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HARMONIC MEAN INEQUALITIES AND ENTROPY UPPER BOUND

GUOXIANG LU

(Communicated by J. Pečarić)

Abstract. In this paper the arithmetic, geometric and harmonic mean inequalities are refined.
New lower bounds for the corresponding inequalities which are better than the previous ones
are obtained. As an application for the results, a strong upper bound for Shannon’s entropy is
presented. The new entropy upper bound improves the basic results of Simic (2009) and Ţăpuş
and Popescu (2012).

1. Introduction

For n � 2, let xi , i = 1,2, · · · ,n be positive real numbers, and let wi , i = 1,2, · · · ,n
be positive weights such that: ∑n

i=1 wi = 1. We denote by An , Gn and Hn be the
(weighted) arithmetic, geometric and harmonic means of the xi

′s , that is,

An =
n

∑
i=1

wixi, Gn =
n

∏
i=1

xwi
i , Hn =

(
n

∑
i=1

wi

xi

)−1

.

It is well known that
Hn � Gn � An.

with the inequalities being strict unless all xi
′s are equal.

The arithmetic, geometric and harmonic mean inequalities have received a great
deal of attention of mathematicians. In 1978, Cartwright and Field [4] prove

1
2max1�i�n{xi}

n

∑
i=1

wi(xi −An)2 � An−Gn � 1
2min1�i�n{xi}

n

∑
i=1

wi(xi−An)2.

In 1997, Alzer [3] improves the bounds as follows

An−Gn � 1
2max1�i�n{xi}

n

∑
i=1

wi(xi −Gn)2, (1)
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In 2003, Mercer [11] obtains better bounds as follows
n

∑
i=1

wi(xi −Gn)2

xi +max(xi,Gn)
� An−Gn �

n

∑
i=1

wi(xi −Gn)2

xi +min(xi,Gn)
, (2)

and has other bounds for arithmetic-harmonic, geometric-harmonic mean inequalities

1
An

n

∑
i=1

wi(xi −An)2

xi +max(xi,An)
� logAn− logGn � 1

An

n

∑
i=1

wi(xi −An)2

xi +min(xi,An)
, (3)

n

∑
i=1

wi

xi

(xi −Hn)2

Hn +max(xi,Hn)
� logGn − logHn �

n

∑
i=1

wi

xi

(xi −Hn)2

Hn +min(xi,Hn)
. (4)

All the above equalities occur if and only if all xi
′s are equal. Later there are a con-

siderable number of other extensions and refinements (cf. Aldaz [1, 2], Fujiwara and
Ozawa [6], Gao [7, 8], Mercer [9, 10], Parkash and Kakkar [12]).

In this paper, we establish new lower bounds for the arithmetic, geometric and
harmonic mean inequalities. As an application of our new lower bounds, we refine the
work of Simic [13] and Ţăpuş and Popescu [14], obtain a more precise upper bound for
Shannon’s entropy.

2. Main results

Now we introduce a new inequality, where the term “log” refers to the natural
logarithm.

LEMMA 1. For x > 0 ,

x−1− logx � 2(x−1)2(x+2)
3(x+1)2 . (5)

The equality holds if and only if x = 1 .

Proof. Let f (x) = x− 1− logx− 2(x−1)2(x+2)
3(x+1)2 . Direct computing yields f ′(x) =

(x−1)3(x+3)
3x(x+1)3 . This shows f ′(x) < 0 for 0 < x < 1 and f ′(x) > 0 for x > 1. Next because

f (1) = 0 holds, then f (x) > 0 for 0 < x < 1 as well as x > 1. So the assertion of the
lemma follows. �

REMARK 1. When x > 0, there exists the standard inequality logx � x− 1 for-
merly. From the above lemma, we can refine the inequality into the form logx �
x−1− 2(x−1)2(x+2)

3(x+1)2 .

THEOREM 1. The following lower bound holds, with equality occurring if and
only if all xi

′s are equal.

