010): 15A45.
Keywords and phrases: Determinantal inequalities, Fischer's inequality, determinants of block matrices, positive definite matrices.

2. Proof of the Main inequality

The following is a well-known result [1, Corollary 7.7.4].
Lemma 1. If $0 \prec A \preccurlyeq B$, then $B^{-1} \preccurlyeq A^{-1}$ and $\operatorname{det}(A) \leqslant \operatorname{det}(B)$.
We expect the following is known, but we include a proof as we do not know a reference.

Lemma 2. Let $P=\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right]$ be a positive definite matrix. Then P can be factorized as $P=T^{*} T$ with $T=\left[\begin{array}{ll}X & Y \\ O & Z\end{array}\right]$ being conformally partitioned as P.

Proof. Since A is positive definite, it can be factorized as $A=X^{*} X$ for an invertible matrix X. Since P is positive definite, the Schur complement $C-B^{*} A^{-1} B$ is also positive definite. Thus there exists a matrix Z such that $C-B^{*} A^{-1} B=Z^{*} Z$. If T is defined by $T=\left[\begin{array}{ll}X & Y \\ O & Z\end{array}\right]$, where $Y=\left(X^{*}\right)^{-1} B$, then a direct computation shows $P=T^{*} T$.

The following is in [2, Corollary 1].
Lemma 3. Let $T=\left[\begin{array}{ll}X & Y \\ O & Z\end{array}\right]$, where X and Z are square matrices. Then

$$
\operatorname{det}\left(I+T^{*} T\right) \geqslant \operatorname{det}\left(I+X^{*} X\right) \operatorname{det}\left(I+Z^{*} Z\right)
$$

The following theorem is equivalent to Theorem 1.1 in [3]. Here we give a simple proof using Lemma 3.

THEOREM 1. Let $C_{i} \succ 0$ and $D_{i} \succcurlyeq 0$ be n_{i}-square matrices for $i=1, \ldots, k$ and $D=\operatorname{diag}\left(D_{1}, \ldots, D_{k}\right)$. Then

$$
\begin{equation*}
\operatorname{det}\left(I+C^{-1} D\right) \geqslant \operatorname{det}\left(I+C_{1}^{-1} D_{1}\right) \cdots \operatorname{det}\left(I+C_{k}^{-1} D_{k}\right) \tag{2.1}
\end{equation*}
$$

Proof. By a standard continuity argument, we may assume that D_{i} are positive definite. In this case, it is also enough to show the inequality

$$
\begin{equation*}
\operatorname{det}\left(I+C^{-1}\right) \geqslant \operatorname{det}\left(I+C_{1}^{-1}\right) \cdots \operatorname{det}\left(I+C_{k}^{-1}\right) \tag{2.2}
\end{equation*}
$$

by the following argument:

$$
\begin{aligned}
\operatorname{det}\left(I+C^{-1} D\right) & =\operatorname{det}\left(I+\left(D^{-\frac{1}{2}} C D^{-\frac{1}{2}}\right)^{-1}\right) \\
& \geqslant \operatorname{det}\left(I+\left(D_{1}^{-\frac{1}{2}} C_{1} D_{1}^{-\frac{1}{2}}\right)^{-1}\right) \cdots \operatorname{det}\left(I+\left(D_{k}^{-\frac{1}{2}} C_{k} D_{k}^{-\frac{1}{2}}\right)^{-1}\right) \\
& =\operatorname{det}\left(I+C_{1}^{-1} D_{1}\right) \cdots \operatorname{det}\left(I+C_{k}^{-1} D_{k}\right)
\end{aligned}
$$

Moreover, mathematical induction allows us to prove (2.2) for $k=2$. By Lemma 2, there exists a matrix $T=\left[\begin{array}{ll}X & Y \\ O & Z\end{array}\right]$ being conformally partitioned as C^{-1} such that $C^{-1}=T^{*} T$. Then we have

$$
\operatorname{det}\left(I+C^{-1}\right)=\operatorname{det}\left(I+T^{*} T\right) \geqslant \operatorname{det}\left(I+X^{*} X\right) \operatorname{det}\left(I+Z^{*} Z\right)
$$

by Lemma 3. Now it is enough to show $\left(X^{*} X\right)^{-1} \preccurlyeq C_{1}$ and $\left(Z^{*} Z\right)^{-1} \preccurlyeq C_{2}$, since the relations and the above inequality imply

