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BOUNDS OF GENERALIZED RELATIVE OPERATOR ENTROPIES

ISMAIL NIKOUFAR AND MEHDI ALINEJAD

(Communicated by I. Perić)

Abstract. In this paper, we identify upper and lower bounds of the generalized relative operator
entropy based on the notion of perspectives. Moreover, we find upper and lower bounds of the
Tsallis relative operator entropy to specify the bounds of the relative operator entropy.

1. Introduction and preliminaries

In [1], the quantum Tsallis relative entropy was defined by

Dq(ρ |σ) :=
1−Trace[ρqσ1−q]

1−q

for two density matrices ρ and σ and 0 < q < 1. One can see that it is one parameter
extension of the quantum relative entropy defined by Umegaki [22]

U(ρ |σ) := Trace[ρ(logρ − logσ)].

The quantum relative entropy is a very important quantity in quantum information
theory [15]. It satisfies many significant relations such as monotonicity property under
quantum channels [14]. In information theory, more than 30 measures of entropies
generalizing Shannon’s entropy, as parametric, trigonometric and weighted entropies
have been introduced. Shannon entropy quantifies the expected value of information
contained in a stochastic variable, measuring the uncertainty associated with such a
variable. Hence, it provides an estimation of the average amount of information loss if
the value of the stochastic variable is not known.

In the statistical physics, the Tsallis entropy was defined in [20] by Sq(X) =
−∑x p(x)q lnq p(x) with one parameter q as an extension of Shannon entropy, where

q -logarithm is defined by lnq(x) = x1−q−1
1−q for any nonnegative real number q and x ,

and p(x) = p(X = x) is the probability distribution of the given random variable X . As
q→ 1, the Tsallis entropy Sq(X) converges to the Shannon entropy −∑x p(x) log p(x) .
This notion has an important role in non-extensive statistics, which is often called Tsal-
lis statistics. However, the notion of entropy is essential not only in thermodynamical
physics and statistical physics but also in information theory and analytical mathematics
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such as operator theory and probability theory. Mainly, the relative entropy is funda-
mental in the sense that it produces the entropy and the mutual information as special
cases.

A relative operator entropy of strictly positive operators A and B on a Hilbert
space was introduced in the noncommutative information theory by Fujii and Kamei
[10] by

S(A|B) := A
1
2 (lnA− 1

2 BA− 1
2 )A

1
2 .

The generalized relative operator entropy for strictly positive operators A,B and
q ∈ R defined in [7] by setting

Sq(A|B) := A
1
2 (A− 1

2 BA− 1
2 )q(lnA− 1

2 BA− 1
2 )A

1
2 .

In particular, when q = 0, it leads to the relative operator entropy S(A|B) . Furthermore,
it is an easy exercise to realize that S1(A|B) = −S(B|A) .

Furuta obtained the parametric extension of operator Shannon inequality and its re-
verse one [7]. Some refinements and precise estimations of these parametric extensions
of Shannon inequality and its reverse one and an extension of operator Shannon type
inequality proved in [18]. In [17], Nikoufar determined upper and lower bounds of the
relative operator (α,β )-entropy and Tsallis relative operator (α,β )-entropy according
to operator (α,β )-geometric mean introduced in [16]. Drogomir in [3] provided some
bounds for the following difference

S(A|B)− lnm
M−m

(MA−B)− lnM
M−m

(B−mA), (1)

where A,B are two strictly positive operators such that mA � B � MA for some m,M >
0 with m < M . Motivated by the fact that in general S(A|B) is not equal to S(B|A) , he
established in [2] some bounds for

m lnm
M−m

(MA−B)+
M lnM
M−m

(B−mA)+S(B|A) (2)

under the same assumptions for the operators A and B in [3].
In this paper, we identify upper and lower bounds of the generalized relative opera-

tor entropy Sq(A|B) for 0 < q � 1 based on the notion of perspective of some functions.
In particular, our bounds confirm the bounds established by Dragomir for S(B|A) in (2).
Moreover, we find upper and lower bounds of the Tsallis relative operator Tλ (A|B) to
specify bounds of the relative operator entropy S(A|B) in (1). Our results confirm and
generalize the presented results in [2] and improve the upper bound of S(A|B) proved
in [3]. This upper bound for S(A|B) is sharper than Dragomir’s upper bound.

