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PROPERTIES OF THE TURÁNIAN OF MODIFIED BESSEL FUNCTIONS

ISTVÁN MEZŐ AND ÁRPÁD BARICZ

(Communicated by I. Perić)

Abstract. In this paper some new series and integral representations for the Turánian of modified
Bessel functions of the first kind are given, which give new asymptotic expansions and tight
bounds for the Turán determinant in the question. It is shown that in the case of natural and
real order the Turánian can be represented in a relatively compact form, which yields a uniform
upper bound for the Turán determinant for modified Bessel functions of the first kind. Our results
complement and improve some of the results from the literature.

1. Introduction

Modified Bessel functions are among the most important special functions of
mathematical physics. They appear in various problems of engineering sciences and
mathematical physics. Because of this their properties have been studied from many
different point of views by many researchers. Motivated by the rich literature on Turán
type inequalities for orthogonal polynomials and special functions the Turán determi-
nant of modified Bessel functions of the first kind have been also studied intensively.
For more details we refer to the papers [1, 2, 4, 5, 7, 8, 13] and to the references therein.
In this paper we focus on the modified Bessel functions of the first kind Iν and espe-
cially on the series and integral representations and asymptotic behavior of the Turánian

Δν(x) = I2
ν(x)− Iν−1(x)Iν+1(x).

This expression in the recent years appeared in various problems of applied mathe-
matics, biology, chemistry, physics and engineering sciences, and motivated by these
applications some tight bounds were given for Δν (x) in [3]. By using the asymptotic
expansion

Iν(x) ∼ 1√
2πν

( ex
2ν

)ν
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as ν → ∞ through positive real values with x �= 0 fixed, we clearly have that

Δν(x) ∼ 1
2πν

( ex
2ν

)ν
(

1− ν2ν+1

(ν −1)ν− 1
2 (ν +1)ν+ 3

2

)
, (1)

which shows that the Turánian of the modified Bessel function of the first kind tends to
zero from above as ν tends to infinity through real values and fixed x �= 0. This is in
the agreement with the fact that the Turánian Δν(x) is decreasing as a function of ν,
see the last part of the third section. In the sequel our aim is to show that it is possible
to find two more compact asymptotic expansions for Δν(x) by using some integral and
series representations of the Turánian. The first one is based on a new integral formula
of Martin [9], while the second one is based on the Neumann integral formula of the
product of two modified Bessel functions of the first kind.

2. New representations of the Turánian Δν(x) for ν natural number

2.1. Series representation of the Turánian Δn(x)

In this section we are interested on the asymptotic behavior of Δn(x) as x is fixed
and n tends to infinity. Our aim is to prove that for any fixed real x and non-negative
integer n

Δn(x) ∼ x2n

n!(n+1)!
1

22n as n → ∞ (2)

holds. In fact, we give a full asymptotic description in the form of a convergent series
in the variable n . In order to prove this result we need the following integral and series
representation for Δn(x), from which (2) immediately follows.

THEOREM 1. Let n be a non-negative integer, and x be a real number. Then

Δn(x) =
(−1)n

πx

∫ π
2

− π
2

I1(2xsin t)
sin t

cos(2nt)dt = ∑
m�n

(
2m

m−n

) (
1
2x
)2m

m!(m+1)!
. (3)

Proof. By definition,
In(x) = i−nJn(ix), (4)

where Jn is the Bessel function of the first kind. From here we get that

Δn(x) = (−1)−n (J2
n(ix)− Jn−1(ix)Jn+1(ix)

)
.

By a result of Martin [9, eq. (21)] the right-hand side of the above expression can be
expressed as a Fourier integral for integer n , that is,

J2
n(x)− Jn−1(x)Jn+1(x) =

1
2π

∫ π

−π

J1(2xsin(t/2))
xsin(t/2)

eintdt.
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Replacing x by ix on both sides and recalling (4), a transformation of variables (t →
2t ) yields the first result in (3). Note that we also separated the real part, hence the
exponential turns to be cosine in the statement of the theorem.

Now, let us focus on the second equality in (3). We apply the integral representa-
tion

Δn(x) =
(−1)n

πx

∫ π
2

− π
2

I1(2xsin t)
sin t

cos(2nt)dt

together with the MacLaurin expansion of I1

I1(2xsin t) = ∑
m�0

(xsin t)2m+1

m!(m+1)!
.

