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DETERMINANTAL INEQUALITIES OF POSITIVE DEFINITE MATRICES

DAESHIK CHOI
(Communicated by I. Peri¢)

Abstract. Let A;, i=1,...,m, be positive definite matrices with diagonal blocks AEj ) ,1<j<
k, where AY ), . ,AE,{) are of the same size for each j . We prove the inequality

m

det(Y A7 )>det(2(Af”) ) det(z(Af">) )

i=1 i=1 i=1

and more determinantal inequalities related to positive definite matrices.

1. Introduction

Notation. Throughout the paper, we will use the following notation:

I denotes the identity matrix of a proper size. We do not specify its order.

A < B (A < B)is used to imply that A and B are Hermitian matrices such that
B — A is positive definite (semidefinite). In particular, a positive definite (positive
semidefinite) matrix A can be expressed as A > 0 (A = 0).

diag(Dy,...,Dy) denotes the block diagonal matrix whose diagonal blocks are
Dy,...,Dy.

Fischer’s inequality [ 1, Theorem 7.8.3] states that if A is a positive definite matrix with
diagonal blocks Ay, ... A, then

detA < detA; ---detAg.

Let A;, i=1,...,m, be positive definite matrices whose diagonal blocks are n;-square

matrices AEj ) for j=1,...,k. Then the relation

m m

det(iAi) < det(EAEl)) . ..det(EAl(k))
i=1

i=1 i=1
follows directly from Fischer’s inequality. The main result of the paper is to show

m

det(E D > det(

i=1 i

(i)™,

M=

Ay 1) det(

INE
Il

i
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2. Proof of the Main inequality
The following is a well-known result [1, Corollary 7.7.4].

LEMMA 1. If0 <A < B, then B! < A~ and det(A) < det(B).
We expect the following is known, but we include a proof as we do not know a

reference.

A B . . .
LEMMA 2. Let P = [ be a positive definite matrix. Then P can be factor-

B* c}

izedas P=T*T with T = [X Y being conformally partitioned as P.

o)

Proof. Since A is positive definite, it can be factorized as A = X*X for an in-
vertible matrix X . Since P is positive definite, the Schur complement C — B*A~'B is
also positive definite. Thus there exists a matrix Z such that C — B*A~'B = Z*Z. If

T is defined by T = [)é ;] , where ¥ = (X*)~!B, then a direct computation shows
pP=T7'T. O
The following is in [2, Corollary 1].

LEMMA 3. Let T = [}é g , where X and Z are square matrices. Then

det(I+T7T) > det(I + X*X)det(I+ Z*Z).

The following theorem is equivalent to Theorem 1.1 in [3]. Here we give a simple
proof using Lemma 3.

THEOREM 1. Let C; >~ 0 and D; = 0 be n;-square matrices for i = 1,...,k and
D =diag(Dy,...,Dy). Then

det(I+C~'D) > det(I+C;'Dy)---det(I+C; ' Dy). (2.1)

Proof. By a standard continuity argument, we may assume that D; are positive
definite. In this case, it is also enough to show the inequality
det(I+C 1) > det(I+Cy 1) --det(I+C. ) (2.2)
by the following argument:
det(I+C'D) = det(I+ (D" 2CD 7))
_1 _1 _1 _1
> det(I+ (D, 2CiD; 2)" 1) --det(I+ (D, 2D, 2) ™)
= det(I+C;'Dy) -~ det(I+C. ' Dy).
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Moreover, mathematical induction allows us to prove (2.2) for k = 2. By Lemma

2, there exists a matrix 7 = {X Y being conformally partitioned as C~! such that

) Z]
C~!' =T*T. Then we have
det(I+C~1) = det(I+T*T) > det(I + X*X ) det(I + Z*Z)
by Lemma 3. Now it is enough to show (X*X)~! < Cy and (Z*Z)~! < G, since the
relations and the above inequality imply
det(I+C ") > det(I+C; YYdet(I+C5 )
by Lemma 1. From
* * -1
C=(1"7)"" = Ei{( Y*;:—YZ*Z} ’
we have
Ci=X'X-XYY'Y+22) 'v'x)!
by the block inverse theorem [1]. Thus C; = (X*X)~!. Similarly, we have
G =YY+ZZ-YV'X(X*X)'x7)™!
= (Y (I-XX*X)"'x" )Y +2722)"!
=(z2z)y'. O

COROLLARY 1. Let A be positive definite. If A; and B;, i =1,...,k, are the
n;-square diagonal blocks of A and A", respectively, then

det(I + (A;B;) ') < 2" < det(I+A;B;), i=1,...,k.

Proof. Fix i. If C=A, D; = A;, and D; is the zero matrix for all j # i in (2.1),
then we have det(I + A;B;) > 2" . Similarly, if C=A, D; = Bi’l, and D; is the zero
matrix for all j # i in (2.1), we have 2" > det(I+A; 'B;!). O

We can generalize (2.1) using the following result [2, Theorem 1]:

X Y;

LEMMA 4. Let T} = { !

