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ORLICZ–BRUNN–MINKOWSKI INEQUALITY

FOR POLAR BODIES AND DUAL STAR BODIES

YAN WANG AND QINGZHONG HUANG

(Communicated by M. A. Hernandez Cifre)

Abstract. In this paper, we establish the Orlicz-Brunn-Minkowski inequality for polar bodies
and dual star bodies. These results can be considered as ‘polar’ counterparts of the existing
Orlicz-Brunn-Minkowski inequality for convex bodies and star bodies.

1. Introduction

The classical Brunn-Minkowski inequality states that if K and L are convex bod-
ies in R

n , then
V (K +L)1/n � V (K)1/n +V(L)1/n, (1)

with equality if and only if K and L are homothetic, i.e., they coincide up to translation
and dilatation. Here K +L = {x + y : x ∈ K,y ∈ L} , and V denotes the volume. As
the cornerstone of the Brunn-Minkowski theory, the Brunn-Minkowski inequality is a
far-reaching generalization of the isoperimetric inequality.

In the early 1960’s, Firey [2] introduced the concept of Lp -addition +p . It is
defined for p � 1 by

h(K +p L,x)p = h(K,x)p +h(L,x)p, (2)

for all x ∈ R
n and K,L convex bodies in R

n containing the origin in their interior,
where h(M, ·) denotes the support function of the set M . In the same paper, the Lp -
Brunn-Minkowski inequality was established: if p � 1, and K,L are convex bodies
in R

n containing the origin in their interior, then

V (K +p L)p/n � V (K)p/n +V(L)p/n, (3)

with equality if and only if K and L are dilatates. When p = 1, (3) reduces to (1). In the
mid 1990’s, it was shown in [8, 9] that when Lp -addition is combined with volume the
result is an embryonic Lp -Brunn-Minkowski theory. This theory has expanded rapidly
and is still extensively studied (see e.g. [5, 6]).
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The dual Brunn-Minkowksi theory for star bodies was initiated by Lutwak [7] in
the 1970’s. The corresponding Lp -radial addition +̃p are defined for p ∈ R\{0} by

ρ p
K+̃pL

(x) = ρ p
K(x)+ ρ p

L (x), (4)

for x ∈ R
n\{o} and K,L ⊂ R

n star bodies with respect to the origin, where ρ(M, ·) is
the radial function of the set M . The dual Lp -Brunn-Minkowski inequality states that:
if K,L are star bodies with respect to the origin, and 0 < p � n , then

V (K+̃pL)p/n � V (K)p/n +V(L)p/n. (5)

The reverse inequality holds when either p > n or p < 0. Equality holds when p �= n if
and only if K,L are dilatates.

Let Φ2 be the set of all convex functions ϕ : [0,∞)2 → [0,∞) that are strictly in-
creasing in each component and such that ϕ(o) = 0. Let Φ̃2 be the set of all continuous
functions ϕ : [0,∞)2 → [0,∞) that are strictly increasing in each component and such
that ϕ(o) = 0 and limt→∞ ϕ(tx) = ∞ , for each x∈ [0,∞)2\{o} . Let Ψ̃2 be the set of all
continuous functions ϕ : [0,∞)2 → [0,∞) that are strictly decreasing in each component
and such that limt→0 ϕ(tx) = ∞ and limt→∞ ϕ(tx) = 0, for each x ∈ [0,∞)2\{o} .

The Orlicz-Brunn-Minkowski theory was launched by Lutwak, Yang and Zhang in
a series of papers [10, 11]. The study of the Orlicz-Brunn-Minkowski theory has been
considerably developed in the recent years (see e.g. [3, 4]). In 2014, Gardner, Hug,
and Weil [3] introduced the concept of Orlicz addition +ϕ . This is defined for ϕ ∈
Φ2 by

ϕ
( hK(x)

hK+ϕL(x)
,

hL(x)
hK+ϕL(x)

)
= 1, (6)

for x ∈ R
n and K,L convex bodies in R

n containing the origin in their interior. As
shown in [3, Lemma 4.2], this addition is well defined, i.e., K +ϕ L is a convex body.

Very recently, Gardner, Hug, Weil and Ye [4] introduced the concept of radial
Orlicz addition +̃ϕ . This is defined for ϕ ∈ Φ̃2 ∪ Ψ̃2 by

ϕ
( ρK(x)

ρK+̃ϕL(x)
,

ρL(x)
ρK+̃ϕL(x)

)
= 1, (7)

for x ∈ R
n\{o} and K,L ⊂ R

n star bodies with respect to the origin.
In [3], Gardner, Hug and Weil also established the following Orlicz-Brunn-Minkowski

inequality for convex bodies (see also Xi, Jin, Leng [15]).