An−Gn �
n

∑
i=1

2wi(xi −Gn)2(xi +2Gn)
3(xi +Gn)2 . (6)
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Proof. Substituting x = xi
Gn

into (5), multiplying by wi and summing, we obtain

n

∑
i=1

wi

(
xi

Gn
−1− log

(
xi

Gn

))
�

n

∑
i=1

2wi( xi
Gn

−1)2( xi
Gn

+2)

3( xi
Gn

+1)2 , (7)

and the equality holds if and only if all xi
′s are equal. Observing Gn = ∏n

i=i x
wi
i ,

n

∑
i=1

wi log

(
xi

Gn

)
=

n

∑
i=1

log
xwi
i

Gwi
n

= log
∏n

i=i x
wi
i

G
∑n

i=1 wi
n

= log
Gn

Gn
= 0.

Then we rewrite (7) into the following inequality

∑n
i=1 wixi

Gn
−1 � 1

Gn

n

∑
i=1

2wi(xi −Gn)2(xi +2Gn)
3(xi +Gn)2 .

Since An = ∑n
i=1 wixi , we have

An

Gn
−1 � 1

Gn

n

∑
i=1

2wi(xi −Gn)2(xi +2Gn)
3(xi +Gn)2 ,

or equivalently,

An−Gn �
n

∑
i=1

2wi(xi −Gn)2(xi +2Gn)
3(xi +Gn)2 .

So the inequality (6) follows and the equality holds if and only if all xi
′s are equal. �

THEOREM 2. The following lower bound holds, with equality occurring if and
only if all xi

′s are equal.

logAn− logGn � 1
An

n

∑
i=1

2wi(xi −An)2(xi +2An)
3(xi +An)2 . (8)

Proof. Substituting x = xi
An

into (5), multiplying by wi and summing, we obtain

n

∑
i=1

wi

(
xi

An
−1− log

(
xi

An

))
�

n

∑
i=1

2wi( xi
An

−1)2( xi
An

+2)

3( xi
An

+1)2 , (9)

and the equality holds if and only if all xi
′s are equal. We rewrite (9) into the following

inequality

∑n
i=1 wixi

An
−1− log

∏n
i=1 xwi

i

A
∑n

i=1 wi
n

� 1
An

n

∑
i=1

2wi(xi −An)2(xi +2An)
3(xi +An)2 .

Since An = ∑n
i=1 wixi , Gn = ∏n

i=i x
wi
i , we have

logAn− logGn � 1
An

n

∑
i=1

2wi(xi −An)2(xi +2An)
3(xi +An)2 .

This is exactly the inequality (8) and the equality holds if and only if all xi
′s are

equal. �
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THEOREM 3. The following lower bound holds, with equality occurring if and
only if all xi

′s are equal.

logGn − logHn �
n

∑
i=1

2wi(xi −Hn)2(2xi +Hn)
3xi(xi +Hn)2 . (10)

Proof. Substituting x = Hn
xi

into (5), multiplying by wi and summing, we obtain

n

∑
i=1

wi

(
Hn

xi
−1− log

(
Hn

xi

))
�

n

∑
i=1

2wi(Hn
xi
−1)2(Hn

xi
+2)

3(Hn
xi

+1)2
, (11)

and the equality holds if and only if all xi
′s are equal. We rewrite (11) into the following

inequality

Hn

(
n

∑
i=1

wi

xi

)
−1− log

H∑n
i=1 wi

n

∏n
i=1 xwi

i
�

n

∑
i=1

2wi(xi−Hn)2(2xi +Hn)
3xi(xi +Hn)2 .

Since Gn = ∏n
i=i x

wi
i , Hn =

(
∑n

i=1
wi
xi

)−1
, we have

logGn− logHn �
n

∑
i=1

2wi(xi −Hn)2(2xi +Hn)
3xi(xi +Hn)2 .

This is exactly the inequality (10) and the equality holds if and only if all xi
′s are

equal. �
The next two theorems will show that the new bound (6) is better than the previous

lower bounds (1) and (2).