0 Z} , 1=1,...,m, be nj-square conformally partitioned
1

matrices. Then

det( Y, T*T;) > det( D X/ X;) det( D Z; Z;)
i=1 i=1 i=1

The following is the main theorem of the paper.

THEOREM 2. (Main) Let A;, i =1,...,m, be positive definite matrices whose di-
agonal blocks are nj-square matrices AEJ) for j=1,....k. Then

det( ZA > det i(Af”)—l)---det(Z(A§k>)—1).
i=1 i
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Proof. We use the same argument as we did in Theorem 1. Using mathematical
induction on k, we may assume k£ =2. By Lemma 2, for each i = 1,...,m there exists

X Y;

a matrix 1; = [0 Z
Then

] being conformally partitioned as A;” ! such that A7 - T*T;.

det(Y A1) > det(Y X' Xi) det(Y 2 Z;)

i=1 i=1 i=1

by Lemma 4. Now it is enough to show (X;X;)™! < Agl) and (Z;Z) ' < Al@ for each
i, since the relations and the inequality above imply

m m

det(Y A7) > det(E(AEl))’l)det(i(Agz))’l)

i=1 i=1 i

—

by Lemma 1. From

1

-1
X'Xi XY
(7 i i L
Ai=(I'T) [YZ*X, Y'Y, —l—Z;kZ,] ’

we have
A = (X = XYY+ Z2) X))

and thus A" = (X7X;)~!. Similarly,
AP = (R 22— XX X)X )

= (G (- X(X: X)X+ Z:Z) !
=(zz)™'. O

3. More inequalities

Here we show more inequalities related to Theorem 1. The following will be used
without proof (See [1, Theorem 7.7.8]).

LEMMA 5. If S C {1,2,...,n} is an index set, then A(S)~' < A~Y(S), where
B(T) denotes the principle submatrix of B determined by deletion of the rows and
columns indicated by T .

The following presents additional inequalities of determinants. One of them is the
inequality in Theorem 1. We contains it here since it is proved in a different way.

THEOREM 3. Let C; = 0 and D; = 0 be n;-square matrices for i = 1,...,k and
D = diag(Dy,...,Dy). Then we have the following results:

(a) det(I+CD) < det(I+C\Dy)---det(I+CiDy).!

IThe inequality is equivalent to the inequality in [3, Theorem 1.2].
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(b) If D<C™', then D; < C;"' and
det(I — CD) < det(I — C\Dy) - - -det(I — C¢Dy,).
(c) det(I+C~'D) > det(I+Cy'Dy)--- det(I+C, 'Dy). (Theorem 1)
(d) If DX C, then D; < C; and
det(I —C~'D) < det(I—C;'Dy)---det(I — C; ' Dy).

Proof. (a) follows directly from Fischer’s inequality:
det(I+CD) = det(I++/DCv/D)

k

<ITdeii+ vDC/D)
k
H et(l +GD;)

Assume D < C~!. Since I — /D;C\/D;, i = 1,...,k, are the diagonal blocks of the
positive semidefinite matrix / — /DC+/D, the relation D; < C ! holds for all i and (b)
also follows from Fischer’s inequality.

Now we prove (c). Let B= (C+D)~!. Then B is a positive definite matrix such
that D < B!, By (b), D; < Bi_1 for all i and

det(I — BD) < det(I — B\ D, )---det(I — ByDy), (3.1)
where By, ...,B; are the diagonal blocks of B. Since (I —BD)(I+C~'D) =1, the left
hand side of (3.1) is 1/det(I+C~'D). Meanwhile, fix i and let S C {1,2,...,n} be the
index set such that B; = B(S) (thus C; = C(S) and D; = D(S)). Then B; ' < B~'(S) =
Ci+ D; by Lemma 5 and
det(B; ')

det(B; ' — D;)
_ det(B;' —D;+ D))
~ det(B]' - D))
= det(I+ (B;' —Dy)~'Dy)
> det(I+C;'Dy).

det((I—B;:D;)™ ") =

Therefore (c) holds. A similar argument is applied to (d). Assume D < C and let
B = C — D. Without loss of generality, we may assume D < C. By (c),

det(I+B~'D) > det(I+ B 'Dy)---det(I+ B; ' Dy), (3.2)

where B; = C; — D; for i = 1,...,k. Since (I+B~'D)(I —C~'D) =1, the left hand

side of (3.2) is 1/det(I — C~'D). Moreover, since

det(B,- + D; — D; ) det(C — D; )
det(B;+ D;) - det(C;)

det((I+B;'D;)™") = =det(I—-C'Dy),

inequality (d) holds. [
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