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Abstract. In this paper we present a new type of fractional operator, which is a generalization of
the Caputo and Caputo–Hadamard fractional derivative operators. We study some properties of
the operator, namely we prove that it is the inverse operation of a generalized fractional integral.
A relation between this operator and a Riemann–Liouville type is established. We end with a
fractional Gronwall inequality type, which is useful to compare solutions of fractional differential
equations.

1. Introduction

Fractional calculus is an important subject with numerous applications to different
fields outside mathematics like physics [8, 21, 29], chemistry [4, 5, 14], biology [3, 20,
27, 30], engineering [9, 10, 24, 28], etc. It allows us to define derivatives and integrals
of non-integer order, which may be more suitable to model real world phenomena, and
nowadays this subject is not only important in mathematics, but also by its numerous
employments in applicable sciences. We find in the literature several definitions for
fractional operators, although the most important ones are the Riemann–Liouville, the
Caputo and the Grunwald–Letnikov fractional derivatives [18, 26]. The choice of the
best operator depends on the analysis of the system, and because of this we find a vast
work dealing with different operators, for similar subjects. To overcome this situation,
one solution is to consider general definitions for fractional operators, for which we can
recover the classical ones as particular cases. For example, using general Kernels we
can obtain some of the most important fractional operators [22, 23]. In Section 2 we do
a review of some of the most important notions when dealing with fractional derivatives
and integrals. In [15, 16, 17], U. Katugampola presents a general form of fractional
operator, by introducing a new parameter ρ > 0, for which we can obtain the Riemann–
Liouville fractional operators when ρ = 1, and the Hadamard fractional operators as
ρ → 0+ . Later, in [1], the authors present a Caputo type fractional derivative of order
α ∈ (0,1) , and some properties are proven. In this work, we start by defining a Caputo–
Katugampola fractional derivative of arbitrary real order α > 0, and as we shall see it
is the inverse operator of the Katugampola fractional integral. Several properties of
the new fractional derivative operator are studied in Section 3. To end, in Section 4, we
present and prove a fractional Gronwall inequality type, generalizing the ones presented
in [19, 25, 31].
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2. Preliminaries on fractional calculus

Let x : [a,b] → R be an integrable function. Starting with the Cauchy’s formula
for an n-fold integral

∫ t

a
dτ1

∫ τ1

a
dτ2 . . .

∫ τn−1

a
x(τn)dτn =

1
(n−1)!

∫ t

a
(t− τ)n−1x(τ)dτ,

we find a direct generalization for integrals of arbitrary real order α > 0. The Riemann-
Liouville fractional integral of order α of x is defined as

Iα
a+x(t) =

1
Γ(α)

∫ t

a
(t− τ)α−1x(τ)dτ,

where Γ(·) denotes the Gamma function. Later, by considering the formula

∫ t

a

1
τ1

dτ1

∫ τ1

a

1
τ2

dτ2 . . .
∫ τn−1

a

1
τn

x(τn)dτn =
1

(n−1)!

∫ t

a

(
ln

t
τ

)n−1 x(τ)
τ

dτ,

Hadamard defined a new type of fractional operator, known nowadays as Hadamard
fractional integral [12]:

HIα
a+x(t) =

1
Γ(α)

∫ t

a

(
ln

t
τ

)α−1
x(τ)

dτ
τ

.

Fractional derivatives are defined using the fractional integral operators. Beginning
with the Riemann–Liouville fractional integral, we find the most important definitions
for fractional derivatives. Let α > 0 and n ∈ N be such that α ∈ (n− 1,n) . The
Riemann–Liouville fractional derivative of order α of a function x is defined as

Dα
a+x(t) =

(
d
dt

)n

In−α
a+ x(t) =

1
Γ(n−α)

(
d
dt

)n ∫ t

a
(t− τ)n−α−1x(τ)dτ,

while the Caputo fractional derivative is defined as

CDα
a+x(t) = In−α

a+

(
d
dt

)n

x(t) =
1

Γ(n−α)

∫ t

a
(t− τ)n−α−1

(
d
dτ

)n

x(τ)dτ.

For what concerns the Hadamard fractional derivative, we have

HDα
a+x(t) =

(
t
d
dt

)n
HIn−α

a+ x(t) =
1

Γ(n−α)

(
t
d
dt

)n ∫ t

a

(
ln

t
τ

)n−α−1
x(τ)

dτ
τ

.

