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CONVEX FUNCTIONS AND MEANS OF MATRICES

MOHAMMAD SABABHEH

(Communicated by J.-C. Bourin)

Abstract. In this article, we prove that convex functions and log-convex functions obey certain
general refinements that lead to several refinements and reverses of well known inequalities
for matrices, including Young’s inequality, Heinz inequality, the arithmetic-harmonic and the
geometric-harmonic mean inequalities.

1. Introduction

For f:R — R and a < b, let Ly, denote the line determined by the points
(a,f(a)) and (b, f(b)). That s,

b—x xX—a

= = @)+ 521 0), <1>

A function f: R — R is said to be convex if f(ox; + Bxz) < af(x1) + B f(x2) for all
x1,%x € R and o, > 0 satisfying oo + 8 = 1. Geometrically, the graph of the convex
function on an interval [a,b] lies under Ly, . However, it is above L ,; outside the
interval [a,b]. Thatis, if f:R — R is convex, then

Lfap(x)

f(x) <Lgap(x), x € [a,b]
F) > Lap(x), xR\ (a,b)

Convex functions and their properties are among the most active research areas in
Mathematics, due to their applications in almost all branches of Mathematical sciences;
including operator theory, optimization and applied mathematics.

In this article, we are interested in the applications of convex functions in operator
theory, and in particular the applications to the different means; such as the arithmetic,
geometric and harmonic means defined, respectively for positive numbers x and y, as
follows

2)

v —1

xVyy=(1-=v)x+vy, xtyy=x"""y" and x!vy:((l—v)x_l-i-Vy_l) ,

for 0 < v < 1. When v = %, we drop the v in the above definitions. The study of
inequalities governing these means has attracted numerous researchers. We refer the
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Keywords and phrases: Convex functions, Heinz means, means inequalities, unitarily invariant norm
inequalities, Young’s inequality.
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reader to [2, 6, 7, 8, 9, 11, 12, 13] as a sample of some recent work on these means
inequalities.

Among the most well established inequalities in this direction are the weighted
arithmetic-geometric, arithmetic-harmonic and geometric-harmonic mean inequalities,
which state respectively

xtyy <xVyy, xlyy<xVyy and xlyy <xffyy, xy>0, 0<v<L

Generalizing these inequalities to matrices means is indeed a significant application of
the above inequalities. In the sequel, M, will denote the algebra of n x n complex
matrices, M will denote the cone of M, consisting of positive semidefinite matrices
and M will denote the strictly positive matrices in M. Thatis, A € M} if (Ax,x) >
0 for all x € C", while A € Mi* if (Ax,x) > 0 for all nonzero x € C". For two
Hermitian matrices X,Y € M,,, we say that X <Y when Y —X € M. For A,Be M,
the above mean inequalities have their matrix versions as follows

A#,B<AV,B, A!,B<AV,B and ALB<A#,B, 0<v<l,

where
1 _1 _I\VY 1
AV,B=(1—-V)A+VB, A#,B=A} (A 3 BA z) Al

and
ALVB=((1-v)A +vB ).

The requirement A € M\ " is needed to guarantee invertibility.

These inequalities have been studied extensively in the literature, see the refer-
ences, where refinements and reversals have been found.

In this article, we are mainly concerned with the reversed versions of these inequal-
ities. However, in our study we obtain the inequalities as consequences of a reversed
version for any convex function. Our first main result is the inequality

(1+v)f(a)=vf(b

zzfv fla )+f(2';“’+b> _f((zf—zlj)a—i-b)

<f((1+v)a—vb), v=0, a<b, 3)

for the convex function f : R — R. This inequality is a considerable refinement of
the well known inequality that (1+v)f(a) — vf(b) < f((14 Vv)a— vb), valid for the
convex function f.

Then we prove the corresponding inequality for v < —1, and as direct conse-
quences, we obtain two refinements for log-convex functions.