THEOREM 4. The following inequality holds, with equality occurring if and only
if all xi

′s are equal.

n

∑
i=1

2wi(xi −Gn)2(xi +2Gn)
3(xi +Gn)2 � 1

2max1�i�n{xi}
n

∑
i=1

wi(xi −Gn)2. (12)

Proof. Let m := max1�i�n{xi} and g(x) = x+2Gn
(x+Gn)2 , x > 0. Straightforward dif-

ferentiation shows that g′(x) = − x+3Gn
(x+Gn)3 < 0. So the function g(x) is decreasing.

Obviously for all xi
′s , xi � m hold, then we have g(xi) � g(m) or xi+2Gn

(xi+Gn)2 � m+2Gn
(m+Gn)2

and
n

∑
i=1

2wi(xi−Gn)2(xi +2Gn)
3(xi +Gn)2 � 2(m+2Gn)

3(m+Gn)2

n

∑
i=1

wi(xi −Gn)2. (13)

Let h(x) = 2(m+2x)
3(m+x)2 , x > 0. Straightforward differentiation shows that h′(x) =− 4x

3(m+x)3

< 0. So the function h(x) is decreasing. Obviously Gn � m holds, then we have

h(Gn) � h(m) or 2(m+2Gn)
3(m+Gn)2

� 2(m+2m)
3(m+m)2 = 1

2m . Using (13) we can obtain the assertion of

this theorem. �



NEW LOWER BOUNDS FOR A-G-H MEAN INEQUALITIES AND ENTROPY UPPER BOUND 1045

THEOREM 5. The following inequality holds, with equality occurring if and only
if all xi

′s are equal.

n

∑
i=1

2wi(xi−Gn)2(xi +2Gn)
3(xi +Gn)2 �

n

∑
i=1

wi(xi −Gn)2

xi +max(xi,Gn)
. (14)

Proof. Let hi(x) = 2(xi+2x)
3(xi+x)2 , x > 0, i = 1,2, · · · ,n . Straightforward differentiation

shows that h′i(x) = − 4x
3(xi+x)3 < 0. So the functions hi(x) are all decreasing. Obviously

for all xi
′s , Gn � max(xi,Gn) hold, then we have hi(Gn) � hi(max(xi,Gn)) or

2(xi +2Gn)
3(xi +Gn)2 � 2(xi +2max(xi,Gn))

3(xi +max(xi,Gn))2 (15)

As max(xi,Gn) � xi , we have 2(xi + 2max(xi,Gn)) � 3(xi +max(xi,Gn)) . From this
the inequality is obtained as follows

2(xi +2max(xi,Gn))
3(xi +max(xi,Gn))2 � 3(xi +max(xi,Gn))

3(xi +max(xi,Gn))2 =
1

xi +max(xi,Gn)
(16)

Using the inequalities (15) and (16) we obtain 2(xi+2Gn)
3(xi+Gn)2

� 1
xi+max(xi,Gn)

. And then the
assertion of the theorem follows. �

The next theorem will show that the new bound (8) is better than the previous
lower bound (3).

THEOREM 6. The following inequality holds, with equality occurring if and only
if all xi

′s are equal.

1
An

n

∑
i=1

2wi(xi −An)2(xi +2An)
3(xi +An)2 � 1

An

n

∑
i=1

wi(xi−An)2

xi +max(xi,An)
. (17)

Proof. Substituting An for Gn in (15) and (16), the assertion of the theorem fol-
lows by using the similar method. �

The next theorem will show that the new bound (10) is better than the previous
lower bound (4).