THEOREM 1. Let ϕ ∈ Φ2 . If K,L are compact sets in R
n with V (K)V (L) > 0 ,

then

ϕ
(( V (K)

V (K +ϕ L)

)1/n
,
( V (L)

V (K +ϕ L)

)1/n)
� 1. (8)

When ϕ is strictly convex, equality holds if and only if K,L are convex bodies contain-
ing the origin in their interior and are dilatates of each other.
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When ϕ(x1,x2) = xp
1 +xp

2 for p � 1, Orlicz addition (6) reduce to Lp -addition (2)
and hence (8) yields (3).

The Orlicz-Brunn-Minkowski inequality for star bodies was established by Gard-
ner, Hug, Weil and Ye [4].

THEOREM 2. Let ϕ ∈ Φ̃2 ∪ Ψ̃2 and let K,L be star bodies with respect to the

origin. If ϕ0(x1,x2) = ϕ(x1/n
1 ,x1/n

2 ) is concave then

ϕ
(( V (K)

V (K+̃ϕL)

)1/n
,
( V (L)

V (K+̃ϕL)

)1/n)
� 1. (9)

If ϕ0 is convex, then the reverse inequality holds.
When ϕ0 is strictly concave (or convex, as appropriate), equality holds if and only

if K,L are dilatates.

When ϕ(x1,x2) = xp
1 +xp

2 for p∈ R\{0} , radial Orlicz addition (7) reduce to Lp -
radial addition (4) and hence (9) yields (5).

The purpose of this article is to establish the following Orlicz-Brunn-Minkowski
inequality for polar bodies and dual star bodies.

THEOREM 3. Let ϕ ∈ Φ2 . If K,L are convex bodies in R
n containing the origin

in their interior, then

ϕ
(( V (K∗)

V ([K +ϕ L]∗)

)−1/n
,
( V (L∗)

V ([K +ϕ L]∗)

)−1/n)
� 1. (10)

When ϕ is strictly convex, equality holds if and only if K,L are dilatates.

Here K∗ denotes the polar set of the convex body K . Taking ϕ(x1,x2) = xp
1 +

xp
2 for p � 1, (10) yields the following Lp -Brunn-Minkowski inequality for polar bod-

ies due to Hernández Cifre and Yepes Nicolás [6]: if p � 1, and K,L are convex bodies
in R

n containing the origin in their interior, then

V ([K +p L]∗)−p/n � V (K∗)−p/n +V(L∗)−p/n, (11)

with equality if and only if K and L are dilatates. This inequality for p = 1 was ob-
tained by Firey [1] in 1961. Moreover, Saroglou [14] recently established this inequality
for p � 0.

THEOREM 4. Let ϕ ∈ Φ̃2 ∪ Ψ̃2 and let K,L be star bodies with respect to the

origin. If ψ0(x1,x2) = ϕ(x−1/n
1 ,x−1/n

2 ) is concave then

ϕ
(( V (Ko)

V ([K+̃ϕL]o)

)−1/n
,
( V (Lo)

V ([K+̃ϕL]o)

)−1/n)
� 1.

If ψ0 is convex, then the reverse inequality holds.
When ψ0 is strictly concave (or convex, as appropriate), equality holds if and only

if K,L are dilatates.
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Here Ko denotes the dual star body of the body K . Taking ϕ(x1,x2) = xp
1 +

xp
2 for p ∈ R\{0} , we get the Lp -Brunn-Minkowski inequality for dual star bodies:

COROLLARY 1. If K,L are star bodies with respect to the origin, then, for −n �
p < 0 ,

V ([K+̃pL]o)−p/n � V (Ko)−p/n +V(Lo)−p/n.

The reverse inequality holds when either p < −n or p > 0 . Equality holds when p �=
−n if and only if K,L are dilatates.

2. Proof of the main results

A convex body is a compact convex set of R
n with nonempty interior. For a

convex body K , the support function hK(·) : R
n → R is defined by hK(x) = sup{x · y :

y ∈ K}, where x · y denotes the standard inner product of x and y in R
n .

A compact set K ⊂ R
n is a star-shaped set (with respect to the origin) if the in-

tersection of every straight line through the origin with K is a line segment. Given a
compact star-shaped set K ⊂ R

n (with respect to the origin), the radial function ρK(·) :
R

n\{o} → R is defined by ρK(x) = max{λ � 0 : λx ∈ K} . If ρK is strictly positive
and continuous, then we call K a star body (with respect to the origin).

The polar set K∗ of a convex body K containing the origin in its interior is the
convex body defined by

K∗ = {x ∈ R
n : x · y � 1 for all y ∈ K}.