We organize the paper in the following way. In section 2, we prove that the func-
tion tq ln t is convex on an interval Jq for 0 < q � 1. Then we show that

mq lnm
M−m

(MA−B)+
Mq lnM
M−m

(B−mA)−Sq(A|B) � 0, (3)

where A and B are two strictly positive operators such that mA � B � MA for some
m,M ∈ Jq with m < M and 0 < q � 1. Furthermore, we provide some upper and
positive lower bounds for the difference appeared in (3) under the same assumptions.
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In particular, when we put q → 1 our results recover Dragomir’s results announced in
[2] for m,M > 0 with m < M . On the other hand, if q → 0, we reach the difference
(1) in a negative sign. Unfortunately, we will have J0 = /0 so in this case we can not
claim that our results generalize the presented results in [3]. For this reason, in section
3, we consider the Tsallis relative operator entropy introduced by Yanagi et al. [21] and
defined by

Tλ (A|B) :=
A

1
2 (A− 1

2 BA− 1
2 )λ A

1
2 −1

λ
,

which is a generalization of the relative operator entropy S(A|B) in the sense that

lim
λ→0

Tλ (A|B) = S(A|B).

Hence, we determine some upper and positive lower bounds for the following difference

Tλ (A|B)− mλ −1
λ (M−m)

(MA−B)− Mλ −1
λ (M−m)

(B−mA), (4)

where A and B are two strictly positive operators such that mA � B � MA for some
m,M > 0 with m < M and 0 < λ � 1. Then by letting λ → 0 we determine some
precise bounds for S(A|B) .

Let throughout this paper B(H ) denote the C∗ -algebra of all bounded linear op-
erators on a Hilbert space H with inner product 〈·, ·〉 . A self–adjoint operator A in
B(H ) is said to be positive, written A � 0, if 〈Ah,h〉 � 0 for h ∈ H . If moreover
A is invertible, then A is said to be strictly positive, written A > 0. For self–adjoint
operators A and B in B(H ) , we write A � B (resp. A > B) if A−B is positive (resp.
strictly positive).

2. Bounds of the generalized relative operator entropy

The notion of operator perspective function introduced in [6] by Effros consists
of commuting operators and proved the perspective of an operator convex function is
operator convex as a function. A fully non-commutative perspective of the one variable
function f defined in [5] by setting

Pf (A,B) = A1/2 f (A−1/2BA−1/2)A1/2

and the generalized perspective of two variables (associated with f and h ) defined by

Pf Δh(A,B) = h(A)1/2 f (h(A)−1/2Bh(A)−1/2)h(A)1/2,

where A is a strictly positive operator and B is a self-adjoint operator on a Hilbert
space H with spectra in the closed interval I containing 0. So, the main results of [6]
are generalized in [5] for the non-commutative case where the necessary and sufficient
conditions for joint convexity (concavity) of the perspective and generalized perspective
functions are established. As an application of these results, Nikoufar et al. [16] gave
the simplest proof of Lieb concavity theorem and Ando convexity theorem (see also
[19]). The axiomatic theory for connections have been disscused by Kubo and Ando
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[13]. They proved the existence of an affine order isomorphism between the class of
connections and the class of positive operator monotone functions.

The following theorem proved in [17, Theorem 2.1] for the real valued functions
r,s,k , and h defined on the closed interval I .

THEOREM 1. Let r,s,k , and h be real valued functions on the closed interval I

such that h > 0 . If r(t) � s(t) � k(t) for t ∈ I , then

PrΔh(A,B) � PsΔh(A,B) � PkΔh(A,B)
for every strictly positive operator A and every self-adjoint operator B.

In particular we obtain the following corollary whenever h(t) = t :

COROLLARY 1. Let r,s, and k be real valued functions on the closed interval I .
If r(t) � s(t) � k(t) for t ∈ I , then

Pr(A,B) � Ps(A,B) � Pk(A,B)
for every strictly positive operator A and every self-adjoint operator B.