Substituting this into the integral formula, we get that

Δn(x) =
(−1)n

πx ∑
m�0

x2m+1

m!(m+1)!

∫ π
2

− π
2

sin2m+1(t)cos(2nt)
sin t

dt

= ∑
m�0

x2m

m!(m+1)!
(−1)n

π

∫ π
2

− π
2

sin2m(t)cos(2nt)dt = ∑
m�0

x2m

m!(m+1)!
Tn(m),

where

Tn(m) =
(−1)n

π

∫ π
2

− π
2

sin2m(t)cos(2nt)dt

=
(−1)n

π

∫ π

0
cos2m(u)cos(2nu)cos(nπ)du

=
2
π

∫ π
2

0
cos2m(u)cos(2nu)du

=
1

22m

(B(m+n+1,m−n+1))−1

2m+1
=

1
22m

(
2m

m−n

)
,

according to [11, eq. 5.12.5] and by using the fact that the graph of the function u �→
cos2m ucos(2nu) is symmetric with respect to the vertical line x = π/2. Note that Tn(m)
vanishes when m < n . The first two non-vanishing values are

Tn(n) =
1

22n and Tn(n+1) =
n+1
22n+1 ,

and the proof of the asymptotic expansion (2) is done, taking the first term approxima-
tion in (3). �

2.2. Bounds for the Turánian Δn(x)

We know that for ν > −1 and x > 0 we have Δν(x) � 0, see [1, 2, 3, 5, 7, 8, 13]
for more details. A better lower bound easily comes at least for non-negative integer
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ν = n after realizing that all the Tn(m) integrals above are positive in (3). Hence for
n ∈ N and x > 0 we have

Δn(x) � 1
4n

x2n

n!(n+1)!
(5)

as well as the even sharper two term cut of (3)

Δn(x) � 1
4n

x2n

n!(n+1)!
+

1
22n+1

x2(n+1)

n!(n+2)!
. (6)

It is clear that it is possible to have more sharper lower bound for Δn(x) by taking more
terms of the series on the right-hand side of (3). We also mention that the Turán type
inequality (5) is not new, it was proved first by Kalmykov and Karp [8, eq. (26)], and it
is actually valid in the following form

Δν(x) � 1
4ν

x2ν

(ν +1)Γ2(ν +1)
, (7)

where ν >−1 and x > 0. Taking into account this it is natural to ask whether the Turán
type inequality (6) and the relations in (3) are valid for arbitrary real parameter ν >−1.
An affirmative answer to this question will be given in Section 3.

Now, our goal is to find an upper estimation by using our series representation in
(3).

THEOREM 2. For n positive integer we have

Δn(x) � ρn
x2n

n!(n+1)!1F2(1;1+n,2+n;x2), (8)

where

ρn = sup
m�n

Tn(m) = sup
m�n

1
22m

(
2m

m−n

)
=

1

24n2−2

(4n2−2)!
(2n2 +n−1)!(2n2−n−1)!

.

Proof. We make use of our series representation (3) for Δn(x)

Δn(x) = ∑
m�n

x2m

m!(m+1)!
Tn(m) � ρn ∑

m�n

x2m

m!(m+1)!

= ρn
x2n

n!(n+1)!1F2(1;1+n,2+n;x2).

To finish the proof we show that Tn(m) for a fixed n grows to a certain m and then it
steadily decreases. Thus, ρn is actually a maximum with a given finite n . To prove this
we show that {Tn(m)}m�n is a unimodal sequence. Indeed, since

Tn(m+1)
Tn(m)

=
1
2

(2m+1)(m+1)
(m+n+1)(m−n+1)

≷ 1

if and only if m ≶ 2n2 − 1, it follows that the sequence {Tn(m)}m�n and it takes its
maximum at m = 2n2−1. �
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2.3. Some remarks on the numerical performance of the bounds

Since all of our bounds in the previous subsection were deduced from the still
exact (3), a short check reveals that our bounds are getting sharper as x is smaller or n
is bigger. It is also worth to compare (8) with existing results. A known upper bound
for Δn(x) says that for n ∈ N and x ∈ R we have [3, 7, 13]

Δn(x) � 1
n+1

I2
n (x). (9)

Our numerical simulations show that this inequality is sharper than (8) for small x ,
however, for moderate x and bigger, (8) starts to perform better than (9). Then, as n
grows, the right hand side of (9) starts to be closer to Δn(x) than our estimation.