In this case, for every x ∈ R
n\{o} ,

hK∗(x) =
1

ρK(x)
. (12)

The possible way to define the ‘polar’ body of a star body K was provided by
Moszyńska [12] (see also [13]). Let i : R

n\{o}→ R
n\{o} be defined by

i(x) :=
x
|x|2 .

Moszyńska [12] introduced the dual star body Ko of a star body K as

Ko = cl(Rn\i(K)),

where cl denotes the closure of the given set. It is easy to verify that for every u ∈
Sn−1 (see [12]),

ρKo(u) =
1

ρK(u)
. (13)

In particular, if K is a convex body in R
n that contains the origin in its interior, then

K∗ ⊂ Ko



OBM INEQUALITY FOR POLAR BODIES AND DUAL STAR BODIES 1143

and K∗ = Ko if and only if K is a centered ball (see [12]).
After these preparations, we now prove our main results by using Theorem 2.

Proof of Theorem 3. Let ψ(x1,x2)= ϕ(x−1
1 ,x−1

2 ) . It follows from ϕ ∈Φ2 that ψ is
convex and strictly decreasing in each component, and furthermore ψ ∈ Φ̃2∪Ψ̃2 . Con-

sequently, ψ0(x1,x2) = ψ(x1/n
1 ,x1/n

2 ) is convex. On the other hand, by (6) and (12), we
have

1 = ϕ
( hK(x)

hK+ϕL(x)
,

hL(x)
hK+ϕL(x)

)

= ψ
(hK+ϕL(x)

hK(x)
,
hK+ϕL(x)

hL(x)

)
= ψ

( ρK∗(x)
ρ[K+ϕL]∗(x)

,
ρL∗(x)

ρ[K+ϕL]∗(x)

)
,

for x ∈ R
n\{o} . Then, it follows from the definition of the radial Orlicz addition

(7) that
[K +ϕ L]∗ = K∗+̃ψL∗. (14)

Using Theorem 2 with ψ ,K∗,L∗ in the place of ϕ ,K,L , respectively, we immedi-
ately get

1 � ψ
(( V (K∗)

V (K∗+̃ψL∗)

)1/n
,
( V (L∗)

V (K∗+̃ψL∗)

)1/n)

= ϕ
(( V (K∗)

V ([K +ϕ L]∗)

)−1/n
,
( V (L∗)

V ([K +ϕ L]∗)

)−1/n)
.

The equality case follows from the equality case of Theorem 2. �

For the Lp -case, relation (14) can be interpreted as [K+p L]∗ = K∗+̃−pL∗ for p �
1, and hence inequality (11) can be deduced from (5).

We shall mention that another proof of Theorem 3 can be obtained with the ap-
proach followed in Section 7 of [3] together with (11) for p = 1.

Proof of Theorem 4. Without loss of generality, we may consider the case in which

ϕ ∈ Φ̃2 and ψ0(x1,x2) = ϕ(x−1/n
1 ,x−1/n

2 ) is concave. Then ψ(x1,x2) = ϕ(x−1
1 ,x−1

2 ) ∈
Ψ̃2 . On the other hand, by (7), (13) and the fact that the radial functions are homoge-
neous of degree −1, we have

1 = ϕ
( ρK(x)

ρK+̃ϕL(x)
,

ρL(x)
ρK+̃ϕL(x)

)
= ϕ

( ρK(u)
ρK+̃ϕ L(u)

,
ρL(u)

ρK+̃ϕL(u)

)

= ψ
(ρK+̃ϕL(u)

ρK(u)
,

ρK+̃ϕL(u)

ρL(u)

)

= ψ
( ρKo(u)

ρ[K+̃ϕL]o(u)
,

ρLo(u)
ρ[K+̃ϕ L]o(u)

)
= ψ

( ρKo(x)
ρ[K+̃ϕL]o(x)

,
ρLo(x)

ρ[K+̃ϕ L]o(x)

)
,
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for x = ru in polar coordinates. Then, it follows from the definition of the radial Orlicz
addition (7) that

[K+̃ϕL]o = Ko+̃ψLo.

Using Theorem 2 with ψ ,Ko,Lo in the place of ϕ ,K,L , respectively, we immedi-
ately get

1 � ψ
(( V (Ko)

V (Ko+̃ψLo)

)1/n
,
( V (Lo)

V (Ko+̃ψLo)

)1/n)

= ϕ
(( V (Ko)

V ([K+̃ϕL]o)

)−1/n
,
( V (Lo)

V ([K+̃ϕL]o)

)−1/n)
.

The equality case follows from the equality case of Theorem 2. �
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