For more on the subject, we advice the reader to [18, 26]. Finally, in [7, 13], the
Caputo–Hadamard fractional derivative is presented and some properties studied, and
the definition is

CHDα
a+x(t) = HIn−α

a+

(
t
d
dt

)n

x(t) =
1

Γ(n−α)

∫ t

a

(
ln

t
τ

)n−α−1
(

τ
d
dτ

)n

x(τ)
dτ
τ

.
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The previous notions can be generalized by introducing a new parameter in the defini-
tions, and for some particular cases we recover the classical ones. In [15], starting with
the formula ∫ t

a
τρ−1
1 dτ1

∫ τ1

a
τρ−1
2 dτ2 . . .

∫ τn−1

a
τρ−1
n x(τn)dτn

=
ρ1−n

(n−1)!

∫ t

a
τρ−1(tρ − τρ)n−1x(τ)dτ,

Katugampola suggest a new type of fractional integral, which includes the Riemann–
Liouville type by considering ρ = 1 and the Hadamard integral when ρ → 0+ .

DEFINITION 1. Let a,b > 0 be two reals, and x : [a,b] → R be an integrable
function. The left-sided and right-sided Katugampola fractional integrals of order α >
0 and parameter ρ > 0 are defined respectively by

I α ,ρ
a+ x(t) =

ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1x(τ)dτ

and

I
α ,ρ
b− x(t) =

ρ1−α

Γ(α)

∫ b

t
τρ−1(τρ − tρ)α−1x(τ)dτ.

Also, in [16], a differential operator of order α > 0 with dependence on a param-
eter ρ > 0 is defined as

D
α ,ρ
a+ x(t) =

(
t1−ρ d

dt

)n

I
n−α ,ρ
a+ x(t)

=
ρ1−n+α

Γ(n−α)

(
t1−ρ d

dt

)n ∫ t

a
τρ−1(tρ − τρ)n−α−1x(τ)dτ,

for the left-sided fractional derivative, and for the right-sided fractional derivative we
have

D
α ,ρ
b− x(t) =

(
−t1−ρ d

dt

)n

I
n−α ,ρ
b− x(t)

=
ρ1−n+α

Γ(n−α)

(
−t1−ρ d

dt

)n ∫ b

t
τρ−1(τρ − tρ)n−α−1x(τ)dτ.

3. Caputo–Katugampola fractional derivative

Having in mind the different definitions for fractional operators, a notion of Caputo–
Katugampola fractional derivative is immediate.

DEFINITION 2. Let 0 < a < b < ∞ be two reals, ρ be a positive real number,
α ∈ R

+ and n ∈ N be such that α ∈ (n− 1,n) , and x : [a,b] → R a function of class
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Cn . The left-sided and right-sided Caputo–Katugampola fractional derivatives of order
α and parameter ρ are defined respectively by

CD
α ,ρ
a+ x(t) = I

n−α ,ρ
a+

(
t1−ρ d

dt

)n

x(t)

=
ρ1−n+α

Γ(n−α)

∫ t

a
τρ−1(tρ − τρ)n−α−1

(
τ1−ρ d

dτ

)n

x(τ)dτ

and

CD
α ,ρ
b− x(t) = I

n−α ,ρ
b−

(
−t1−ρ d

dt

)n

x(t)

=
ρ1−n+α

Γ(n−α)

∫ b

t
τρ−1(τρ − tρ)n−α−1

(
−τ1−ρ d

dτ

)n

x(τ)dτ.

We refer to [1] for a detailed study when α ∈ (0,1) . Also, since the left-sided and
right-sided Katugampola fractional integrals are bounded linear operators, it is clear
that the left-sided and right-sided Caputo–Katugampola fractional derivatives are con-
tinuous operators on the closed interval [a,b] . From the definition, it is obvious that the
fractional derivative of a constant is zero.

In order to simplify the writing, we introduce the notation

x(n)(t) :=
(

t1−ρ d
dt

)n

x(t).

Let Cn[a,b] be the set of functions x such that x(n) exists and is continuous on [a,b] .
We define on Cn[a,b] the norms

‖x‖ρ
Cn =

n

∑
k=0

max
t∈[a,b]

|x(n)(t)| and ‖x‖C = max
t∈[a,b]

|x(t)|.

THEOREM 1. The following relations hold:

lim
α→n−

CD
α ,ρ
a+ x(t) = x(n)(t), lim

α→(n−1)+
CD

α ,ρ
a+ x(t) = x(n−1)(t)− x(n−1)(a),

lim
α→n−

CD
α ,ρ
b− x(t)= (−1)nx(n)(t), lim

α→(n−1)+
CD

α ,ρ
b− x(t)= (−1)n(x(n−1)(b)−x(n−1)(t)),

Proof. Integrating by parts, we deduce

CD
α ,ρ
a+ x(t) =

ρ1−n+α

Γ(n−α)

∫ t

a
τρ−1(tρ − τρ)n−α−1x(n)(τ)dτ

=
ρ−n+α

Γ(n+1−α)
(tρ−aρ)n−αx(n)(a)+

ρ−n+α

Γ(n+1−α)

∫ t

a
(tρ−τρ )n−α d

dτ
x(n)(τ)dτ.