2.4. Another bound for Δn(x)

In principle, knowing the m-dependent asymptotic behavior of Tn(m) could give a
better approximation than that of a simple use of ρn = supm Tn(m) as we did in the last
subsections. It turns out, however, that Tn(m) , as m grows, has a so weak dependence
of the variable n than in the first order approximation it does not appear at all. Namely,
we are first going to prove that

THEOREM 3. We have that

Tn(m) ∼ 1√
π

1√
m

as m → ∞. (10)

From here it follows that Tn(m) � c 1√
m uniformly for all m with some constant c,

independent from n . Hence we can deduce the following.

COROLLARY 1. For any positive integer n

Δn(x) � c ∑
m�n

x2m

m!(m+1)!
1√
m

. (11)

Proof (of Theorem 3). The generating function of Tn(m) is

∑
m�0

Tn(m)xm =
(−1)n

π

∫ π
2

− π
2

cos(2nt) ∑
m�0

sin2m(t)xmdt =
(−1)n

π

∫ π
2

− π
2

cos(2nt)
1− xsin2 t

dt.

This integral can be evaluated in terms of hypergeometric functions. It results that

∑
m�0

Tn(m)xm =
(−1)n

1− x
sin(πn)

πn 3F2

(
1/2 1 1

1−n 1+n
;

x
x−1

)
. (12)

Although the sine factor is singular for integer n the whole expression is not. What is
important for us is the pole structure of the right-hand side. If we know this, we can
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use the standard Darboux method. It can be seen that the right-hand side is singular at
x = 1, and there are no poles of smaller modulus, just note that the integral

∫ π
2

− π
2

cos(2nt)
1− xsin2 t

dt

is convergent for |x| < 1. Analyzing the series expansion of the right hand side of (12)
at the pole x = 1 it comes that

(−1)n

1− x
sin(πn)

πn 3F2

(
1/2 1 1

1−n 1+n
;

x
x−1

)
=

1√
1− x

−2n−2n2
√

1− x+O(1− x).

This observation reveals that x = 1 is an algebraic singularity, and Tn(m) behaves
asymptotically like the coefficients in 1√

1−x
. The latter is known as

[xm]
1√

1− x
=

1√
π

1√
m

.

Our result follows as we stated. �

The constant c in (11) can explicitly be determined as the following statement
shows.

THEOREM 4. For any positive integer n and real x

Δn(x) � 1√
π ∑

m�n

x2m

m!(m+1)!
1√
m

.

Proof. From the definition of the constant c (see after (10)) we have that it can be
chosen as

c = sup
m�n

√
m ·Tn(m).

Therefore it is enough to find this supremum (as we will see, it is independent from n ).
We are going to show that the sequence {√mTn(m)}m�n is strictly increasing, so the
supremum will be in fact the limit

c = lim
m�n

√
m ·Tn(m).

As we saw earlier, Tn(m) = 2−2m
( 2m
m−n

)
, from where we get that

√
m+1Tn(m+1)√

mTn(m)
=

(1+m)3/2(2m+1)
2
√

m(1+m−n)(1+m+n)
.

In order to prove that the sequence {√mTn(m)}m�n is strictly increasing, we must show
that the right hand side is not less than 1. That is, we need to prove that

(1+m)3/2(2m+1)
2
√

m
� (1+m)2−n2.
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The stronger inequality

(1+m)3/2(2m+1)
2
√

m
� (1+m)2

can also be proven in an elementary way. That
√

mTn(m)→ 1√
π as m→ ∞ comes from

Theorem 3, and hence the proof is complete. �

3. Series representation of the Turánian Δν(x) for ν real number

3.1. Integral representation of Δν(x)

Now, we are going to show the general result of (3) in Theorem 1.

THEOREM 5. For ν > − 1
2 and x ∈ R we have the following representations

Δν(x) =
4
π

∫ π
2

0
I2ν(2xcosθ )sin2 θdθ =

1√
π ∑

m�0

Γ
(
ν +m+ 1

2

)
x2ν+2m

m!Γ(ν +m+2)Γ(2ν +m+1)
.

(13)
Moreover, the series representation is valid for all ν > −1 and x ∈ R.

