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DETERMINANTAL INEQUALITIES OF POSITIVE DEFINITE MATRICES
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(Communicated by I. Perić)

Abstract. Let Ai , i = 1, . . . ,m , be positive definite matrices with diagonal blocks A( j)
i , 1 � j �

k , where A( j)
1 , . . . ,A( j)

m are of the same size for each j . We prove the inequality

det(
m

∑
i=1

A−1
i ) � det(

m

∑
i=1

(A(1)
i )−1) · · ·det(

m

∑
i=1

(A(k)
i )−1)

and more determinantal inequalities related to positive definite matrices.

1. Introduction

Notation. Throughout the paper, we will use the following notation:

• I denotes the identity matrix of a proper size. We do not specify its order.

• A ≺ B (A � B) is used to imply that A and B are Hermitian matrices such that
B−A is positive definite (semidefinite). In particular, a positive definite (positive
semidefinite) matrix A can be expressed as A � 0 (A � 0).

• diag(D1, . . . ,Dk) denotes the block diagonal matrix whose diagonal blocks are
D1, . . . ,Dk .

Fischer’s inequality [1, Theorem 7.8.3] states that if A is a positive definite matrix with
diagonal blocks A1, . . . ,Ak , then

detA � detA1 · · ·detAk.

Let Ai , i = 1, . . . ,m , be positive definite matrices whose diagonal blocks are n j -square

matrices A( j)
i for j = 1, . . . ,k . Then the relation

det(
m

∑
i=1

Ai) � det(
m

∑
i=1

A(1)
i ) · · ·det(

m

∑
i=1

A(k)
i )

follows directly from Fischer’s inequality. The main result of the paper is to show

det(
m

∑
i=1

A−1
i ) � det(

m

∑
i=1

(A(1)
i )−1) · · ·det(

m

∑
i=1

(A(k)
i )−1).
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2. Proof of the Main inequality

The following is a well-known result [1, Corollary 7.7.4].

LEMMA 1. If 0 ≺ A � B, then B−1 � A−1 and det(A) � det(B) .

We expect the following is known, but we include a proof as we do not know a
reference.

LEMMA 2. Let P =
[

A B
B∗ C

]
be a positive definite matrix. Then P can be factor-

ized as P = T ∗T with T =
[
X Y
O Z

]
being conformally partitioned as P.

Proof. Since A is positive definite, it can be factorized as A = X∗X for an in-
vertible matrix X . Since P is positive definite, the Schur complement C−B∗A−1B is
also positive definite. Thus there exists a matrix Z such that C−B∗A−1B = Z∗Z . If

T is defined by T =
[
X Y
O Z

]
, where Y = (X∗)−1B , then a direct computation shows

P = T ∗T . �
The following is in [2, Corollary 1].

LEMMA 3. Let T =
[
X Y
O Z

]
, where X and Z are square matrices. Then

det(I +T ∗T ) � det(I +X∗X)det(I +Z∗Z).

The following theorem is equivalent to Theorem 1.1 in [3]. Here we give a simple
proof using Lemma 3.

THEOREM 1. Let Ci � 0 and Di � 0 be ni -square matrices for i = 1, . . . ,k and
D = diag(D1, . . . ,Dk) . Then

det(I +C−1D) � det(I +C−1
1 D1) · · ·det(I +C−1

k Dk). (2.1)

Proof. By a standard continuity argument, we may assume that Di are positive
definite. In this case, it is also enough to show the inequality

det(I +C−1) � det(I +C−1
1 ) · · ·det(I +C−1

k ) (2.2)

by the following argument:

det(I +C−1D) = det(I +(D− 1
2CD− 1

2 )−1)

� det(I +(D− 1
2

1 C1D
− 1

2
1 )−1) · · ·det(I +(D− 1

2
k CkD

− 1
2

k )−1)

= det(I +C−1
1 D1) · · ·det(I +C−1

k Dk).
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Moreover, mathematical induction allows us to prove (2.2) for k = 2. By Lemma

2, there exists a matrix T =
[
X Y
O Z

]
being conformally partitioned as C−1 such that

C−1 = T ∗T . Then we have

det(I +C−1) = det(I +T ∗T ) � det(I +X∗X)det(I +Z∗Z)

by Lemma 3. Now it is enough to show (X∗X)−1 � C1 and (Z∗Z)−1 � C2 , since the
relations and the above inequality imply

det(I +C−1) � det(I +C−1
1 )det(I +C−1

2 )

by Lemma 1. From

C = (T ∗T )−1 =
[
X∗X X∗Y
Y ∗X Y ∗Y +Z∗Z

]−1

,

we have
C1 = (X∗X −X∗Y (Y ∗Y +Z∗Z)−1Y ∗X)−1

by the block inverse theorem [1]. Thus C1 � (X∗X)−1 . Similarly, we have

C2 = (Y ∗Y +Z∗Z−Y∗X(X∗X)−1X∗Y )−1

= (Y ∗(I−X(X∗X)−1X∗)Y +Z∗Z)−1

= (Z∗Z)−1. �

COROLLARY 1. Let A be positive definite. If Ai and Bi , i = 1, . . . ,k , are the
ni -square diagonal blocks of A and A−1 , respectively, then

det(I +(AiBi)−1) � 2ni � det(I +AiBi), i = 1, . . . ,k.

Proof. Fix i . If C = A , Di = Ai , and Dj is the zero matrix for all j �= i in (2.1),
then we have det(I +AiBi) � 2ni . Similarly, if C = A , Di = B−1

i , and Dj is the zero
matrix for all j �= i in (2.1), we have 2ni � det(I +A−1

i B−1
i ) . �

We can generalize (2.1) using the following result [2, Theorem 1]:

LEMMA 4. Let Ti =
[
Xi Yi

O Zi

]
, i = 1, . . . ,m, be ni -square conformally partitioned

matrices. Then

det(
m

∑
i=1

T ∗
i Ti) � det(

m

∑
i=1

X∗
i Xi)det(

m

∑
i=1

Z∗
i Zi).

