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ORLICZ-BRUNN-MINKOWSKI INEQUALITY
FOR POLAR BODIES AND DUAL STAR BODIES

YAN WANG AND QINGZHONG HUANG

(Communicated by M. A. Hernandez Cifre)

Abstract. In this paper, we establish the Orlicz-Brunn-Minkowski inequality for polar bodies
and dual star bodies. These results can be considered as ‘polar’ counterparts of the existing
Orlicz-Brunn-Minkowski inequality for convex bodies and star bodies.

1. Introduction

The classical Brunn-Minkowski inequality states that if K and L are convex bod-
ies in R”, then
VK+L)! "> VK v ), (1)

with equality if and only if K and L are homothetic, i.e., they coincide up to translation
and dilatation. Here K+ L ={x+y:x€ K,y € L}, and V denotes the volume. As
the cornerstone of the Brunn-Minkowski theory, the Brunn-Minkowski inequality is a
far-reaching generalization of the isoperimetric inequality.

In the early 1960’s, Firey [2] introduced the concept of L,-addition +,. It is
defined for p > 1 by

h(K+p,L,x)? = h(K,x)? +h(L,x)?, 2)

for all x € R" and K,L convex bodies in R” containing the origin in their interior,
where h(M,-) denotes the support function of the set M. In the same paper, the L,-
Brunn-Minkowski inequality was established: if p > 1, and K,L are convex bodies
in R" containing the origin in their interior, then

V(K 4, L)P/" > V(K)P/" -V (L)P/", 3)

with equality if and only if K and L are dilatates. When p =1, (3) reduces to (1). In the
mid 1990’s, it was shown in [8, 9] that when L, -addition is combined with volume the
result is an embryonic L, -Brunn-Minkowski theory. This theory has expanded rapidly
and is still extensively studied (see e.g. [5, 6]).
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The dual Brunn-Minkowksi theory for star bodies was initiated by Lutwak [7] in
the 1970’s. The corresponding L, -radial addition +, are defined for p € R\{0} by

Pt %) = Pk (x) +pL (), )

for x e R"\{o} and K,L C R" star bodies with respect to the origin, where p(M,-) is
the radial function of the set M. The dual L,-Brunn-Minkowski inequality states that:
if K,L are star bodies with respect to the origin, and 0 < p < n, then

V(KT ,L)P" < V(K" V(L)P". (5)

The reverse inequality holds when either p > n or p < 0. Equality holds when p # n if
and only if K, L are dilatates.

Let @, be the set of all convex functions ¢ : [0,00)> — [0,0) that are strictly in-
creasing in each component and such that ¢(0) =0. Let @, be the set of all continuous
functions @ : [0,00)> — [0,0) that are strictly increasing in each component and such
that @(0) =0 and lim, ... (tx) = oo, for each x € [0,0)2\{o}. Let ¥, be the set of all
continuous functions @ : [0,50)% — [0, o) that are strictly decreasing in each component
and such that lim, o @(tx) = oo and lim, ... ¢(tx) = 0, for each x € [0,)?\{0}.

The Orlicz-Brunn-Minkowski theory was launched by Lutwak, Yang and Zhang in
a series of papers [10, 11]. The study of the Orlicz-Brunn-Minkowski theory has been
considerably developed in the recent years (see e.g. [3, 4]). In 2014, Gardner, Hug,
and Weil [3] introduced the concept of Orlicz addition +,. This is defined for ¢ €
D, by

< hK(x) hL(x) ) _ 17 (6)

i oL(x) ’ i oL(x)

for x € R” and K,L convex bodies in R" containing the origin in their interior. As
shown in [3, Lemma 4.2], this addition is well defined, i.e., K +¢ L is a convex body.

Very recently, Gardner, Hug, Weil and Ye [4] introduced the concept of radial
Orlicz addition + . This is defined for ¢ € ®, U, by

px(x)  prlx) \ _
<pK;q,L(x> ’ pK;(pL(;q) =1, ™)

for x € R"\{o} and K,L C R" star bodies with respect to the origin.
In [3], Gardner, Hug and Weil also established the following Orlicz-Brunn-Minkowski
inequality for convex bodies (see also Xi, Jin, Leng [15]).

THEOREM 1. Let ¢ € @,. If K,L are compact sets in R" with V(K)V (L) >0,

then
¢(<‘/(IZ(7412Q>1/n’(‘/(Z(74%>1/n> <L (8)

When @ is strictly convex, equality holds if and only if K,L are convex bodies contain-
ing the origin in their interior and are dilatates of each other.
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When @ (x1,x2) = x{ +x4 for p > 1, Orlicz addition (6) reduce to L,-addition (2)
and hence (8) yields (3).

The Orlicz-Brunn-Minkowski inequality for star bodies was established by Gard-
ner, Hug, Weil and Ye [4].

THEOREM 2. Let ¢ € &)2 Uq’z and let K,L be star bodies with respect to the

origin. If @y(x1,x2) = (p(x}/n,xé/n) is concave then

V(K 1/n V(L 1/n
o((ern) () )=t ©
V(K+¢L) V(K+¢L)
If @o is convex, then the reverse inequality holds.

When @y is strictly concave (or convex, as appropriate), equality holds if and only
if K,L are dilatates.

When ¢(x1,x2) =x{ +x5 for p € R\{0}, radial Orlicz addition (7) reduce to L,-
radial addition (4) and hence (9) yields (5).

The purpose of this article is to establish the following Orlicz-Brunn-Minkowski
inequality for polar bodies and dual star bodies.

THEOREM 3. Let ¢ € @,. If K, L are convex bodies in R" containing the origin
in their interior, then

* —1/n * —1/n
e Gaeom) )<t

When @ is strictly convex, equality holds if and only if K, L are dilatates.