REMARK 1. Dragomir in [4] proved that if φ : D→R is a convex function defined
on a convex subset D ⊂ R , then

2r
[φ(x)+ φ(y)

2
−φ

(x+ y
2

)]
� (1− c)φ(x)+ cφ(y)−φ((1− c)x+ cy)

� 2R
[φ(x)+ φ(y)

2
−φ

(x+ y
2

)]

for any x,y ∈ D and c ∈ [0,1] , where r = min{c,1− c} and R = max{c,1− c} .

For the sake of simplified writing throughout this paper, we define

r(u) := min
{ u−m

M−m
,
M−u
M−m

}
=

1
2
−

∣∣∣∣∣
u− M+m

2

M−m

∣∣∣∣∣,

R(u) := max
{ u−m

M−m
,
M−u
M−m

}
=

1
2

+

∣∣∣∣∣
u− M+m

2

M−m

∣∣∣∣∣,

Kq(m,M) :=
mq lnm+Mq lnM

2
−

(M +m
2

)q
ln

(M +m
2

)
,

Wλ (m,M) :=
(m+M)λ −2λ

2λ λ
− mλ +Mλ −2

2λ
,

W0(m,M) := ln
m+M

2
√

mM
,

where 0 < m < M , 0 < q � 1, and 0 < λ � 1.
Define ω(t) := tq ln t for 0 � q � 1, where ln t is the natural logarithm function

and consider
Jq := {t � 0 : ω ′′(t) � 0}.

Note that the function ω is convex on Jq . By a simple calculation, we realize that

Jq := [0,e
2q−1

q(1−q) ] , where 0 � q � 1. Consequently, J1 = [0,∞) and J0 = /0 .
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LEMMA 1. The function ω(t) = tq ln t is convex on Jq := [0,e
2q−1

q(1−q) ] for 0 � q �
1 .

The concavity of the function ln t means geometrically that the points of the graph
of the restriction of ln t on [m,M] are on the chord joining the end points (m, lnm) and
(M, lnM) . Then

lnm+
lnM− lnm

M−m
(x−m) � lnx (5)

for all x ∈ [m,M] . By rewriting the left hand side of (5) we obtain

lnM
M−m

(x−m)+
lnm

M−m
(M− x) � lnx

for all x ∈ [m,M] and taking the perspective in the sense of Corollary 1 we get the dif-
ference (1) is positive. Indeed, the term lnm

M−m(MA−B)+ lnM
M−m (B−mA) appeared in the

difference (1) is the perspective of the line joining the points (m, lnm) and (M, lnM) .
The points of the graph of the convex function tq ln t on [m,M]⊆ Jq are under the chord
joining the end points (m,mq lnm) and (M,Mq lnM) . So, by taking the perspective we

achieve (3). Applying the same approach for the concave function tλ −1
λ ,0 < λ � 1, we

identify the difference appeared in (4) is positive.
Note that convexity of the function ω(t) = tq lnt on Jq shows that

Kq(m,M) � 0 (6)

for m,M ∈ Jq with 0 < m < M . In the following theorem, if we put q → 1, then we
obtain [2, Theorem 3]. However, this theorem is a generalization of Dragomir’s result.

THEOREM 2. Let A and B be two strictly positive operators such that mA � B �
MA for some m,M ∈ Jq with 0 < m < M. Then

0 � mq lnm
M−m

(MA−B)+
Mq lnM
M−m

(B−mA)−Sq(A|B)

� Mq−1(1+q lnM)−mq−1(1+q lnm)
M−m

Pf (A,B)

� 1
4
(M−m)

(
Mq−1(1+q lnM)−mq−1(1+q lnm)

)
A,

where f (t) = (t−m)(M− t) .

Proof. We apply [2, Lemma 1] for the function g(t) = tq ln t , t ∈ Jq . Then

0 � (1− c)g(x)+ cg(y)−g((1− c)x+ cy)
� c(1− c)(y− x)(g′−(y)−g′+(x)), (7)

where c ∈ [0,1] and x,y ∈ [m,M] . Replacing x = m , y = M , and c = u−m
M−m in (7), we

get

0 � mq lnm
M−m

(M−u)+
Mq lnM
M−m

(u−m)−uq lnu

� Mq−1(1+q lnM)−mq−1(1+q lnm)
M−m

f (u). (8)
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The function f (u) attains its maximum value at u = M+m
2 and the maximum value is