Thus,
lim

α→n−
CD

α ,ρ
a+ x(t) = x(n)(a)+ [x(n)(t)− x(n)(a)] = x(n)(t).
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For the second formula, starting with the definition, we obtain directly that

lim
α→(n−1)+

CD
α ,ρ
a+ x(t) =

∫ t

a

d
dτ

x(n−1)(τ)dτ = x(n−1)(t)− x(n−1)(a).

The other two formulas are proven in a similar way. �
The following result is easily proven, and we omit the proof here.

THEOREM 2. Given a function x ∈Cn[a,b] and t ∈ [a,b] , we have

|CD
α ,ρ
a+ x(t)| � ρα−n

Γ(n+1−α)
max

τ∈[a,t]
|x(n)(τ)|(tρ −aρ)n−α

and

|CD
α ,ρ
b− x(t)| � ρα−n

Γ(n+1−α)
max
τ∈[t,b]

|x(n)(τ)|(bρ − tρ)n−α .

In particular, CD
α ,ρ
a+ x(a) = 0 and CD

α ,ρ
b− x(b) = 0 .

THEOREM 3. The fractional derivatives CD
α ,ρ
a+ and CD

α ,ρ
b− are bounded opera-

tors from Cn[a,b] to C[a,b] , with

‖CD
α ,ρ
a+ x‖C � K‖x‖ρ

Cn and ‖CD
α ,ρ
b− x‖C � K‖x‖ρ

Cn ,

where

K =
ρα−n

Γ(n+1−α)
(bρ −aρ)n−α .

Proof. Given t ∈ [a,b] and x ∈Cn[a,b] , using the fact that |x(n)(t)| � ‖x‖ρ
Cn and

Theorem 2, the result follows. �

LEMMA 1. Consider the functions x,y : [a,b]→ R given by

x(t) = (tρ −aρ)v, y(t) = (bρ − tρ)v, with v > n−1.

Then
CD

α ,ρ
a+ x(t) =

ρα Γ(v+1)
Γ(v−α +1)

(tρ −aρ)v−α

and
CD

α ,ρ
b− y(t) =

ραΓ(v+1)
Γ(v−α +1)

(bρ − tρ)v−α .

Proof. We prove only the first one. It is easy to conclude that

x(n)(t) =
ρnΓ(v+1)
Γ(v−n+1)

(tρ −aρ)v−n.
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Then,

CD
α ,ρ
a+ x(t) =

ρ1+αΓ(v+1)
Γ(n−α)Γ(v−n+1)

(tρ −aρ)n−1−α

×
∫ t

a
τρ−1

(
1− τρ −aρ

tρ −aρ

)n−1−α
(τρ −aρ)v−ndτ.

With the change of variables u = (τρ − aρ)/(tρ − aρ) and with the help of the Beta
function

B(x,y) =
∫ 1

0
ux−1(1−u)y−1du, x,y > 0,

we obtain

CD
α ,ρ
a+ x(t) =

ρα Γ(v+1)
Γ(n−α)Γ(v−n+1)

(tρ −aρ)v−αB(n−α,v−n+1).

Using the useful property

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

,

we prove the formula

CD
α ,ρ
a+ (tρ −aρ)v =

ρα Γ(v+1)
Γ(v−α +1)

(tρ −aρ)v−α . �

Using these relations, we deduce the fractional derivative of the Mittag–Leffler
function

Eα(t) =
∞

∑
k=0

tk

Γ(αk+1)
, t ∈ R.

For all λ ∈ R , we have

CD
α ,ρ
a+ Eα(λ (tρ −aρ)α) =

∞

∑
k=0

λ k

Γ(αk+1)
CD

α ,ρ
a+ (tρ −aρ)αk

=
∞

∑
k=1

λ k

Γ(αk+1)
CD

α ,ρ
a+ (tρ −aρ)αk

=
∞

∑
k=1

λ k

Γ(αk+1)
ραΓ(αk+1)

Γ(αk+1−α)
(tρ −aρ)αk−α

= λ ραEα(λ (tρ −aρ)α)

and
CD

α ,ρ
b− Eα(λ (bρ − tρ)α) = λ ραEα(λ (bρ − tρ)α).