Proof. In view of the Neumann formula [11, eq. 10.32.15]

Iμ(x)Iν (x) =
2
π

∫ π
2

0
Iμ+ν(2xcosθ )cos((μ −ν)θ )dθ , μ + ν > −1,

we have for ν > − 1
2 and x ∈ R

Δν (x) =
2
π

∫ π
2

0
I2ν(2xcosθ )dθ − 2

π

∫ π
2

0
I2ν(2xcosθ )cos(2θ )dθ

=
4
π

∫ π
2

0
I2ν(2xcosθ )sin2 θdθ

=
4
π

∫ π
2

0
sin2 θ ∑

m�0

(xcosθ )2m+2ν

m!Γ(m+2ν +1)
dθ

=
4
π ∑

m�0

x2m+2ν

m!Γ(m+2ν +1)

∫ π
2

0
sin2 θ cos2m+2ν θdθ

=
2
π ∑

m�0

B
(

3
2 ,ν +m+ 1

2

)
x2m+2ν

m!Γ(m+2ν +1)

=
1√
π ∑

m�0

Γ
(
ν +m+ 1

2

)
x2m+2ν

m!Γ(ν +m+2)Γ(2ν +m+1)
.
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The series representation can be obtained also by using the Cauchy product [11, eq.
10.31.3]

Iν(x)Iμ(x) =
( x

2

)ν+μ
∑
m�0

(ν + μ +m+1)m
(

x
2

)2m

m!Γ(ν +m+1)Γ(μ +m+1)
.

Namely, by using this formula and the Legendre duplication formula for the gamma
function we get

Δν (x) = ∑
m�0

(2ν +m+1)m

m!

(
x
2

)2ν+2m

Γ(ν +m+1)Γ(ν +m+2)

=
1√
π ∑

m�0

Γ
(
ν +m+ 1

2

)
x2ν+2m

m!Γ(ν +m+2)Γ(2ν +m+1)
. �

3.2. Bounds for Δν(x)

From this result in view of the Legendre duplication formula [11, eq. 5.5.5]

2
√

πΓ(2x) = 4xΓ(x)Γ
(

x+
1
2

)

and the recurrence relation Γ(x+1) = xΓ(x), it is clear that for ν > −1 and x ∈ R we
have

Δν(x) >
1√
π

Γ
(
ν + 1

2

)
x2ν

Γ(ν +2)Γ(2ν +1)
=

(
1
4x2
)ν

Γ(ν +1)Γ(ν +2)
(14)

and

Δν(x) >
1√
π

Γ
(
ν + 1

2

)
x2ν

Γ(ν +2)Γ(2ν +1)
+

1√
π

Γ
(
ν + 3

2

)
x2ν+2

Γ(ν +3)Γ(2ν +2)
(15)

=

(
1
4x2
)ν

Γ(ν +1)Γ(ν +2)
+

2
(

x
2

)2ν+2

Γ(ν +1)Γ(ν +3)
,

and clearly we can have more sharper lower bounds for Δν(x) by taking more terms
of the series in (13). Observe that the Turán type inequality (14) coincides with the
inequality (7) of Kalmykov and Karp, while the Turán type inequality (15) is the exten-
sion of (6) to real variable ν.

3.3. Some remarks on Δν(x)

From Theorem 1 and its proof yields that the Turánian of the Bessel function Jn

has a similar structure as the Turánian Δn(x) in Theorem 1, with the difference that the
series of the Turánian of Jn has alternating coefficients. Hence it is immediate that for
all n natural number and real x we have

J2
n (x)− Jn−1(x)Jn+1(x) < I2

n (x)− In−1(x)In+1(x).
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Moreover, it is possible to prove the counterpart of this inequality as

J2
n(x)− Jn−1(x)Jn+1(x) >

J2
n (x)

I2
n (x)

(
I2
n (x)− In−1(x)In+1(x)

)
,

and even for real order. Namely, if jν,n stands for the n th positive zero of the Bessel
function of the first kind Jν , then by using the relations (see [2, 3, 4, 7, 12] for more
details)

1
4I2

ν(x)
(
I2
ν(x)− Iν−1(x)Iν+1(x)

)
= ∑

n�1

j2ν,n

(x2 + j2ν,n)2

and
1

4J2
ν(x)

(
J2

ν(x)− Jν−1(x)Jν+1(x)
)

= ∑
n�1

j2ν,n

(x2 − j2ν,n)2 ,

we obtain that for ν > −1 and x �= 0 the next Turán type inequality is valid

J2
ν(x)− Jν−1(x)Jν+1(x) >

J2
ν(x)

I2
ν(x)

(
I2
ν(x)− Iν−1(x)Iν+1(x)

)
.