$$
\operatorname{det}\left(I+C^{-1}\right) \geqslant \operatorname{det}\left(I+C_{1}^{-1}\right) \operatorname{det}\left(I+C_{2}^{-1}\right)
$$

by Lemma 1. From

$$
C=\left(T^{*} T\right)^{-1}=\left[\begin{array}{cc}
X^{*} X & X^{*} Y \\
Y^{*} X & Y^{*} Y+Z^{*} Z
\end{array}\right]^{-1}
$$

we have

$$
C_{1}=\left(X^{*} X-X^{*} Y\left(Y^{*} Y+Z^{*} Z\right)^{-1} Y^{*} X\right)^{-1}
$$

by the block inverse theorem [1]. Thus $C_{1} \succcurlyeq\left(X^{*} X\right)^{-1}$. Similarly, we have

$$
\begin{aligned}
C_{2} & =\left(Y^{*} Y+Z^{*} Z-Y^{*} X\left(X^{*} X\right)^{-1} X^{*} Y\right)^{-1} \\
& =\left(Y^{*}\left(I-X\left(X^{*} X\right)^{-1} X^{*}\right) Y+Z^{*} Z\right)^{-1} \\
& =\left(Z^{*} Z\right)^{-1} .
\end{aligned}
$$

Corollary 1. Let A be positive definite. If A_{i} and $B_{i}, i=1, \ldots, k$, are the n_{i}-square diagonal blocks of A and A^{-1}, respectively, then

$$
\operatorname{det}\left(I+\left(A_{i} B_{i}\right)^{-1}\right) \leqslant 2^{n_{i}} \leqslant \operatorname{det}\left(I+A_{i} B_{i}\right), i=1, \ldots, k
$$

Proof. Fix i. If $C=A, D_{i}=A_{i}$, and D_{j} is the zero matrix for all $j \neq i$ in (2.1), then we have $\operatorname{det}\left(I+A_{i} B_{i}\right) \geqslant 2^{n_{i}}$. Similarly, if $C=A, D_{i}=B_{i}^{-1}$, and D_{j} is the zero matrix for all $j \neq i$ in (2.1), we have $2^{n_{i}} \geqslant \operatorname{det}\left(I+A_{i}^{-1} B_{i}^{-1}\right)$.

We can generalize (2.1) using the following result [2, Theorem 1]:
Lemma 4. Let $T_{i}=\left[\begin{array}{cc}X_{i} & Y_{i} \\ O & Z_{i}\end{array}\right], i=1, \ldots, m$, be n_{i}-square conformally partitioned matrices. Then

$$
\operatorname{det}\left(\sum_{i=1}^{m} T_{i}^{*} T_{i}\right) \geqslant \operatorname{det}\left(\sum_{i=1}^{m} X_{i}^{*} X_{i}\right) \operatorname{det}\left(\sum_{i=1}^{m} Z_{i}^{*} Z_{i}\right)
$$

The following is the main theorem of the paper.
THEOREM 2. (Main) Let $A_{i}, i=1, \ldots, m$, be positive definite matrices whose diagonal blocks are n_{j}-square matrices $A_{i}^{(j)}$ for $j=1, \ldots, k$. Then

$$
\operatorname{det}\left(\sum_{i=1}^{m} A_{i}^{-1}\right) \geqslant \operatorname{det}\left(\sum_{i=1}^{m}\left(A_{i}^{(1)}\right)^{-1}\right) \cdots \operatorname{det}\left(\sum_{i=1}^{m}\left(A_{i}^{(k)}\right)^{-1}\right)
$$

Proof. We use the same argument as we did in Theorem 1. Using mathematical induction on k, we may assume $k=2$. By Lemma 2, for each $i=1, \ldots, m$ there exists a matrix $T_{i}=\left[\begin{array}{cc}X_{i} & Y_{i} \\ O & Z_{i}\end{array}\right]$ being conformally partitioned as A_{i}^{-1} such that $A_{i}^{-1}=T_{i}^{*} T_{i}$. Then

$$
\operatorname{det}\left(\sum_{i=1}^{m} A_{i}^{-1}\right) \geqslant \operatorname{det}\left(\sum_{i=1}^{m} X_{i}^{*} X_{i}\right) \operatorname{det}\left(\sum_{i=1}^{m} Z_{i}^{*} Z_{i}\right)
$$