The next two results justify our Definition 2, since the Caputo–Katugampola frac-
tional derivative is an inverse operation of the Katugampola fractional integral.
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THEOREM 4. Given a function x ∈Cn[a,b] , we have

I
α ,ρ
a+

CD
α ,ρ
a+ x(t) = x(t)−

n−1

∑
k=0

ρ−k

k!
(tρ −aρ)kx(k)(a) (1)

and

I α ,ρ
b−

CDα ,ρ
b− x(t) = x(t)−

n−1

∑
k=0

ρ−k(−1)k

k!
(bρ − tρ)kx(k)(b).

Proof. Using Theorem 4.1 in [15], we have

I
α ,ρ
a+

CD
α ,ρ
a+ x(t) = I

α ,ρ
a+ I

n−α ,ρ
a+ x(n)(t) = I

n,ρ
a+ x(n)(t)

=
ρ1−n

(n−1)!

∫ t

a
(tρ − τρ)n−1 d

dτ
x(n−1)(τ)dτ.

Using integration by parts, we deduce

I
α ,ρ
a+

CD
α ,ρ
a+ x(t)=

ρ2−n

(n−2)!

∫ t

a
(tρ−τρ)n−2 d

dτ
x(n−2)(τ)dτ− ρ1−n

(n−1)!
(tρ−aρ)n−1x(n−1)(a).

Integrating again by parts, we have

I
α ,ρ
a+

CD
α ,ρ
a+ x(t)=

ρ3−n

(n−3)!

∫ t

a
(tρ −τρ)n−3 d

dτ
x(n−3)(τ)dτ−

n−1

∑
k=n−2

ρ−k

k!
(tρ −aρ)kx(k)(a).

Repeating this procedure n−3 times, we arrive at

I
α ,ρ
a+

CD
α ,ρ
a+ x(t) =

∫ t

a

d
dτ

x(τ)dτ −
n−1

∑
k=1

ρ−k

k!
(tρ −aρ)kx(k)(a)

= x(t)−
n−1

∑
k=0

ρ−k

k!
(tρ −aρ)kx(k)(a).

The second formula is proven is a similar way. �

Taking ρ = 1, formula (1) reduces to the Caputo case (see e.g. Lemma 2.22 [18]):

Iα
a+

CDα
a+x(t) = x(t)−

n−1

∑
k=0

1
k!

(t −a)kx(k)(a),

and as ρ → 0+ , having in mind that limρ→0+(tρ −aρ)/ρ = ln(t/a) , we obtain Lemma
2.5 in [13]:

HIα
a+

CHDα
a+x(t) = x(t)−

n−1

∑
k=0

1
k!

(
ln

t
a

)k
[(

t
d
dt

)k

x(t)

]
t=a

.
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THEOREM 5. Given a function x ∈C1[a,b] , we have

CD
α ,ρ
a+ I

α ,ρ
a+ x(t) = x(t) and CD

α ,ρ
b− I

α ,ρ
b− x(t) = x(t).

Proof. We prove the formula for the left-sided fractional operators only. By defi-
nition,

CD
α ,ρ
a+ I

α ,ρ
a+ x(t) = I

n−α ,ρ
a+ y(n)(t), with y(n)(t) =

(
t1−ρ d

dt

)n

I
α ,ρ
a+ x(t). (2)

Computing directly, and since α ∈ (n−1,n) , we get

y(1)(t) = t1−ρ d
dt

ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1x(τ)dτ

=
ρ2−α

Γ(α −1)

∫ t

a
τρ−1(tρ − τρ)α−2x(τ)dτ.

Repeating the process, we arrive at the expression

y(n−1)(t) =
ρn−α−1

Γ(α −n+1)

∫ t

a
ρτρ−1(tρ − τρ)α−nx(τ)dτ

=
ρn−α−1

Γ(α −n+2)

[
(tρ −aρ)α−n+1x(a)+

∫ t

a
(tρ − τρ)α−n+1 d

dτ
x(τ)dτ

]
.

using integration by parts. Then, we finally arrive to

y(n)(t) = t1−ρ d
dt

y(n−1)(t)

=
ρn−α

Γ(α −n+1)

[
(tρ −aρ)α−nx(a)+

∫ t

a
(tρ − τρ)α−n d

dτ
x(τ)dτ

]
.