As an application, we apply these inequalities to different convex functions obtain-
ing different generalizations, reversals and refinements of recently proved inequalities
in the literature; for both numbers and matrices. We emphasize that these inequalities,
treated in this article, are obtained as special cases of (3), and hence we obtain multiple
term refinements, unlike most known results in the literature where one has one or two
refining terms.
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Among many other results, we prove that

N . 2
(1+v)x—vy+2211v<\/_— A xzflly) <xVyTVD o xy,v >0,
j=1

N
AV_\B+ Y 277V (A—2A#, ;B+A#y ;B) <A#_yB, ABEM/T, v>0,
j=1
and
L 1 1217 pl=i 1-27J p2=J
wr((1+Vv)A—vB)+ Y 2/ vtr(A+A’ ‘g _oal-27p )
j=1

<t (A™B™Y), ABeM;t, v>0.

The above results provide refinements of the corresponding results in [2].

Moreover, we study convexity and monotonicity of the Heinz function f(v) =
||AVXB'=V +A'"VXBV|||, where A,B €M, ", X € M, and ||| ||| is a unitarily invari-
ant norm. In particular, we prove that f is convex on R, decreasing when v < % and
is increasing when v > % This extends our understanding of the Heinz means, whose
convexity and monotonicity have been known only on [0, 1].

2. Main results

In this part of the paper, we present our main results concerning convex functions.
The applications of these inequalities and their relations to the literature will be done in
the next section.

LEMMA 1. Let f:R — R be convex andlet a<b. If v>0 or v < —1, then

(14+v)fla)=vf(b) < f((1+V)a—vb). 4)

Proof. Notice that when a < b and v > 0, we have (1 +Vv)a—vb < a. On
the other hand, if « < b and v < —1, we have (1+ v)a — vb > b. This means that
(I+v)a—vbeR\ (a,b), and hence, by (2), we have

f(14+Vv)a—vb)=Lsap((1+Vv)a—vb)
= (1+v)f(a) = vf(b),
where we have used (1) with x = (14 v)a — vb to obtain the last line. [

We emphasize that in order to apply this lemma, f must be convex on an interval
containing a,b and (1 + v)a — vb. In particular, when f is convex on R, the result is
valid.

Now we are ready to prove our first main theorem.
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THEOREM 1. Let f:R— R be convex, Ne N andleta<b.If v=0o0rv<-—1,
then

(14 V) f(a) —vf(b +szv

fla)+f ﬂ i~ Da
= )_f<<z ot

<f((14+v)a—vb). Q)

Proof. We proceed by induction on N. So, assume that f is convex, a < b and
v>0orv<—1.Thenfor N=1, we have

(1+V)f(a)—vf(b)+2v [M_fCITMH

— 1+ 2vs(a) -2vf (452

f((H—Zv)a ZV%b>
=f((14+v)a—vb),

a+b

where we have applied Lemma 1, with v and b replaced by 2v and , respectively.

We emphasize here that when a < b we have a < “;’b . Moreover, When v >0 or

v < —1 we have 2v > 0 or 2v < —1, justifying the application of Lemma 1.

Now assume that, for some N € N, (5) holds whenever a < b and v > 0 or
v < —1. We assert the truth of the inequality for N 4 1. Observe that

I:=(1+V)f(a) +221v 5 >

= (14 Vv)f(a) = vf(b)+2v [f(a)+f( ) f<a+b)]

Nt | fla )+f(w> 2/ —Da+b
- )

2

wir [ fla)+r (Bt _
+22Jv <2 2 ) _f<(ZJ 21j)d+b>
=2

= (1+2v)f(a) —2Vf<aJ2rb>

N .
+ Z 2itly
-1

(6)

f(a)+f<(2j}#> 2t —1Da+b
2 _f< 27+l )

For simplicity, let 2v = r, 42 = . Then (6) becomes
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I=(1+r)f(a)—rf(b

fla)+f M i~ Da+b
+221 <2 >—f<7(2 2 +b>
< f((l —|—r)a—rb/) (7
=f((1+v)a—vb),

where we have used the inductive step to obtain (7). Observe that when a < b we have
a < b’, which justifies the application of the inductive step. [J

REMARK 1. Notice that (4) is more precise than (5) when v < —1. This is why
we drop these values of v when applying Theorem 1. However, in Theorem 2, we
prove the other “half” of the inequality that is more precise when v < —1.