THEOREM 7. The following inequality holds, with equality occurring if and only
if all xi

′s are equal.

n

∑
i=1

2wi(xi −Hn)2(2xi +Hn)
3xi(xi +Hn)2 �

n

∑
i=1

wi

xi

(xi −Hn)2

Hn +max(xi,Hn)
. (18)

Proof. Substituting Hn for Gn in (15) and (16), the assertion of the theorem fol-
lows by using the similar method. �
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REMARK 2. We can conclude that the key point of the bounds for the arithmetic,
geometric and harmonic mean inequalities is the bounds of the function x− 1− logx .
In this paper, we obtain the new lower bound as the Lemma 1. So if we are able to
find better upper bound such as x− 1− logx � U(x)(x− 1)2 than the previous upper
bound in [11], then we may have new refinement of the upper bounds for the arithmetic,
geometric and harmonic mean inequalities. In view of this, we conjecture that to find
sharper U(x) is the focus of the following analysis and discussion.

3. An application to refine entropy upper bound

In information theory [5], if the discrete probability distribution P is given by
P(X = i) = pi , pi > 0, i = 1,2, · · · ,n , s.t. ∑n

i=1 pi = 1, then the Shannon’s entropy is
defined as H(P) := ∑n

i=1 pi log 1
pi

. In 2009, Simic presents the corresponding entropy
upper bound in [13] as follows:

0 �m(μ ,ν) := μ log

(
2μ

μ + ν

)
+ ν log

(
2ν

μ + ν

)

� logn−H(P) � log

(
(μ + ν)2

4μν

)
:= M(μ ,ν),

(19)

where μ = min1�i�n{pi} and ν = max1�i�n{pi} . In 2012, Ţăpuş and Popescu [14]
obtain the sharper entropy upper bound based on Simic’s work:

H(P) � logn− max
1�μ1<μ2<···<μn−1�n

log

⎡
⎣( n−1

∑n−1
i=1 pμi

)∑n−1
i=1 pμi

(
n−1

∏
i=1

p
pμi
μi

)⎤⎦ . (20)

In 2013, Parkash and Kakkar [12] obtain new inequalities using the arithmetic-geometric-
harmonic mean inequality and improve the condition for the above bound.

In this section we will obtain a more precise entropy upper bound as a result of
Theorem 2.

LEMMA 2. Let fα (x) := 2(x−α)2(x+2α)
3α(x+α)2 + logx, α > 0 . Then fα is a concave func-

tion on (0,+∞) .

Proof. Straightforward differentiation shows

f ′′α (x) = − (x−α)2(x2 +6αx+ α2)
x2(x+ α)4 � 0.

So the function fα (x) is a concave function on (0,+∞) . �

LEMMA 3. If fα is defined as above, j ∈ {2, · · · ,n− 1} , and the notation Tj is
defined as follows:

Tj := max
1�μ1<μ2<···<μ j�n

[(
j

∑
i=1

wμi

)
fAn

(
∑ j

i=1 wμi xμi

∑ j
i=1 wμi

)
−

j

∑
i=1

wμi fAn

(
xμi

)]
,
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then we have
0 � T2 � T3 � · · · � Tn−1.

Proof. Because fAn is concave on (0,+∞) by Lemma 2, using Jensen’s inequality
we can easily have T2 � 0. Next we will show that for any j ∈{2, · · · ,n−2} , Tj � Tj+1 .
Let us consider that the maximum of the expression(

j

∑
i=1

wμi

)
fAn

(
∑ j

i=1 wμi xμi

∑ j
i=1 wμi

)
−

j

∑
i=1

wμi fAn

(
xμi

)

is obtained for μi = ηi , ηi ∈ {1,2, · · · ,n} , i = 1,2, · · · , j . Then it is enough to prove
that (

j

∑
i=1

wηi

)
fAn

(
∑ j

i=1 wηi xηi

∑ j
i=1 wηi

)
−

j

∑
i=1

wηi fAn (xηi)

�
(

j+1

∑
i=1

wηi

)
fAn

(
∑ j+1

i=1 wηi xηi

∑ j+1
i=1 wηi

)
−

j+1

∑
i=1

wηi fAn (xηi)

for any η j+1 ∈ {1,2, · · · ,n} \ {η1, · · · ,η j} . The above inequality is equivalent to

wη j+1 fAn

(
xη j+1

)
+

(
j

∑
i=1

wηi

)
fAn

(
∑ j

i=1 wηi xηi

∑ j
i=1 wηi

)
�
(

j+1

∑
i=1

wηi

)
fAn

(
∑ j+1

i=1 wηi xηi

∑ j+1
i=1 wηi

)
.