Then, replacing this last expression into equation (2), we obtain

CD
α ,ρ
a+ I

α ,ρ
a+ x(t) =

ρ
Γ(n−α)Γ(α −n+1)

[
x(a)

∫ t

a
τρ−1(tρ − τρ)n−α−1(τρ −aρ)α−ndτ

+
∫ t

a

∫ τ

a
τρ−1(tρ − τρ)n−α−1(τρ − sρ)α−n d

ds
x(s)dsdτ

]
.

With the change of variables u = (τρ −aρ)/(tτ −aρ) , we get∫ t

a
τρ−1(tρ − τρ)n−α−1(τρ −aρ)α−ndτ

=
∫ t

a
τρ−1(tρ −aρ)n−α−1

(
1− τρ −aρ

tρ −aρ

)n−α−1

(τρ −aρ)α−ndτ

=
1
ρ

∫ 1

0
(1−u)n−α−1uα−ndu =

1
ρ

B(n−α,α −n+1) =
Γ(n−α)Γ(α −n+1)

ρ
.
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In a similar way, and using the Dirichlet’s formula, we get

∫ t

a

∫ τ

a
τρ−1(tρ − τρ)n−α−1(τρ − sρ)α−n d

ds
x(s)dsdτ

=
∫ t

a

∫ t

τ
sρ−1(tρ − sρ)n−α−1(sρ − τρ)α−n d

dτ
x(τ)dsdτ

=
∫ t

a

d
dτ

x(τ)
Γ(n−α)Γ(α −n+1)

ρ
dτ =

Γ(n−α)Γ(α −n+1)
ρ

(x(t)− x(a)).

Then,

CD
α ,ρ
a+ I

α ,ρ
a+ x(t) =

ρ
Γ(n−α)Γ(α −n+1)

[
x(a)

Γ(n−α)Γ(α −n+1)
ρ

+
Γ(n−α)Γ(α −n+1)

ρ
(x(t)− x(a))

]
= x(t). �

Again, for ρ = 1 and ρ → 0+ , we recover the classical formulas as in Lemma
2.21 of [18] and in Lemma 2.4 of [13], respectively:

CDα
a+Iα

a+x(t) = CHDα
a+

HIα
a+x(t) = x(t).

We now establish a relation between the Katugampola and the Caputo–Katugampola
fractional derivatives.

THEOREM 6. Let x ∈Cn[a,b] be a function. Then

CD
α ,ρ
a+ x(t) = D

α ,ρ
a+

[
x(t)−

n−1

∑
k=0

ρ−k

k!
(tρ −aρ)kx(k)(a)

]

and

CD
α ,ρ
b− x(t) = D

α ,ρ
b−

[
x(t)−

n−1

∑
k=0

ρ−k(−1)k

k!
(bρ − tρ)kx(k)(b)

]
.

Proof. Starting with the definition of the Katugampola fractional derivative, and
integrating by parts, one deduces

(
t1−ρ d

dt

)n ∫ t

a
τρ−1(tρ − τρ)n−α−1

[
x(τ)−

n−1

∑
k=0

ρ−k

k!
(τρ −aρ)kx(k)(a)

]
dτ

=
(

t1−ρ d
dt

)n ∫ t

a

τρ−1(tρ − τρ)n−α

ρ(n−α)

[
x(1)(τ)−

n−1

∑
k=1

ρ1−k

(k−1)!
(τρ −aρ)k−1x(k)(a)

]
dτ

=
(

t1−ρ d
dt

)n−1 ∫ t

a
τρ−1(tρ−τρ)n−α−1

[
x(1)(τ)−

n−1

∑
k=1

ρ1−k

(k−1)!
(τρ−aρ)k−1x(k)(a)

]
dτ.
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Repeating the process n−2 more times, we arrive at the equivalent expression

t1−ρ d
dt

∫ t

a

τρ−1(tρ − τρ)n−α

ρ(n−α)
x(n)(τ)dτ =

∫ t

a
τρ−1(tρ − τρ)n−α−1x(n)(τ)dτ,

proving the first formula. The second one is obtained in a similar way. �

Formula obtained in Theorem 6 allows us to deduce a direct relation between the
two types of fractional derivative operators. In fact, similar as done before, we have

D
α ,ρ
a+ (tρ −aρ)k =

ρ−n+αk!
Γ(n−α + k+1)

(
t1−ρ d

dt

)n

(tρ −aρ)n−α+k,

and since (
t1−ρ d

dt

)n

(tρ −aρ)n−α+k = ρn Γ(n−α + k+1)
Γ(k+1−α)

(tρ −aρ)k−α ,

we get the following relation

CD
α ,ρ
a+ x(t) = D

α ,ρ
a+ x(t)−

n−1

∑
k=0

ρα−k

Γ(k+1−α)
(tρ −aρ)k−αx(k)(a).