1
4(M−m)2 . So,

Mq−1(1+q lnM)−mq−1(1+q lnm)
M−m

f (u)

� 1
4
(M−m)

(
Mq−1(1+q lnM)−mq−1(1+q lnm)

)
. (9)

Combining inequalities (8), (9) and regarding Corollary 1 and taking the perspective,
we conclude the result. �

We define the operator q -entropy by Hq(A) := Aq lnA for a positive operator A
and 0 < q � 1. In particular, H1(A) is the well known von Neumann entropy. Note
that Sq(I,A) = Hq(A) . For commutative strictly positive operators A and B , we denote
by Eq(A,B) the generalized relative operator entropy and so

Eq(A,B) := A1−qBq(lnB− lnA).

The following corollary is a direct consequence of (8) and (9).

COROLLARY 2. If A is a strictly positive operator such that mI � A � MI for
some m,M ∈ Jq with 0 < m < M, then

0 � mq lnm
M−m

(MI−A)+
Mq lnM
M−m

(A−mI)−Hq(A)

� Mq−1(1+q lnM)−mq−1(1+q lnm)
M−m

(A−mI)(MI−A)

� 1
4
(M−m)

(
Mq−1(1+q lnM)−mq−1(1+q lnm)

)
I.

The following theorem is a generalization of the result announced by Dragomir.
Indeed, if we put q → 1, then we reach [2, Theorem 2]. As we remarked in (6),
Kq(m,M) � 0.

THEOREM 3. Let A and B be two strictly positive operators such that mA � B �
MA for some m,M ∈ Jq with 0 < m < M. Then we have

2Kq(m,M)Pr(A,B) � mq lnm
M−m

(MA−B)+
Mq lnM
M−m

(B−mA)−Sq(A|B)

� 2Kq(m,M)PR(A,B).

Proof. If we take in Remark 1 the convex function φ(t) = tq lnt , t ∈ Jq , then we
have

2r
[xq lnx+ yq lny

2
−

(x+ y
2

)q
ln

(x+ y
2

)]

� (1− c)xq lnx+ cyq lny− ((1− c)x+ cy)q ln((1− c)x+ cy)

� 2R
[xq lnx+ yq lny

2
−

(x+ y
2

)q
ln

(x+ y
2

)]
(10)
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for any x,y ∈ Jq and c ∈ [0,1] , where r = min{c,1− c} and R = max{c,1− c} . Re-
placing x = m , y = M , and c = u−m

M−m with u ∈ [m,M] in (10), we deduce

2Kq(m,M)r(u) � mq lnm
M−u
M−m

+Mq lnM
u−m
M−m

−uq lnu

� 2Kq(m,M)R(u). (11)

Making use of Corollary 1 and taking the perspective, we get the desired inequali-
ties. �

When the strictly positive operators A and B are commutative, we deduce Pr(A,B)
= Ar(BA−1) , PR(A,B) = AR(BA−1) , and Sq(A|B) = Eq(A,B) .

COROLLARY 3. Let A and B be two strictly positive operators such that mA �
B � MA for some m,M ∈ Jq with 0 < m < M. If A and B commute, then

2Kq(m,M)Ar(BA−1) � mq lnm
M−m

(MA−B)+
Mq lnM
M−m

(B−mA)−Eq(A,B)

� 2Kq(m,M)AR(BA−1).

The following corollary is a direct consequence of (11).

COROLLARY 4. If A is a positive operator such that mI � A � MI for some
m,M ∈ Jq with 0 < m < M, then

2Kq(m,M)r(A) � mq lnm
M−m

(MI−A)+
Mq lnM
M−m

(A−mI)−Hq(A)

� 2Kq(m,M)R(A).

According to the following theorem, if we let q→ 1, then we identify [2, Theorem
4].

THEOREM 4. Let A and B be two strictly positive operators such that mA � B �
MA for some m,M ∈ Jq with 0 < m < M. Then

0 � 1
2
Mq−2(2q−1+q(q−1) lnM)Pf (A,B)

� mq lnm
M−m

(MA−B)+
Mq lnM
M−m

(B−mA)−Sq(A|B)

� 1
2
mq−2(2q−1+q(q−1) lnm)Pf (A,B),

where f (t) = (t−m)(M− t) .