COROLLARY 1. Let f:R — R be log-convex, N € N andlet a<b. If v>0
then

2/v

2/ 1 l ll+b
fl+v(a)f7v(b) < va lN_I \/f 2i—Da+b )
e (%)

< f((1+Vv)a—vb).

Proof. For the first inequality, notice that

. i1 g
(@ Darhy a+ E At
2i 2

< \/f(a)f (B2,

since f is log-convex. This means that

[ (Ee)

f((2j721j)a+h> > 1,

which proves the first inequality.
For the second inequality, let f be log-convex. Then applying Theorem 1 to the
convex function g(v) =log f(v) implies the result. [

We have seen earlier that (5) is less precise than (4) when v < —1. In the following
result, we present the other “half” of Theorem 1, where the inequality is more precise
than (4) for v < —1, but less precise when v > 0.

The proof is very similar to that of Theorem 1, so we do not include it here.
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THEOREM 2. Let f:R— R be convex, Ne N andleta<b.If v=0o0rv<-—1,
then

Mz

(1+V)f(a) = vf(b)— 3, 2 (1+V)

fb)+f ﬂ 2/~ 1)b+a
p) (2 )_f(ZJ 21jb+ )

<f((14+v)a—vb).

Then we may obtain the following refinement for log-convex functions.

COROLLARY 2. Let f:R — R™ belog-convex, N € N andlet a<b. If v < —1,
then

—2J(1+v)

2J 1 1b+a
f1+v(a)f_v(b) < f1+v ﬂ \/f 20— )b )
= (%)

< f((1+Vv)a—vb).

3. Applications
In this part of the paper, we present different means inequalities that may be de-

rived from our convexity results.

3.1. Inequalities related to the weighted geometric mean

We begin with the following reversal of Young’s inequality. When N = 1, the
first inequality of the following result has been recently shown in [2]. Therefore, the
following theorem provides a refinement of the corresponding result in [2].

THEOREM 1. Let x,y >0 and v > 0. Then, for N € N,

N . 2
(I+v)x—vy+ Z 2i—1y, (ﬁ_ 2/ xz./1_1y> < x1+vy_v. 8)

J=1

On the other hand, if v < —1, we have

N 2
(I+v)x—vy—Y 27 (1+v) <\/_ Xy 1) <ty )
j=1
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Proof. If f(v) =x'7Vy", then f is convex on R. Therefore, applying Theorem
1 witha=0, b= 1, we obtain

Ky = f(-v)
= f((1+V)a—vb)

O+ (54) /1
> (14 v)f(a) +221 f—f<g>
=(14v)f(a) -|-24211 [}H—x 2/'y2/1 — 2! 21./)&)
. 2
s - $a (- YE) L vso

For the other inequality, we apply Theorem 2. [

At this point, we remind the reader of some history related to (9). The origi-
nal Young’s inequality states that x'~Vy" < (1 — v)x+ vy, 0 < v < 1, which is the
weighted arithmetic-geometric mean inequality. Refining this inequality and its opera-
tor versions has been considered by several authors. For example, the refinement

VY fmin{v, 1 —via— )2 < (1=v)x4vy, 0<v<I, xy>0

was proved in [6]. Thus, when N = 1, (9) provides a “negative” version of this refine-
ment. In our recent work [8], a refinement similar to (8) of Young’s inequality has been
given. In the same paper, (8) was stated without a proof.

Earlier, the squared version

(¢ 79Y) 4 min{v, 1= vE(x =y < (1= vix+ ), 0<v<T, xy>0

was proved in [5]. Therefore, it is natural to ask whether we have a squared version of
Proposition 1. The following proposition presents these versions.