Analogously, we obtain

CDα ,ρ
b− x(t) = Dα ,ρ

b− x(t)−
n−1

∑
k=0

ρα−k(−1)k

Γ(k+1−α)
(bρ − tρ)k−αx(k)(b).

The following result establishes an integration by parts formula, and generalizes
the formula proven in [2] for arbitrary real α > 0.

THEOREM 7. Let x ∈C[a,b] and y ∈Cn[a,b] be two functions. Then,

∫ b

a
x(t)CD

α ,ρ
a+ y(t)dt =

∫ b

a
D

α ,ρ
b− (t1−ρx(t))tρ−1y(t)dt

+

[
n−1

∑
k=0

(
−t1−ρ d

dt

)k

I
n−α ,ρ
b− (t1−ρx(t))y(n−k−1)(t)

]t=b

t=a

,

and

∫ b

a
x(t)CD

α ,ρ
b− y(t)dt =

∫ b

a
D

α ,ρ
a+ (t1−ρx(t))tρ−1y(t)dt

+

[
n−1

∑
k=0

(−1)n−k
(

t1−ρ d
dt

)k

I
n−α ,ρ
a+ (t1−ρx(t))y(n−k−1)(t)

]t=b

t=a

.
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Proof. We prove only the first formula; the second one is similar. Applying the
Dirichlet’s formula and integrating by parts, we get∫ b

a
x(t)CD

α ,ρ
a+ y(t)dt

=
ρ1−n+α

Γ(n−α)

∫ b

a

∫ t

a
x(t)(tρ − τρ)n−α−1 d

dτ
y(n−1)(τ)dτ dt

=
ρ1−n+α

Γ(n−α)

∫ b

a

∫ b

t
x(τ)(τρ − tρ)n−α−1 dτ

d
dt

y(n−1)(t)dt

=
ρ1−n+α

Γ(n−α)

[∫ b

t
x(τ)(τρ − tρ)n−α−1 dτ y(n−1)(t)

]t=b

t=a

− ρ1−n+α

Γ(n−α)

∫ b

a

d
dt

(∫ b

t
x(τ)(τρ − tρ)n−α−1 dτ

)
t1−ρ d

dt
y(n−2)(t)dt

=
[
I n−α ,ρ

b− (t1−ρx(t))y(n−1)(t)
]t=b

t=a
+

∫ b

a
−t1−ρ d

dt
I n−α ,ρ

b− (t1−ρx(t))
d
dt

y(n−2)(t)dt.

Integrating once more by parts, we obtain

∫ b

a
x(t)CDα ,ρ

a+ y(t)dt =

[
1

∑
k=0

(
−t1−ρ d

dt

)k

I n−α ,ρ
b− (t1−ρx(t))y(n−k−1)(t)

]t=b

t=a

+
∫ b

a

(
−t1−ρ d

dt

)2

I
n−α ,ρ
b− (t1−ρx(t))

d
dt

y(n−3)(t)dt.

If we integrate by parts n−3 more times, we get

∫ b

a
x(t)CD

α ,ρ
a+ y(t)dt =

[
n−2

∑
k=0

(
−t1−ρ d

dt

)k

I
n−α ,ρ
b− (t1−ρx(t))y(n−k−1)(t)

]t=b

t=a

+
∫ b

a

(
−t1−ρ d

dt

)n−1

I
n−α ,ρ
b− (t1−ρx(t))

d
dt

y(t)dt.

The formula follows integrating by parts once more the last integral. �

4. The Gronwall inequality

The Gronwall inequality plays a central role in the theory of differential equations,
since it allows to estimate the difference between two solutions of two differential equa-
tions ẋ(t) = f (t,x(t)) and ẋ(t) = g(t,x(t)) , in terms of the difference of the two initial
conditions for each of the two differential equations, and the difference between the two
dynamic equations f and g (see e.g. [6]). Recently, the Gronwall inequality has been
generalized for the study of fractional differential equations, with dependence on the
Riemann–Liouville fractional derivative [31] and for the Hadamard fractional deriva-
tive [11]. Here we present a more general form, valid for the Katugampola fractional
derivative.
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THEOREM 8. Let u,v be two integrable functions and g a continuous function,
with domain [a,b] . Assume that

1. u and v are nonnegative;

2. g is nonnegative and nondecreasing.