The following is the main theorem of the paper.

THEOREM 2. (Main) Let Ai , i = 1, . . . ,m, be positive definite matrices whose di-

agonal blocks are n j -square matrices A( j)
i for j = 1, . . . ,k . Then

det(
m

∑
i=1

A−1
i ) � det(

m

∑
i=1

(A(1)
i )−1) · · ·det(

m

∑
i=1

(A(k)
i )−1).
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Proof. We use the same argument as we did in Theorem 1. Using mathematical
induction on k , we may assume k = 2. By Lemma 2, for each i = 1, . . . ,m there exists

a matrix Ti =
[
Xi Yi

O Zi

]
being conformally partitioned as A−1

i such that A−1
i = T ∗

i Ti .

Then

det(
m

∑
i=1

A−1
i ) � det(

m

∑
i=1

X∗
i Xi)det(

m

∑
i=1

Z∗
i Zi)

by Lemma 4. Now it is enough to show (X∗
i Xi)−1 � A(1)

i and (Z∗
i Zi)−1 � A(2)

i for each
i , since the relations and the inequality above imply

det(
m

∑
i=1

A−1
i ) � det(

m

∑
i=1

(A(1)
i )−1)det(

m

∑
i=1

(A(2)
i )−1)

by Lemma 1. From

Ai = (T ∗
i Ti)−1 =

[
X∗

i Xi X∗
i Yi

Y ∗
i Xi Y ∗

i Yi +Z∗
i Zi

]−1

,

we have
A(1)

i = (X∗
i Xi −X∗

i Yi(Y ∗
i Yi +Z∗

i Zi)−1Y ∗
i Xi)−1

and thus A(1)
i � (X∗

i Xi)−1 . Similarly,

A(2)
i = (Y ∗

i Yi +Z∗
i Zi −Y ∗

i Xi(X∗
i Xi)−1X∗

i Yi)−1

= (Y ∗
i (I−Xi(X∗

i Xi)−1X∗
i )Yi +Z∗

i Zi)−1

= (Z∗
i Zi)−1. �

3. More inequalities

Here we show more inequalities related to Theorem 1. The following will be used
without proof (See [1, Theorem 7.7.8]).

LEMMA 5. If S ⊂ {1,2, . . . ,n} is an index set, then A(S)−1 � A−1(S) , where
B(T ) denotes the principle submatrix of B determined by deletion of the rows and
columns indicated by T .

The following presents additional inequalities of determinants. One of them is the
inequality in Theorem 1. We contains it here since it is proved in a different way.

THEOREM 3. Let Ci � 0 and Di � 0 be ni -square matrices for i = 1, . . . ,k and
D = diag(D1, . . . ,Dk) . Then we have the following results:

(a) det(I +CD) � det(I +C1D1) · · ·det(I +CkDk) .1

1The inequality is equivalent to the inequality in [3, Theorem 1.2].
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(b) If D � C−1 , then Di � C−1
i and

det(I−CD) � det(I−C1D1) · · ·det(I−CkDk).

(c) det(I +C−1D) � det(I +C−1
1 D1) · · · det(I +C−1

k Dk) . (Theorem 1)

(d) If D � C, then Di � Ci and

det(I−C−1D) � det(I−C−1
1 D1) · · ·det(I−C−1

k Dk).

Proof. (a) follows directly from Fischer’s inequality:

det(I +CD) = det(I +
√

DC
√

D)

�
k

∏
i=1

det(I +
√

DiCi
√

Di)

=
k

∏
i=1

det(I +CiDi).

Assume D � C−1 . Since I −√
DiC

√
Di , i = 1, . . . ,k , are the diagonal blocks of the

positive semidefinite matrix I−√
DC

√
D , the relation Di �C−1

i holds for all i and (b)
also follows from Fischer’s inequality.

Now we prove (c). Let B = (C +D)−1 . Then B is a positive definite matrix such
that D � B−1 . By (b), Di � B−1

i for all i and

det(I−BD) � det(I−B1D1) · · ·det(I−BkDk), (3.1)

where B1, . . . ,Bk are the diagonal blocks of B . Since (I−BD)(I +C−1D) = I , the left
hand side of (3.1) is 1/det(I+C−1D) . Meanwhile, fix i and let S⊂{1,2, . . . ,n} be the
index set such that Bi = B(S) (thus Ci =C(S) and Di = D(S)). Then B−1

i � B−1(S) =
Ci +Di by Lemma 5 and

det((I−BiDi)−1) =
det(B−1

i )
det(B−1

i −Di)

=
det(B−1

i −Di +Di)
det(B−1

i −Di)

= det(I +(B−1
i −Di)−1Di)

� det(I +C−1
i Di).

Therefore (c) holds. A similar argument is applied to (d). Assume D � C and let
B = C−D . Without loss of generality, we may assume D ≺C . By (c),

det(I +B−1D) � det(I +B−1
1 D1) · · ·det(I +B−1

k Dk), (3.2)

where Bi = Ci −Di for i = 1, . . . ,k . Since (I + B−1D)(I −C−1D) = I , the left hand
side of (3.2) is 1/det(I−C−1D) . Moreover, since

det((I +B−1
i Di)−1) =

det(Bi +Di−Di)
det(Bi +Di)

=
det(Ci −Di)

det(Ci)
= det(I−C−1

i Di),

inequality (d) holds. �
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