THEOREM 2. Let x,y >0 and N € N. If v > 0, then

N . 2
(1 v)x—vy) + 3 2y (x— 2\J/)c2’—1y> < (YY) Vi —y)2

Jj=1
On the other hand, if v < —1 then

N . 2
i 2
(14 v)x—vy)? Z (1+v) ( A xy2’—1> < (YY) + (1 v)Ax—y)n
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Proof. For v >0, we have

(14 v)x—vy)? =vi(x—y)?
(T+v)x—vy—vx—y)(1+V)x—vy+vix—y))
x((14+2v)x—2vy) (now apply (8) replacing v by 2v)

N

x[( vy 2v) _ 22/ Loy (f x2"“1y)2]
(e zzw(x— )

which completes the proof for v > 0. For the second inequality, we proceed similarly,
then we apply (9) replacing v by 1+2v. [

In particular, when N = 1, the above two inequalities reduce to

(14 V)= vy +2v(r— )2 < () v —y)% v=0
and
(1+V)x—vy)? = 2(1+ V) (y— V)2 < () P+ (14 v)2(x—y)?, v<—1.

Now we use (8) to obtain the following refinement of the original Young’s inequal-
ity.

THEOREM 3. Let x,y >0, NeNand 0 <t < 1. Then

N . 2 2
My (=) Y 2! (1— X x*’y’) +(1—1)y (1—\/x’y*’>
j=2
<tx+(1—1)y.
Proof. For 0 <t <1, letv———l Then v > 0, and we may apply (8) replacing

x by ¥y~ to get

Xyt 1—t 11—t 2
_ y+ . <1 /xtyl—t_ﬁ>

t t

_ N . . 1,
+ % 2 2J-1 <\/xzy1—t _ 2</x—tyt \/xtyl—t> (xfyl f) T T,
=2

Multiplying this inequality by #, then simplifying implies the result. [
A matrix version of Proposition 1 may be obtained, recalling the following result
from [3].

LEMMA 2. Let X € M, be Hermitian and let f and g be continuous real valued
Sunctions such that f(t) > g(t) forall t € Sp(X). Then f(X) > g(X).
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THEOREM 4. Let A,B €M™ and v > 0. Then for N € N, we have

N
AV_\B+ Y 2/7'v(A—2A#, ;B+A#y ;B) < A#_,B.

j=1
On the other hand, if v < —1, we have

N
AV_,B— Y 2771+ V) (B—2A#,_, B+ A#,_ 5 ,B) <A#_,B.
j=1

Proof. Letting x =1 in (8), we get
S -1 2 2l
(1+v)—vy+ 327 (1-22 742 ) <Y, >0
=1

J

Considering both sides of this inequality as functions of y > 0, we may apply Lemma
2, using X = A~2BA~1. Notice that with this choice of X, we have Sp(X) C (0,e0)
because A,B € M ™. Consequently,

1 | N 1 1\27/ 1 N 21
1 1 —1 1 1 1 1
(L+v)i-v(a7iBa~3)+ 3 20y <1—2(A Spai) 4 (aiBand) )
J=1
1o 1\V
< <A } BA z)
Multiplying both sides of this inequality with AZ from both directions implies the first
inequality. Applying the same logic to (9) implies the other inequality, for v< —1. [
A similar argument may be applied to obtain an operator version of Proposition 2

as follows.

THEOREM 5. Let A, BE M NeN and v > 0. Then

N
(1+V)(AV_yB)+ Y 2/v (A + A#y ;B —2A#, ;B)
J=1

< A#_y,B+ V> (A—B)+ VB.

On the other hand, if v < —1, then

N
2(1+v) |B= Y. 277" (BAT'B+A#_,1 -, —2A#,_, ;B)
j=1

< A#_5 B+ (1+2v)BA™'B.
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Observe that when N = 1, the first inequality of Proposition 4 reduces to
AV_,B+2v(AVB — A#B) < A#_,B,

which has been shown in [2]. Therefore, Proposition 4 provides a refinement of the
corresponding results appearing in [2], by taking larger N.

It is also shown in [2] that when A,B € M}, X € M, and v >0 or v < —1,
we have [||AX||["*V|||XB|||~Y < |||A'*YXB~Y||| for any unitarily invariant norm ||| ||.
The following is the refinement of this inequality, which serves as a refinement of the
reversed Young’s inequality.