If

u(t) � v(t)+g(t)ρ1−α
∫ t

a
τρ−1(tρ − τρ)α−1u(τ)dτ, ∀t ∈ [a,b],

then

u(t) � v(t)+
∫ t

a

∞

∑
k=1

ρ1−kα(g(t)Γ(α))k

Γ(kα)
τρ−1(tρ − τρ)kα−1v(τ)dτ, ∀t ∈ [a,b].

In addition, if v is nondecreasing, then

u(t) � v(t)Eα

[
g(t)Γ(α)

(
tρ −aρ

ρ

)α]
, ∀t ∈ [a,b].

Proof. Define the functional

Ψx = g(t)ρ1−α
∫ t

a
τρ−1(tρ − τρ)α−1x(τ)dτ.

Then u(t) � v(t)+ Ψu(t) . Iterating consecutively, we obtain for n ∈ N ,

u(t) �
n−1

∑
k=0

Ψkv(t)+ Ψnu(t).

Let us prove, by mathematical induction, that if x is a nonnegative function, then

Ψkx(t) � ρ1−kα
∫ t

a

(g(t)Γ(α))k

Γ(kα)
τρ−1(tρ − τρ)kα−1x(τ)dτ.

For k = 1 is obvious. Suppose that the formula if valid for k ∈ N . Then,

Ψk+1x(t) = ΨΨkx(t)

� g(t)ρ1−α
∫ t

a
τρ−1(tρ − τρ)α−1ρ1−kα

×
∫ τ

a

(g(τ)Γ(α))k

Γ(kα)
sρ−1(τρ − sρ)kα−1x(s)dsdτ.

Since g is nondecreasing, g(τ) � g(t) , for all τ � t , and so

Ψk+1x(t) � (g(t))k+1ρ2−(k+1)α (Γ(α))k

Γ(kα)

×
∫ t

a

∫ τ

a
τρ−1(tρ − τρ)α−1sρ−1(τρ − sρ)kα−1x(s)dsdτ.
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Using the Dirichlet’s formula, we get

Ψk+1x(t) � (g(t))k+1ρ2−(k+1)α (Γ(α))k

Γ(kα)

×
∫ t

a
τρ−1x(τ)

∫ t

τ
sρ−1(tρ − sρ)α−1(sρ − τρ)kα−1 dsdτ.

Evaluating the inner integral in a similar way as was done in the proof of Theorem 5,
we obtain∫ t

τ
sρ−1(tρ − sρ)α−1(sρ − τρ)kα−1 ds =

Γ(α)Γ(kα)
ρΓ(kα + α)

(tρ − τρ)(k+1)α−1.

Then,

Ψk+1x(t) � ρ1−(k+1)α
∫ t

a

(g(t)Γ(α))k+1

Γ((k+1)α)
τρ−1(tρ − τρ)(k+1)α−1x(τ)dτ,

proving the desired. Let us prove now that Ψnu(t) → 0 as n → ∞ . First, using the
continuity of g in the interval [a,b] , we ensure the existence of a constant M > 0 such
that g(t) � M , for all t ∈ [a,b] . Then

0 � Ψnu(t) � ρ1−nα
∫ t

a

(MΓ(α))n

Γ(nα)
τρ−1(tρ − τρ)nα−1u(τ)dτ.

Consider the series
∞

∑
n=1

(MΓ(α))n

Γ(nα)
.

If we apply the ratio test to the series, and the asymptotic approximation

lim
n→∞

Γ(nα)(nα)α

Γ(nα + α)
= 1,

we get

lim
n→∞

Γ(nα)
Γ(nα + α)

= 0.

Thus, the series converges and therefore Ψnu(t)→ 0 as n→∞ . In conclusion, we have

u(t) �
∞

∑
k=0

Ψkv(t) � v(t)+
∫ t

a

∞

∑
k=1

ρ1−kα(g(t)Γ(α))k

Γ(kα)
τρ−1(tρ − τρ)kα−1v(τ)dτ.

For the second case, suppose now that v is nondecreasing. So, for all τ ∈ [a,t] , we
have v(τ) � v(t) and so

u(t) � v(t)

[
1+

∞

∑
k=1

ρ1−kα(g(t)Γ(α))k

Γ(kα)

∫ t

a
τρ−1(tρ − τρ)kα−1 dτ

]

= v(t)

[
1+

∞

∑
k=1

ρ−kα(g(t)Γ(α)(tρ −aρ)α)k

Γ(kα +1)

]

= v(t)Eα

[
g(t)Γ(α)

(
tρ −aρ

ρ

)α]
. �
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For the right fractional operator, the following result is proven in a similar way.

THEOREM 9. Let u,v be two integrable functions and g a continuous function,
with domain [a,b] . Assume that

1. u and v are nonnegative;

2. g is nonnegative and nonincreasing.