Multiplying by
(

∑ j+1
i=1 wηi

)−1
, we have

wη j+1

∑ j+1
i=1 wηi

fAn

(
xη j+1

)
+

∑ j
i=1 wηi

∑ j+1
i=1 wηi

fAn

(
∑ j

i=1 wηi xηi

∑ j
i=1 wηi

)
� fAn

(
∑ j+1

i=1 wηi xηi

∑ j+1
i=1 wηi

)
.

This inequality follows from Jensen’s inequality for the concave function fAn(x) . So
we obtain the assertion of the lemma. �

THEOREM 8. Let C := 1
An

∑n
i=1

2wi(xi−An)2(xi+2An)
3(xi+An)2

and An , Gn be as defined above,

then the following estimates hold, with equality occurring if and only if all xi
′s are

equal.
C � C+T2 � C+T3 � · · · � C+Tn−1 � logAn− logGn. (21)

Proof. Using Lemma 3, we have

C � C+T2 � C+T3 � · · · � C+Tn−1.

Next we prove the last inequality of (21). Choose arbitrary xμi ∈ {x1,x2, · · · ,xn} such
that 1 � μ1 < μ2 < · · · < μn−1 � n with corresponding weights {wμ1 ,wμ2 · · · wμn−1} ,
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and let xμn = {x1,x2, · · · ,xn} \ {xμ1,xμ2 , · · · ,xμn−1} . Using the inequality (8) for W1 =

wμn , W2 = ∑n−1
i=1 wμi , X1 = xμn , X2 = ∑n−1

i=1 wμi xμi

∑n−1
i=1 wμi

, W1X1 +W2X2 = An , we have

logAn = log

(
n

∑
i=1

wixi

)
= log

((
n−1

∑
i=1

wμi

)
∑n−1

i=1 wμi xμi

∑n−1
i=1 wμi

+wμnxμn

)

� 1
An

⎡
⎢⎢⎢⎣

2

(
n−1
∑
i=1

wμi

)(
∑n−1

i=1 wμi xμi

∑n−1
i=1 wμi

−An

)2(
∑n−1

i=1 wμi xμi

∑n−1
i=1 wμi

+2An

)

3

(
∑n−1

i=1 wμi xμi

∑n−1
i=1 wμi

+An

)2

+
2wμn(xμn −An)2(xμn +2An)

3(xμn +An)2

⎤
⎥⎥⎦+ log

⎛
⎝x

wμn
μn

(
∑n−1

i=1 wμi xμi

∑n−1
i=1 wμi

)∑n−1
i=1 wμi

⎞
⎠

=
1
An

2

(
n−1
∑
i=1

wμi

)(
∑n−1

i=1 wμi xμi

∑n−1
i=1 wμi

−An

)2(
∑n−1

i=1 wμi xμi

∑n−1
i=1 wμi

+2An

)

3

(
∑n−1

i=1 wμi xμi

∑n−1
i=1 wμi

+An

)2

+
1
An

n

∑
i=1

2wi(xi −An)2(xi +2An)
3(xi +An)2 − 1

An

n−1

∑
i=1

2wμi(xμi −An)2(xμi +2An)
3(xμi +An)2

+ logGn−
n−1

∑
i=1

wμi logxμi +

(
n−1

∑
i=1

wμi

)
log

∑n−1
i=1 wμi xμi

∑n−1
i=1 wμi

= logGn +C+

(
n−1

∑
i=1

wμi

)
fAn

(
∑n−1

i=1 wμi xμi

∑n−1
i=1 wμi

)
−

n−1

∑
i=1

wμi fAn

(
xμi

)

Because μi ∈ {1,2, · · · ,n} are arbitrary, we have

logAn � logGn +C

+ max
1�μ1<μ2<···<μn−1�n

[(
n−1

∑
i=1

wμi

)
fAn

(
∑n−1

i=1 wμi xμi

∑n−1
i=1 wμi

)
−

n−1

∑
i=1

wμi fAn

(
xμi

)]

= logGn +C+Tn−1.