THEOREM 6. Let A,B€ M/ ", X € M, and N € N. Then for v > 0, we have

2/v
HAX [V IXBI < HIAXIHHVIHXBHI’V]_N[ \/MAX'H W[EI-_zliiXBzmm
j=I [|AT=27X B>
< [JATvXBTY|.
Moreover, if v < —1, then
—2J(v+1)

o oo (O JIxBY 1A XB2 |
HAX [ IIX BN < JIAX I X8I TT

j=1 1A% XB!=2])|

< [[JAXBTY.

Proof. For such A,B and X, define f: R — R* by f(v) = |||A'"VXBV|||. It has
been shown in [9] that f is log-convex. The result follows from Corollary 1, by taking
a=0andb=1 01

For the rest of the paper, the notation ||| ||| will be used for any unitarily invariant
norm on Mi,.

Also, since the results for v < —1 can be obtained in a similar manner to v > 0,
we will present the later case only to avoid redundancy.

It was shown in [4] that for such A, B, X and v >0, one has |||[AXB|||'*V|||X]||7 <
||A**YXB'*V|||. A refinement of this inequality may be obtained from Proposition 6
as follows.

COROLLARY 3. Let A,Be M,/ X € M,, and N € N. Then for v > 0, we have

Jv

- —\2
x| Loy (IAXB] a2 x|
X B[ (1X1 7 < HAXBI Y]~ TT

j=1 |HA1_27'/XBI_27'/|H

< |HA1+VXBl+V|H.
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Proof. Since Proposition 6 is valid for any A,B € M7 and X € M,,, replacing X
by XB~!, then B by B! implies the result. [

To better understand Proposition 6 and Corollary 3, we present the corresponding
results for N = 1.

COROLLARY 4. Let A\B€ M/ *, X € M, and N € N. Then for v >0, we have

HAXI"*2 < [IAYXB™Y||| || VAXVB][[*",

and
[|AXBI||"*2Y < [[|[A"YXB"||| ||| VAX VB]|[*".

On the other hand, replacing x and y by |||AX||| and |||XB]||, respectively, in
Proposition 8, then invoking Proposition 6, we obtain the following refinement of the
corresponding results in [2].

COROLLARY 5. Let A, BEM/*, X e M,, NeN and v > 0. Then

N . 2
i J i
(L+w)l[[AX[l| = v[|IIXB[| + 3, 2 'v (\/IAXII - 2\/IHAXHIQ’ 1 IIXB|>
=1

< [[lAX [ l1x Bl

2/v

oo (A a2 s )|
< llax]|ixBI T]

=l llat=2"x B>

< [[ATVXBV.
Now we prove the following result for the trace functional tr.

THEOREM 7. Let A,B € M. Then for v > 0 and N € N, we have

N R o
w((1+v)A—vB)+ Y 2 v ir (A pAl2 g gpl2 2 ’)
j=1
< tr (A1+VB_V),

and

\/tr(A) tr (A“zHBy*"')
tr (A1-27B2)

'V (A) "V (B) H

Jj=1

<tr (AHVB*") .

Proof. The function f(v) = |||A'~VXBV||| is log-convex on R for any unitarily
invariantnorm ||| |||. This fact has been shown in [9]. In particular, the function f(v) =
|A'=VBY ||, is log-convex, where || || is the Hilbert-Schmidt norm. But |[A!~VBY||3 =
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tr(A2~2VB2V). Therefore, replacing A and B by /A and /B implies log-convexity
of the function f(v) = tr(A'~VBY). Now applying Theorem 1 and Corollary 1 to the
function f(v) = tr(A'~VBY) implies the result. [

In particular, when N = 1, the first inequality above reduces to
tr((1+v)A—vB)+v tr((A+B—2VAVB) <t (A'™VB™). (10)
Notice that, for f(v) =tr(A'~VBY),
tr(VAVB) = £(1/2) < /f(0)\/f(1) = VirAVrB,
where we have used log-convexity of f. When this is considered in (10), we get
tr((1+Vv)A—VB)+V (trA+trB—2VirAVirB) <tr (A'VB™Y),

which is equivalent to

tr((1+Vv)A—vB)+v (VirA—VuB)* <t (A'"*VB™Y). (11)
n [2], it has been proven that
tr((1+v)A—vB)+v (VurA—VuB)> <u|A"TVB™Y|. (12)

Now since tr (A”"B"’) <tr |A1+"B"’| , the inequality (11) implies and refines (12).
Moreover, further refinements may be obtained from Proposition 7, by taking larger N.
3.2. Inequalities related to the weighted harmonic mean

LEMMA 3. Let 0 < x <y be real numbers. Then the function f(v) = x!yy is
convex on (—eo, 1].