Proof. Using [2, Lemma 2] for the function g(t) = tq lnt , t ∈ Jq , we get

1
2
c(1− c)d(y− x)2 � (1− c)g(x)+ cg(y)−g((1− c)x+ cy)

� 1
2
c(1− c)D(y− x)2, (12)
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where c ∈ [0,1] , x,y ∈ [m,M] , d � g′′(t) � D for some constants d,D , and any t ∈
[m,M] . Substitute x = m , y = M , c = u−m

M−m , d = Mq−2(2q− 1 + q(q− 1) lnM) > 0
and D = mq−2(2q−1+q(q−1) lnm) > 0 in (12), to get

0 � 1
2
(u−m)(M−u)d � M−u

M−m
mq lnm+

u−m
M−m

Mq lnM−uq lnu

� 1
2
(u−m)(M−u)D. (13)

Due to Corollary 1 and replacing d,D , we reach the desired inequalities. �

The following corollary is a direct consequence of (13).

COROLLARY 5. If A is a positive operator such that mI � A � MI for some
m,M ∈ Jq with 0 < m < M, then

0 � 1
2
Mq−2(2q−1+q(q−1) lnM)(A−mI)(MI−A)

� mq lnm
M−m

(MI−A)+
Mq lnM
M−m

(A−mI)−Hq(A)

� 1
2
mq−2(2q−1+q(q−1) lnm)(A−mI)(MI−A).

REMARK 2. Note that as we remarked above in Theorems 2, 3, and 4 if q → 1,
then the results in Theorems 3, 2, and 4 of [2] are satisfied, respectively. On the other
hand, when q → 0 the set J0 is an empty set. However, in Theorems 2, 3, and 4, if
q → 0, we can not identify the upper and lower bounds of S(A|B) on an empty set. So,
in the next section, we declare a method to determine the upper and lower bounds of
S(A|B) .

3. Bounds of the Tsallis relative operator entropy

Furuichi et al. [12] obtained the following inequalities (see also [11]):

T−λ (A|B) � S(A|B) � Tλ (A|B), (14)

A−AB−1A � Tλ (A|B) � B−A (15)

and Zou [23] refined (14) and (15) as follows:

A−AB−1A � T−λ (A|B) � S(A|B) � Tλ (A|B) � B−A,

where A and B are two strictly positive operators and 0 < λ � 1. For more inequalities
on the Tsallis relative operator entropy the reader is referred to [8, 9, 17].

Dragomir established a main and natural question that how far the terms in the
difference (1) and so provided some bounds for this difference as follows.
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THEOREM 5. [3, Theorem 2] Let A and B be two strictly positive operators such
that mA � B � MA for some m,M with 0 < m < M. Then

K
(M

m

)
Pr(A,B) � S(A|B)− lnm

M−m
(MA−B)− lnM

M−m
(B−mA)

� K
(M

m

)
PR(A,B), (16)

where K(h) = (h+1)2
4h , h > 0 is the Kantrovich constant.

REMARK 3. As mentioned in Remark 1, if φ : D → R is a concave function de-
fined on a convex set D ⊂ R , then

2r
[
φ
(x+ y

2

)
− φ(x)+ φ(y)

2

]
� φ((1− c)x+ cy)− ((1− c)φ(x)+ cφ(y))

� 2R
[
φ
(x+ y

2

)
− φ(x)+ φ(y)

2

]

for any x,y ∈ D and c ∈ [0,1] , where r = min{c,1− c} and R = max{c,1− c} .

We determine some upper and positive lower bounds for the difference (4) and
apply them to obtain some bounds for the difference (1).

THEOREM 6. Let A and B be two strictly positive operators such that mA � B �
MA for some m,M with 0 < m < M. Then

0 � Tλ (A|B)− mλ −1
λ (M−m)

(MA−B)− Mλ −1
λ (M−m)

(B−mA)

� mλ−1−Mλ−1

M−m
Pf (A,B) � 1

4
(M−m)(mλ−1−Mλ−1)A,

where 0 < λ � 1 and f (t) = (t −m)(M− t) .