If

u(t) � v(t)+g(t)ρ1−α
∫ b

t
τρ−1(τρ − tρ)α−1u(τ)dτ, ∀t ∈ [a,b],

then

u(t) � v(t)+
∫ b

t

∞

∑
k=1

ρ1−kα(g(t)Γ(α))k

Γ(kα)
τρ−1(τρ − tρ)kα−1v(τ)dτ, ∀t ∈ [a,b].

In addition, if v is nonincreasing, then

u(t) � v(t)Eα

[
g(t)Γ(α)

(
bρ − tρ

ρ

)α]
, ∀t ∈ [a,b].

Using the Gronwall inequality, we can relate solutions of two fractional differential
equations. Consider the following fractional differential equation{

CD
α ,ρ
a+ x(t) = f (t,x(t))

x(i)(a) = xi
a, i = 0, . . . ,n−1,

(3)

where f : [a,b]×R→R is a continuous function, α ∈ (n−1,n) and xi
a are fixed reals,

for i = 0, . . . ,n−1. Applying the fractional integral operator I
α ,ρ
a+ to both sides of the

fractional differential equation in system (3) and using Theorem 4, we get

x(t) =
n−1

∑
k=0

ρ−k

k!
(tρ −aρ)kx(k)(a)+I

α ,ρ
a+ f (t,x(t))

=
n−1

∑
k=0

ρ−k

k!
(tρ −aρ)kx(k)(a)+

ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1 f (τ,x(τ))dτ.

(4)

Conversely, if x satisfies Equation (4), then x satisfies system (3). This is proven
applying the fractional derivative operator CDα ,ρ

a+ to both sides of Equation (4), using
Theorem 5 and the formula

CD
α ,ρ
a+ (tρ −aρ)k = 0, ∀k ∈ {0,1, . . . ,n−1}.

THEOREM 10. Let f ,g : [a,b]×R → R be two continuous functions, and x,y
solutions of the two following systems{

CD
α ,ρ
a+ x(t) = f (t,x(t))

x(i)(a) = xi
a, i = 0, . . . ,n−1,
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and {
CD

α ,ρ
a+ y(t) = g(t,y(t))

y(i)(a) = yi
a, i = 0, . . . ,n−1.

Suppose that there exist

1. a positive constant C such that

|g(t,y1)−g(t,y2)| � C|y1− y2|, ∀t ∈ [a,b]∀y1,y2 ∈ R;

2. a continuous function ψ : [a,b]→ R
+
0 such that

| f (t,x(t))−g(t,x(t))| � ψ(t), ∀t ∈ [a,b].

Define the function v : [a,b] → R by

v(t) =
n−1

∑
k=0

ρ−k

k!
(tρ −aρ)k

∣∣x(k)(a)− y(k)(a)
∣∣+ ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1ψ(τ)dτ.

Then, for all t ∈ [a,b] ,

|x(t)− y(t)|� v(t)+
∫ t

a

∞

∑
k=1

ρ1−kαCk

Γ(kα)
τρ−1(tρ − τρ)kα−1v(τ)dτ.

Proof. Define u(t) = |x(t)− y(t)| . Then

u(t) �
n−1

∑
k=0

ρ−k

k!
(tρ −aρ)k

∣∣x(k)(a)− y(k)(a)
∣∣

+
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1| f (τ,x(τ))−g(τ,y(τ))|dτ

�
n−1

∑
k=0

ρ−k

k!
(tρ −aρ)k

∣∣x(k)(a)− y(k)(a)
∣∣

+
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ−τρ)α−1 (| f (τ,x(τ))−g(τ,x(τ))|+|g(τ,x(τ))−g(τ,y(τ))|)dτ.

Using the relations

| f (τ,x(τ))−g(τ,x(τ))| � ψ(τ) and |g(τ,x(τ))−g(τ,y(τ))| � C|x(τ)− y(τ)|,
and the Gronwall inequality, we prove the result. �

In particular, when g = f , we obtain a simpler formula:

|x(t)− y(t)|�
n−1

∑
k=0

ρ−k

k!
(tρ −aρ)k

∣∣x(k)(a)− y(k)(a)
∣∣

+
∫ t

a

∞

∑
k=1

ρ1−kαCk

Γ(kα)
τρ−1(tρ − τρ)kα−1

×
n−1

∑
k=0

ρ−k

k!
(τρ −aρ)k

∣∣x(k)(a)− y(k)(a)
∣∣ dτ.

(5)
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Also, from Equation (5), we see that the solution of system (3) is unique.
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