Proof. Direct computations show that

2x(x—y)y
(vix—y)+y)*
When x <y and v < 1, we easily see that f(v) > 0, completing the proof. [J

f'(v)=

THEOREM 8. Let 0 < x <y be real numbers. If v >0, then xV_,y < x!_yy.

Proof. Notice that when v > 0 and a < b, we have (1 +Vv)a — vb < a. Conse-
quently, by letting @ =0 and b = 1, we have (1 +Vv)a—vb < 0. Since f(v)=x!yy is
convex when v < 0, it follows from Lemma 1 that

xl_yy= f((l + V)a — Vb) > Lf7071(—v) sz,vy. O

We remark that in order to fully use Lemma 1, f must be convex on R. However,
if f is convex only on (—eo,a|, we may apply the lemma only if (1+Vv)a—vb < a,
which is guaranteed because v > 0 and a < b.

Then applying Theorem 1 to the function f(v) =x!,y implies the following re-
fined version.
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COROLLARY 6. Let 0 < x <y be real numbers and N € N. If v > 0, then
N .
xV_yy+ ZZJV(xV (x1y1-jy) —xlh-jy) <xl_yy. (13)
J=1
For example, when N = 1, this reduces to
XV_oyy+2v(xVy —xly) <xl_yvy, x<y.

An operator version of this inequality may be obtained as follows.

COROLLARY 7. Let A,B € M, be such that A< B. Thenfor v >0 and N €N,
we have

N
AV_,B+ Y 27v(AV(Aly;B) —Al, ;B) <A!_,B.
j=1
Proof. This follows by letting x = 1 in (13), then applying Lemma 2, using X =
ATIBATY. O
On the other hand, noting that f(v) = x!,y is log-convex on (—eo, 1] when 0 <

x <y, then applying Corollary 1, we obtain the following refinement of the reverse
harmonic-geometric mean inequality.

THEOREM 9. Let 0 <x <y and v > 0. The for N € N, we have

2/v
N x(x!y1—;
(xf_vy) < (x#_vy) H (M <xloyy.

j=1 xly-jy

Let us investigate this proposition, when N = 1. This gives, when 0 < x <y and

v=0,
2v 2v
Xy xV
() (W) <xllyy = () (Eyy) <xlyy. (14)

xVy

2
W) =K (%,2); the Kantorovich constant defined for 7 > 0 by K(r,2)

Interestingly, (
2
= (’JFTI), Consequently, (14) may be written as

\%
(WK (2,2) <y (15)

We remark that recent studies of the arithmetic-harmonic mean inequality have
investigated possible refinements invoking the Kantorovich constant. For example, it is
shown in [7] that, for x,y > 0,

xVyy < K(h,2)xlvy < K(h,2)l_’x#vy7

where h = ’y—C, 0< v <1 and r=min{v,1—v}. Thus, our inequality (15) provides a

reveral of K(h,2)x!yy < K(h,2)!~"x#,y that is valid for v > 0.
The following is an interesting operator version of (14).
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THEOREM 3. Let A < B in MJ " be commuting and v > 0. Then

“1A421+A"'B
4

B v
(A#_,B) ( ) <Al \B.