Proof. We apply [2, Lemma 1] for the concave function φ : I ⊂ R → R . Then we
get

0 � φ((1− c)x+ cy)− (1− c)φ(x)− cφ(y)
� c(1− c)(y− x)(φ ′

+(x)−φ ′
−(y)) (17)

for x,y in the interior of I and c ∈ [0,1] . Taking φ(t) = tλ−1
λ , t > 0 in (17), we yield

0 � ((1− c)x+ cy)λ −1
λ

− (1− c)
xλ −1

λ
− c

yλ −1
λ

� c(1− c)(y− x)(xλ−1− yλ−1). (18)

Replacing x = m , y = M , and c = u−m
M−m with u ∈ [m,M] in (18), we deduce

0 � uλ −1
λ

− mλ −1
λ (M−m)

(M−u)− Mλ −1
λ (M−m)

(u−m)

� mλ−1−Mλ−1

M−m
f (u).
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Taking into account that the maximum value of f (u) is 1
4 (M−m)2 and using Corollary

1, we get the desired inequalities. �

We notice that concavity of the functions tλ−1
λ for 0 < λ � 1 and lnt ensure

Wλ (m,M) � 0 and W0(m,M) � 0

for m,M > 0 with m < M , respectively. The following theorem is a generalization of
Theorem 5:

THEOREM 7. Let A and B be two strictly positive operators such that mA � B �
MA for some m,M > 0 with m < M. Then

2Wλ (m,M)Pr(A,B) � Tλ (A|B)− mλ −1
λ (M−m)

(MA−B)− Mλ −1
λ (M−m)

(B−mA)

� 2Wλ (m,M)PR(A,B),
where 0 < λ � 1 .

Proof. If we take in Remark 3, φ(t) = tλ−1
λ for t > 0 and 0 < λ � 1, then φ(t)

is concave and we have

2r
[ (x+ y)λ −2λ

2λ λ
− xλ + yλ −2

2λ

]

� ((1− c)x+ cy)λ −1
λ

− (1− c)
xλ −1

λ
− c

yλ −1
λ

� 2R
[(x+ y)λ −2λ

2λ λ
− xλ + yλ −2

2λ

]
(19)

for any x,y > 0 and c ∈ [0,1] , where r = min{c,1− c} and R = max{c,1− c} . Re-
placing x = m , y = M , and c = u−m

M−m with u ∈ [m,M] in (19), we deduce

2Wλ (m,M)r(u) � uλ −1
λ

− mλ −1
λ (M−m)

(M−u)− Mλ −1
λ (M−m)

(u−m)

� 2Wλ (m,M)R(u).
Applying Corollary 1, we get the desired inequalities. �

Note that if λ tends to zero in our Theorems 6 and 7, we obtain corollaries 6 and 7,
respectively. In Remark 4, we show that Corollary 6 is the same as [3, Theorem 3] and
this fact declares that [3, Theorem 3] is a consequence of our Theorem 6. Moreover,
Corollary 7 identifies an upper bound for the relative operator entropy which is sharper
than the upper bound determined in Theorem 5.

COROLLARY 6. Let A and B be two strictly positive operators such that mA �
B � MA for some m,M > 0 with m < M. Then

0 � S(A|B)− lnm
M−m

(MA−B)− lnM
M−m

(B−mA)

� 1
Mm

Pf (A,B) � (M−m)2

4mM
A,

where f (t) = (t−m)(M− t) .
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COROLLARY 7. Let A and B be two strictly positive operators such that mA �
B � MA for some m,M > 0 with m < M. Then

2W0(m,M)Pr(A,B) � S(A|B)− lnm
M−m

(MA−B)− lnM
M−m

(B−mA)

� 2W0(m,M)PR(A,B). (20)

REMARK 4. We remark that Corollary 6 confirms [3, Theorem 3], since

(M−m)2

4mM
= K

(M
m

)
−1.

Moreover, since 2 lnx � x2 , x > 0, so for x = M+m
2
√

mM
we conclude that

2W0(m,M) � K
(M

m

)
.

This shows that our determined upper bound 2W0(m,M) in (20) is sharper than the
upper bound K(M

m ) established by Dragomir in (16). Consequently, we refine (16) as
follows:

K
(M

m

)
Pr(A,B) � S(A|B)− lnm

M−m
(MA−B)− lnM

M−m
(B−mA)

� 2W0(m,M)PR(A,B).
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