Then the last inequality of (21) follows. �
Obviously, the inequalities (21) refine the inequality (8). By using Theorem 6, we

can obtain the new upper entropy bound.

THEOREM 9. We have

H(P) � logn− 1
n

n

∑
i=1

2(1−npi)2(1+2npi)
3(1+npi)2 − max

1�μ1<μ2<···<μn−1�n
{R(μ)+S(μ)}, (22)
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where

R(μ) := log

⎡
⎣
(

n−1

∑n−1
i=1 pμi

)∑n−1
i=1 pμi

(
n−1

∏
i=1

p
pμi
μi

)⎤
⎦ ,

S(μ) :=
2(n−1−n∑n−1

i=1 pμi)
2(n−1+2n∑n−1

i=1 pμi)
3n(n−1+n∑n−1

i=1 pμi)2
− 1

n

n−1

∑
i=1

2(1−npμi)
2(1+2npμi)

3(1+npμi)2 .

Proof. Applying the last inequality (21) with wi = pi , xi = 1/pi , after some cal-
culations by using An = n we can obtain the inequality (22). �

REMARK 3. Let φ(x) := 2(n−1)(1−nx)2(1+2nx)
3n(1+nx)2 . We can easily obtain φ(x) is con-

vex for x > 0 by the second derivative φ ′′(x) = 16(n−1)n2x
(1+nx)4 > 0. Hence, by Jensen’s

inequality we have S(μ) � 0.

THEOREM 10. The estimation (22) is better than (20), i. e.,

max
1�μ1<μ2<···<μn−1�n

{R(μ)}

�1
n

n

∑
i=1

2(1−npi)2(1+2npi)
3(1+npi)2 + max

1�μ1<μ2<···<μn−1�n
{R(μ)+S(μ)}.

(23)

Proof. Let us consider that the maximum of R(μ) is obtained for μi = ηi , ηi ∈
{1,2, · · · ,n} , i = 1,2, · · · ,n− 1, and let ηn = {1,2, · · · ,n} \ {η1, · · · ,ηn−1} . Then we
obtain

1
n

n

∑
i=1

2(1−npi)2(1+2npi)
3(1+npi)2 + max

1�μ1<μ2<···<μn−1�n
{R(μ)+S(μ)}

− max
1�μ1<μ2<···<μn−1�n

{R(μ)}

�1
n

n

∑
i=1

2(1−npi)2(1+2npi)
3(1+npi)2 +S(η)

=
1
n

n

∑
i=1

2(1−npi)2(1+2npi)
3(1+npi)2 +

2(n−1−n∑n−1
i=1 pηi)

2(n−1+2n∑n−1
i=1 pηi)

3n(n−1+n∑n−1
i=1 pηi)2

− 1
n

n−1

∑
i=1

2(1−npηi)
2(1+2npηi)

3(1+npηi)2

=
2(1−npηn)

2(1+2npηn)
3n(1+npηn)2 +

2(n−1−n∑n−1
i=1 pηi)

2(n−1+2n∑n−1
i=1 pηi)

3n(n−1+n∑n−1
i=1 pηi)2

� 0.

So the assertion of the theorem follows. �
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[14] N. ŢǍPUŞ AND P. G. POPESCU, A new entropy upper bound, Appl. Math. Lett. 25, 11 (2012), 1887–

1890.

(Received September 7, 2016) Guoxiang Lu
School of Statistics and Mathematics

Zhongnan University of Economics and Law
Wuhan 430073, P. R. China

e-mail: lgxmath@zuel.edu.cn

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