Proof. In (14), let x =1 and simplify to get

1
4v

Yo v+ < (L) vy )Ty

For A< B in M}, let X =A"2BA~2. Then Sp(X) C [1,0), and we may apply Lemma
2, to get

L/ 1 NV 1 .1 11 v Lo 1\”
4—V<A : BA z) (AzB AT+ ATIBA z+21) <<(1+v)1—vAzB A2>
(16)
Now,
Lo .1 | _1 ) 1V
(4757143 +a73BA 7+21) AY (B'A+A'B420)A z]
L1 1
A2( A+A" B+21) A2, (17)
and
L1 1 1y Al -1
((1+v)1—vAzB A2> A7 (1+v)A- )A2>
— A %(A _VB)A™. (18)

Substituting (17) and (18) in (16), we get

L /o1 1NV 1, 1 v _1 _1 _
4—V<A I BA z) A (BA+AT'B+21) A"F <A (AL B)A?,

=

which completes the proof, upon multiplying both sides by AZ from both directions. [J
3.3. The Heinz means
Recall that the function
f(v)=|A"XB"™" +A'""XB"||, A,BeM,;, XeM,

is convex on [0, 1]. To be able to apply Theorem 1, we need to prove convexity on R,
which we do first.

THEOREM 4. Let A,B €M, " and X € M,,. Then the function f(v) = |||A¥XB'~Y
+A'"VXBY||| is convex on R.
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Proof. Since f is continuous, it suffices to prove that

f<V1+V2) < f(V1)+f(V2)’
2 2

v, o € R.

If C,D € M} and Z € M,,, the function
g(v) = [[[c"zD"™" + ¢!~z |||
is convex on [0,1], and hence

g(m;m) < g(ul);g(uz)

when . p € [0,1].

That is

g (IJI +M2> H‘Cuﬁuz ZDl- IR0 +C1_H142rﬂz ZDHI;HZ

_ || |C“IZD1*“1 4 Clmzpt |H 4 || }C#zzplfuz 4 ClmtazpHa | ||
~ .
2

2

19)

Now we discuss two cases.
Case 1: For v, v, € [0,1], let p; = 2\,1 s M2 = . Then clearly py, u>
€ [0,1]. Now noting

+ VitV
2vi—1)(2v,— 1) (%) VIV - 2vvy = o

Vi + W
2 )

2vi— D(2va—1) (1 - W) V4 V—2viva =1 —

Qvi—1)2va— DU +vi+ v, —2vivy = vy,
Cvi—D2va—1)(1l—p)+Vvi+Vva—2viva =1—,
Qvi—1)2va— DU+ Vvi+v, =2viv, = vy,
Cvi—D2va— 1) (1l =)+ Vvi+Vva—2viva =1—vy,
and letting

C :A(Zvl—l)(sz—l), 7 :AV1+V272V1VZXBV1+V272V1V2 and D= B(2v1—1)(2v2—1)
in (19), we get

r(73) =l |

B At | [avxp e 4|
= 2

V1+V2 Vi +V2

2 Al xps

fv)+f(v2)
2 b
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which shows convexity of f on [1,c0) and (—ce,0].
2
Case 2: If v; € [0,1] and v, ¢ [0,1]. In this case, let u; = 2"(22\/22%21;"1 Uy =
2\,‘2/2_1. Then clearly py, s € [0,1], since vy € [0,1] and v, ¢ [0, 1]. Now noting the

computations
+ VitV
(2V2 _ 1)2 (%) +2_2v22 — 172,

(2vs — 1)? (1—#)%—2\@2:1—“;"2

Qva— 12w +2-2vi=v;, 2vi—1*1—w)+2-2vi=1-vy,
2vi— 12w +2-2vi=v,, 2vi—1*(1—m)+2-2vi=1—w,,
and letting

)

C:A(sz—l)z’ Z:A2_2V22XBQ_2V22 and D:B(2v2—1)2

in (19), we get

f (v‘ erv2> = [|[a™=xp R A x|
 ManxBI ™ + AT MXB ||| +[||A=XB'"* + AT "X B" ||
b 2
) ()
.

Now both cases imply the convexity of f on R. [

Having proved convexity of f(v) = [[|AYXB'"V +A!"VXB"|| on R, we may
apply Theorem 1 to get the following.