Here K* denotes the polar set of the convex body K. Taking @(x1,x;) = x’f +
x4 for p > 1, (10) yields the following L, -Brunn-Minkowski inequality for polar bod-
ies due to Herndndez Cifre and Yepes Nicolds [6]: if p > 1, and K, L are convex bodies
in R" containing the origin in their interior, then

V(K+, L") /" = V(K*) Pl v (L) —rin, (11)

with equality if and only if K and L are dilatates. This inequality for p =1 was ob-
tained by Firey [1]in 1961. Moreover, Saroglou [ 14] recently established this inequality
for p > 0.

THEOREM 4. Let ¢ € &)2 Uq’2 and let K,L be star bodies with respect to the
.. —1/n _—1/n
origin. If Wo(x,x2) = o(x /"5 ")

VK?) \-Un ; V(IO \-Un
(Gwnm)  WEnm) )

If yy is convex, then the reverse inequality holds.
When vy is strictly concave (or convex, as appropriate), equality holds if and only
if K,L are dilatates.

X is concave then



1142 Y. WANG AND Q. HUANG

Here K° denotes the dual star body of the body K. Taking ¢(xj,x2) = x{ +
x4 for p € R\{0}, we get the L,-Brunn-Minkowski inequality for dual star bodies:

COROLLARY 1. If K,L are star bodies with respect to the origin, then, for —n <
p <0, N
V(KT L) /" < V(K) P v(L) oI

The reverse inequality holds when either p < —n or p > 0. Equality holds when p #
—n ifand only if K,L are dilatates.

2. Proof of the main results

A convex body is a compact convex set of R" with nonempty interior. For a
convex body K, the support function Ag(-) : R” — R is defined by hg(x) = sup{x-y:
y € K}, where x-y denotes the standard inner product of x and y in R”".

A compact set K C R" is a star-shaped set (with respect to the origin) if the in-
tersection of every straight line through the origin with K is a line segment. Given a
compact star-shaped set K C R" (with respect to the origin), the radial function pg(-) :
R"\{o} — R is defined by px(x) = max{A > 0:Ax € K}. If pg is strictly positive
and continuous, then we call K a star body (with respect to the origin).

The polar set K* of a convex body K containing the origin in its interior is the
convex body defined by

K'={xeR":x-y<1forallyeK}.
In this case, for every x € R"\{o},

1
hgs(x) = ——. 12
K+ (%) e (12)
The possible way to define the ‘polar’ body of a star body K was provided by
Moszyrniska [12] (see also [13]). Let i : R"\{o} — R"\{o} be defined by

. X

l(x) = W

Moszyriska [12] introduced the dual star body K of a star body K as
K? = cl(®R"\i(K)),

where cl denotes the closure of the given set. It is easy to verify that for every u €
s (see [12]),
1

P (u)
In particular, if K is a convex body in R" that contains the origin in its interior, then

Pk (u) : 13)

K" CK’
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and K* = K if and only if K is a centered ball (see [12]).
After these preparations, we now prove our main results by using Theorem 2.

Proof of Theorem 3. Let y(x1,x2) = @(x; ', x; ). It follows from ¢ € @, that v is

convex and strictly decreasing in each component, and furthermore y € @, UW,. Con-

sequently, Wy (x1,x2) = l//(x}/ " x2 ") is convex. On the other hand, by (6) and (12), we

have

o rhsgL(x) hK+ oL(X) Pr=(x) pr(x)
B V/( L(x) ) B l//(P[KJN,,L]*(X)’P[K+(,,L]*(X))7

for x € R"\{o}. Then, it follows from the definition of the radial Orlicz addition
(7) that
K 4o L]" = K*FyL". (14)

Using Theorem 2 with y, K*,L* in the place of ¢, K, L, respectively, we immedi-

ately get
V(K*) \Un o V(LY \Un
2 W<(V(K*—~h,,L*)> 7<V(K*—T—1,,L*)> )
* —1/n * —1/n
- "’((v([?f&}*)) ’(v([g(f(p)w)) )

The equality case follows from the equality case of Theorem 2. [

For the L, -case, relation (14) can be interpreted as [K +, L]* = K*+_,L* for p >
1, and hence inequality (11) can be deduced from (5).

We shall mention that another proof of Theorem 3 can be obtained with the ap-
proach followed in Section 7 of [3] together with (11) for p=1.

Proof of Theorem 4. Without loss of generality, we may consider the case in which
@ € @, and yo(x1,x)) = (x; /" x; /") is concave. Then w(x;,x,) = o(x;',x; 1) €
@2_ On the other hand, by (7), (13) and the fact that the radial functions are homoge-
neous of degree —1, we have

1:(p< Pk (x) X)x)> (p< pL(u)))

pK+<pL(x PxFoL pK+(pL ) pKTrq;L(”

k(u) " pr(u)
pxo(u) pro(u
p[K—h,,L]”( u)' p PkF oL

_ l//(PK+(,,L(“ PK+(,,L(“ )
v )

u)>_"’( pfo(x) , pNLO(X)x)>’

PikF oLl () p[K+<pL]"(
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for x = ru in polar coordinates. Then, it follows from the definition of the radial Orlicz
addition (7) that

[K:Fq)L]() _ K():F],/LO.
Using Theorem 2 with y,K?,L° in the place of ¢, K, L, respectively, we immedi-

ately get

V(K®) \l/n V(L®) \ln
<W<<V(K0—T—1,,L0)> ’<V(K0—T-WL0)> )

VK?) \-Un ; V(o) \-Un
=o(Giwry)  Grgm) )

The equality case follows from the equality case of Theorem 2. [
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