by Lemma 4. Now it is enough to show $\left(X_{i}^{*} X_{i}\right)^{-1} \preccurlyeq A_{i}^{(1)}$ and $\left(Z_{i}^{*} Z_{i}\right)^{-1} \preccurlyeq A_{i}^{(2)}$ for each i, since the relations and the inequality above imply

$$
\operatorname{det}\left(\sum_{i=1}^{m} A_{i}^{-1}\right) \geqslant \operatorname{det}\left(\sum_{i=1}^{m}\left(A_{i}^{(1)}\right)^{-1}\right) \operatorname{det}\left(\sum_{i=1}^{m}\left(A_{i}^{(2)}\right)^{-1}\right)
$$

by Lemma 1. From

$$
A_{i}=\left(T_{i}^{*} T_{i}\right)^{-1}=\left[\begin{array}{lc}
X_{i}^{*} X_{i} & X_{i}^{*} Y_{i} \\
Y_{i}^{*} X_{i} & Y_{i}^{*} Y_{i}+Z_{i}^{*} Z_{i}
\end{array}\right]^{-1}
$$

we have

$$
A_{i}^{(1)}=\left(X_{i}^{*} X_{i}-X_{i}^{*} Y_{i}\left(Y_{i}^{*} Y_{i}+Z_{i}^{*} Z_{i}\right)^{-1} Y_{i}^{*} X_{i}\right)^{-1}
$$

and thus $A_{i}^{(1)} \succcurlyeq\left(X_{i}^{*} X_{i}\right)^{-1}$. Similarly,

$$
\begin{aligned}
A_{i}^{(2)} & =\left(Y_{i}^{*} Y_{i}+Z_{i}^{*} Z_{i}-Y_{i}^{*} X_{i}\left(X_{i}^{*} X_{i}\right)^{-1} X_{i}^{*} Y_{i}\right)^{-1} \\
& =\left(Y_{i}^{*}\left(I-X_{i}\left(X_{i}^{*} X_{i}\right)^{-1} X_{i}^{*}\right) Y_{i}+Z_{i}^{*} Z_{i}\right)^{-1} \\
& =\left(Z_{i}^{*} Z_{i}\right)^{-1} .
\end{aligned}
$$

3. More inequalities

Here we show more inequalities related to Theorem 1. The following will be used without proof (See [1, Theorem 7.7.8]).

LEmmA 5. If $S \subset\{1,2, \ldots, n\}$ is an index set, then $A(S)^{-1} \preccurlyeq A^{-1}(S)$, where $B(T)$ denotes the principle submatrix of B determined by deletion of the rows and columns indicated by T.

The following presents additional inequalities of determinants. One of them is the inequality in Theorem 1. We contains it here since it is proved in a different way.

THEOREM 3. Let $C_{i} \succ 0$ and $D_{i} \succcurlyeq 0$ be n_{i}-square matrices for $i=1, \ldots, k$ and $D=\operatorname{diag}\left(D_{1}, \ldots, D_{k}\right)$. Then we have the following results:
(a) $\operatorname{det}(I+C D) \leqslant \operatorname{det}\left(I+C_{1} D_{1}\right) \cdots \operatorname{det}\left(I+C_{k} D_{k}\right) \cdot{ }^{1}$

[^0](b) If $D \preccurlyeq C^{-1}$, then $D_{i} \preccurlyeq C_{i}^{-1}$ and
$$
\operatorname{det}(I-C D) \leqslant \operatorname{det}\left(I-C_{1} D_{1}\right) \cdots \operatorname{det}\left(I-C_{k} D_{k}\right)
$$
(c) $\operatorname{det}\left(I+C^{-1} D\right) \geqslant \operatorname{det}\left(I+C_{1}^{-1} D_{1}\right) \cdots \operatorname{det}\left(I+C_{k}^{-1} D_{k}\right)$. (Theorem 1)
(d) If $D \preccurlyeq C$, then $D_{i} \preccurlyeq C_{i}$ and
$$
\operatorname{det}\left(I-C^{-1} D\right) \leqslant \operatorname{det}\left(I-C_{1}^{-1} D_{1}\right) \cdots \operatorname{det}\left(I-C_{k}^{-1} D_{k}\right)
$$

Proof. (a) follows directly from Fischer's inequality:

$$
\begin{aligned}
\operatorname{det}(I+C D) & =\operatorname{det}(I+\sqrt{D} C \sqrt{D}) \\
& \leqslant \prod_{i=1}^{k} \operatorname{det}\left(I+\sqrt{D_{i}} C_{i} \sqrt{D_{i}}\right) \\
& =\prod_{i=1}^{k} \operatorname{det}\left(I+C_{i} D_{i}\right) .
\end{aligned}
$$

Assume $D \preccurlyeq C^{-1}$. Since $I-\sqrt{D_{i}} C \sqrt{D_{i}}, i=1, \ldots, k$, are the diagonal blocks of the positive semidefinite matrix $I-\sqrt{D} C \sqrt{D}$, the relation $D_{i} \preccurlyeq C_{i}^{-1}$ holds for all i and (b) also follows from Fischer's inequality.