COROLLARY 8. Let A\ BEM™, X € M, and v > 0. Then for N € N, we have

N ol=j ,
I1AX +XBI||+ 3 27v (% —f(2~’)> <IATYXBYY + ATTVXBTY||
j=1

In particular, when N = 1, we obtain
114X + XBl||+2v (114X +XB|| - 2| | VAXVB||) < |4~ XB + AT XB~ ||,
which is a reversed version of the Heinz means inequality that
2|[|[VAX VB|| < |[|[AYXB'~Y + A'VXBY||| < ||AX + XB]||, 0<v<1.
We remark that a reversed version has been proved in [1] as follows
I1AX +XB| < [|IAYXB'~ + A'""XB"[|, v ¢[0,1]. 20)

In the following results, we try to describe the Heinz means for v ¢ [0, 1], which
has not been taken care of in the literature. This will be done using an interpolation idea
of [10].
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THEOREM 10. Let A,B € M;* X € M, and 0 < g < p. Then

I|APXB~44+ATIXBP||| > |||AP~9X + XBP~4|||.

Proof. Forsuch A,B,p,q,let C=AP~9, D=BP™4, v = ﬁ. Then v > 1, and
we may apply (20) as follows

||[APXB~9+A9XBP||| = |||CYXD'"V +C'"VXDY||
> [[|CX + XDl
= [|AP=9X + X BPl],
which completes the proof. [
We present the following interpolated version, that will help prove monotonicity

of the Heinz means for v € R.

THEOREM 11. Let AL BEM, T, X € M, and 0 < r < q < p. Then

||APXB1+ A=IXBP|| > [||AP~"X B4 + A= XBP|.

Proof. Observe that
I|[APXB~+ A~ X B
AP (4B ) B A () g
> [|JAPFTT (AT XBTO) 4 (ATITX BT BT
= |||AP"XB T+ ATTTTXBP |
where we have applied Proposition (10), with (p,q) replaced by (p+¢ —r,r), and

with X replaced by A~4t"XB~9"". Notice that the assumption 0 < r < g < p implies
p+q—r> r, which justifies the application of Proposition 10. [J

The last step towards proving monotonicity of the Heinz means is the following
monotonicity result for the interpolated version.

THEOREM 12. Let A,B € M, ", X € M, and 0 < g < p. Then the function
() = AP "X B A= XBP |
is decreasing on [0,q|.
Proof. Let 0 < r; < rp < q. Then applying Proposition 11, with (p,q,r) replaced
by (p—r1,q—r1,r2 —r1), we obtain the following
£(m) = AP X1 Ao x|
> || ‘AP*”I*(”Z*VI)XB*‘PF”IJF(VZ*”I) +A*‘IJFVIJF(’Z*VI)XBP*VI*(”Z*VI)||‘
= [||AP72XB T2 4 ATTTRX BT | = f(r).
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This completes the proof. [

We refer the reader to [10] for a recent treatment of the interpolation idea for
positive powers only.
Now we are ready for the monotonicity of the Heinz means.

THEOREM 5. For A,Be MJt and X € M, let f(v
Then f is decreasing on (—00, %] and is increasing on

=|||AVXB'=V+A=VXBY||.

~—

B —

Proof. The monotonicity behavior is known on the interval [0, 1].

Now for v > 1, let p=[v]+1, g=[v] and r =[v]+1— v, where | ] is the
greatest integer function. Notice that r < g < p. Now, with these choices of p,q and
r, we have

F(v) = [[|AYXB'™Y + ATVXBY|| = [||AP "X BT+ ATTXBY | = g(r).

Since 0 < r <1 and g > 1, it follows by Proposition 12 that g is decreasing as a
function of r = [v]+ 1 —v. Since r is a decreasing function of v on the interval
[m,m+1),me N, and g is decreasing in r, it follows that f is increasingon [m,m—+1).
Then continuity of f implies that f is increasing on [1,).

For v <0, we have f(v) = f(1—V). Since 1 —v > 1, and f is increasing on
[1,00), it follows that it is increasing in the variable 1 — v, or decreasing in v. This
completes the proof. [

We remark that a monotonicity proof can be given as follows: Since f is convex on

R, it is either monotonic or there exists ¢ € R such that f is decreasing on (—e,c| and

is increasing on [c,e0). But we know that f is decreasing on [0, %] and is increasing
n [%,1]. This means that ¢ = 1, which completes the proof.
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