3.4. Monotonicity of Δν(x) with respect to ν

Since the function x �→ xx+ 1
2 is log-convex on (1/2,∞) for ν > 3/2 we have

the inequality ν2ν+1 < (ν − 1)ν− 1
2 (ν + 1)ν+ 3

2 , and hence the right-hand side of the
asymptotic expansion (1) is positive, and it is actually decreasing for large ν. This
suggest that ν �→ Δν (x) has a similar behavior. Indeed, owing to Watson [14] we
know that the function x �→ Iν+1(x)/Iν(x) is increasing on (0,∞) for ν � − 1

2 , and
consequently, the function x �→ Iν−1(x)/Iν(x) is decreasing on (0,∞) for ν � 1

2 . By
using this and the recurrence relation 2I′ν(x) = Iν−1(x)+ Iν+1(x) twice we obtain

(
Iν−1(x)
Iν(x)

)′
=

I′ν−1(x)Iν(x)− Iν−1(x)I′ν(x)
I2
ν(x)

=
Δν(x)−Δν−1(x)

2I2
ν(x)

� 0

for x > 0 and ν � 1
2 . This, in particular implies that the sequence {Δn(x)}n�0 is de-

creasing for fixed x real number. Moreover, since the function ν �→ Iν(x) is decreasing
on [0,∞) for each x > 0 fixed, according to Cochran [6], by using the first part of (13)
we obtain that ν �→ Δν (x) is decreasing on [0,∞) for x > 0 fixed.

3.5. Alternative presentation of some of the results

The referee pointed out that some of the results (namely, (3) and (15)) can be
deduced in an alternative way.

Consider the formula [10]

1F2
(
a;a+ 3

2 ,2a;z
)
= 4−1+a z

1
2−a Γ2( 1

2 +a
)
(2a+1)

[
I2
a− 1

2
(
√

z)− Ia− 3
2
(
√

z)Ia+ 1
2
(
√

z)
]
,
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which, for a = ν + 1
2 , z = x2 implies the relation

Δν(x) =

(
x2

4

)ν

Γ(ν +1)Γ(ν +2) 1F2
(
ν + 1

2 ;ν +2,2ν +1;x2) , 2ν +1 > 0; x ∈ R. (16)

Let us denote the (k+1) th partial sum of the hypergeometric series

1F2[x2]k := 1F2
(
ν + 1

2 ;ν +2,2ν +1;x2)
k =

k

∑
m=0

(
ν + 1

2

)
m(

ν +2
)
m

(
2ν +1

)
m

x2m

m!
.

Being all parameters positive and the argument non–negative, obviously

1F2
(
ν + 1

2 ;ν +2,2ν +1;x2)� 1F2[x2]k , k ∈ N0 .

In turn, that means

Δν(x) �
(

x2

4

)ν
1F2[x2]k

Γ(ν +1)Γ(ν +2)
, 2ν +1 > 0; x ∈ R; k ∈ N0. (17)

The case k = 0 covers the Kalmykov–Karp result (7), which according to (17)
becomes

Δν(x) �
(

x2

4

)ν
1F2[x2]0

Γ(ν +1)Γ(ν +2)
=

(
x2

4

)ν

Γ(ν +1)Γ(ν +2)
,

since 1F2[x2]0 ≡ 1.
Further, set k = 1 in (17). The resulting lower bound reads

Δν(x) �
(

x2

4

)ν
1F2[x2]1

Γ(ν +1)Γ(ν +2)
=

(
x2

4

)ν

Γ(ν +1)Γ(ν +2)

(
1+

(ν + 1
2)x2

(ν +2)(2ν +1)

)

=

(
x2

4

)ν

Γ(ν +1)Γ(ν +2)
+

(
x2

4

)ν
x2

2Γ(ν +1)(ν +2)Γ(ν +2)
,

which is equivalent to (15).
Considering non–negative integer ν = n ∈ N0 , and re-writing (17) into a Gamma-

function form we get (3).
We are thankful to the referee giving us these suggestions.
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