Now we prove (c). Let $B=(C+D)^{-1}$. Then B is a positive definite matrix such that $D \preccurlyeq B^{-1}$. By (b), $D_{i} \preccurlyeq B_{i}^{-1}$ for all i and

$$
\begin{equation*}
\operatorname{det}(I-B D) \leqslant \operatorname{det}\left(I-B_{1} D_{1}\right) \cdots \operatorname{det}\left(I-B_{k} D_{k}\right) \tag{3.1}
\end{equation*}
$$

where B_{1}, \ldots, B_{k} are the diagonal blocks of B. Since $(I-B D)\left(I+C^{-1} D\right)=I$, the left hand side of (3.1) is $1 / \operatorname{det}\left(I+C^{-1} D\right)$. Meanwhile, fix i and let $S \subset\{1,2, \ldots, n\}$ be the index set such that $B_{i}=B(S)$ (thus $C_{i}=C(S)$ and $D_{i}=D(S)$). Then $B_{i}^{-1} \preccurlyeq B^{-1}(S)=$ $C_{i}+D_{i}$ by Lemma 5 and

$$
\begin{aligned}
\operatorname{det}\left(\left(I-B_{i} D_{i}\right)^{-1}\right) & =\frac{\operatorname{det}\left(B_{i}^{-1}\right)}{\operatorname{det}\left(B_{i}^{-1}-D_{i}\right)} \\
& =\frac{\operatorname{det}\left(B_{i}^{-1}-D_{i}+D_{i}\right)}{\operatorname{det}\left(B_{i}^{-1}-D_{i}\right)} \\
& =\operatorname{det}\left(I+\left(B_{i}^{-1}-D_{i}\right)^{-1} D_{i}\right) \\
& \geqslant \operatorname{det}\left(I+C_{i}^{-1} D_{i}\right) .
\end{aligned}
$$

Therefore (c) holds. A similar argument is applied to (d). Assume $D \preccurlyeq C$ and let $B=C-D$. Without loss of generality, we may assume $D \prec C$. By (c),

$$
\begin{equation*}
\operatorname{det}\left(I+B^{-1} D\right) \geqslant \operatorname{det}\left(I+B_{1}^{-1} D_{1}\right) \cdots \operatorname{det}\left(I+B_{k}^{-1} D_{k}\right) \tag{3.2}
\end{equation*}
$$

where $B_{i}=C_{i}-D_{i}$ for $i=1, \ldots, k$. Since $\left(I+B^{-1} D\right)\left(I-C^{-1} D\right)=I$, the left hand side of (3.2) is $1 / \operatorname{det}\left(I-C^{-1} D\right)$. Moreover, since

$$
\operatorname{det}\left(\left(I+B_{i}^{-1} D_{i}\right)^{-1}\right)=\frac{\operatorname{det}\left(B_{i}+D_{i}-D_{i}\right)}{\operatorname{det}\left(B_{i}+D_{i}\right)}=\frac{\operatorname{det}\left(C_{i}-D_{i}\right)}{\operatorname{det}\left(C_{i}\right)}=\operatorname{det}\left(I-C_{i}^{-1} D_{i}\right)
$$

inequality (d) holds.

REFERENCES

[1] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1990.
[2] M. Lin, Determinantal inequalities for block triangular matrices, Math. Inequal. Appl., Volume 18, Number 3 (2015), 1079-1086.
[3] I. MATIC, Inequalities with determinants of perturbed positive matrices, Linear Algebra Appl., Volume 449, 2015, 166-174.
(Received January 28, 2015)
Daeshik Choi
Southern Illinois University, Edwardsville
Dept. of Mathematics and Statistics
Box 1653, Edwardsville, IL 62026
e-mail: dchoi@siue.edu

[^0]: ${ }^{1}$ The inequality is equivalent to the inequality in [3, Theorem 1.2].

