ORLICZ-BRUNN-MINKOWSKI INEQUALITY FOR POLAR BODIES AND DUAL STAR BODIES

Yan Wang and Qingzhong Huang

(Communicated by M. A. Hernandez Cifre)

Abstract

In this paper, we establish the Orlicz-Brunn-Minkowski inequality for polar bodies and dual star bodies. These results can be considered as 'polar' counterparts of the existing Orlicz-Brunn-Minkowski inequality for convex bodies and star bodies.

1. Introduction

The classical Brunn-Minkowski inequality states that if K and L are convex bodies in \mathbb{R}^{n}, then

$$
\begin{equation*}
V(K+L)^{1 / n} \geqslant V(K)^{1 / n}+V(L)^{1 / n} \tag{1}
\end{equation*}
$$

with equality if and only if K and L are homothetic, i.e., they coincide up to translation and dilatation. Here $K+L=\{x+y: x \in K, y \in L\}$, and V denotes the volume. As the cornerstone of the Brunn-Minkowski theory, the Brunn-Minkowski inequality is a far-reaching generalization of the isoperimetric inequality.

In the early 1960's, Firey [2] introduced the concept of L_{p}-addition $+_{p}$. It is defined for $p \geqslant 1$ by

$$
\begin{equation*}
h\left(K+{ }_{p} L, x\right)^{p}=h(K, x)^{p}+h(L, x)^{p}, \tag{2}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ and K, L convex bodies in \mathbb{R}^{n} containing the origin in their interior, where $h(M, \cdot)$ denotes the support function of the set M. In the same paper, the $L_{p}{ }^{-}$ Brunn-Minkowski inequality was established: if $p \geqslant 1$, and K, L are convex bodies in \mathbb{R}^{n} containing the origin in their interior, then

$$
\begin{equation*}
V\left(K+{ }_{p} L\right)^{p / n} \geqslant V(K)^{p / n}+V(L)^{p / n}, \tag{3}
\end{equation*}
$$

with equality if and only if K and L are dilatates. When $p=1$, (3) reduces to (1). In the mid 1990's, it was shown in $[8,9]$ that when L_{p}-addition is combined with volume the result is an embryonic L_{p}-Brunn-Minkowski theory. This theory has expanded rapidly and is still extensively studied (see e.g. [5, 6]).

[^0]The dual Brunn-Minkowksi theory for star bodies was initiated by Lutwak [7] in the 1970's. The corresponding L_{p}-radial addition $\tilde{+}_{p}$ are defined for $p \in \mathbb{R} \backslash\{0\}$ by

$$
\begin{equation*}
\rho_{K \widetilde{+}}^{p L} \text { }(x)=\rho_{K}^{p}(x)+\rho_{L}^{p}(x) \tag{4}
\end{equation*}
$$

for $x \in \mathbb{R}^{n} \backslash\{o\}$ and $K, L \subset \mathbb{R}^{n}$ star bodies with respect to the origin, where $\rho(M, \cdot)$ is the radial function of the set M. The dual L_{p}-Brunn-Minkowski inequality states that: if K, L are star bodies with respect to the origin, and $0<p \leqslant n$, then

$$
\begin{equation*}
V\left(K \widetilde{+}_{p} L\right)^{p / n} \leqslant V(K)^{p / n}+V(L)^{p / n} \tag{5}
\end{equation*}
$$

The reverse inequality holds when either $p>n$ or $p<0$. Equality holds when $p \neq n$ if and only if K, L are dilatates.

Let Φ_{2} be the set of all convex functions $\varphi:[0, \infty)^{2} \rightarrow[0, \infty)$ that are strictly increasing in each component and such that $\varphi(o)=0$. Let $\widetilde{\Phi}_{2}$ be the set of all continuous functions $\varphi:[0, \infty)^{2} \rightarrow[0, \infty)$ that are strictly increasing in each component and such that $\varphi(o)=0$ and $\lim _{t \rightarrow \infty} \varphi(t x)=\infty$, for each $x \in[0, \infty)^{2} \backslash\{o\}$. Let $\widetilde{\Psi}_{2}$ be the set of all continuous functions $\varphi:[0, \infty)^{2} \rightarrow[0, \infty)$ that are strictly decreasing in each component and such that $\lim _{t \rightarrow 0} \varphi(t x)=\infty$ and $\lim _{t \rightarrow \infty} \varphi(t x)=0$, for each $x \in[0, \infty)^{2} \backslash\{o\}$.

The Orlicz-Brunn-Minkowski theory was launched by Lutwak, Yang and Zhang in a series of papers $[10,11]$. The study of the Orlicz-Brunn-Minkowski theory has been considerably developed in the recent years (see e.g. [3, 4]). In 2014, Gardner, Hug, and Weil [3] introduced the concept of Orlicz addition $+{ }_{\varphi}$. This is defined for $\varphi \in$ Φ_{2} by

$$
\begin{equation*}
\varphi\left(\frac{h_{K}(x)}{h_{K+\varphi} L(x)}, \frac{h_{L}(x)}{h_{K+\varphi} L}(x) \quad=1\right. \tag{6}
\end{equation*}
$$

for $x \in \mathbb{R}^{n}$ and K, L convex bodies in \mathbb{R}^{n} containing the origin in their interior. As shown in [3, Lemma 4.2], this addition is well defined, i.e., $K+{ }_{\varphi} L$ is a convex body.

Very recently, Gardner, Hug, Weil and Ye [4] introduced the concept of radial Orlicz addition $\widetilde{+}_{\varphi}$. This is defined for $\varphi \in \widetilde{\Phi}_{2} \cup \widetilde{\Psi}_{2}$ by

$$
\begin{equation*}
\varphi\left(\frac{\rho_{K}(x)}{\rho_{K \tilde{+}}^{\varphi} L}(x), \frac{\rho_{L}(x)}{\rho_{K \tilde{+}_{\varphi} L}(x)}\right)=1 \tag{7}
\end{equation*}
$$

for $x \in \mathbb{R}^{n} \backslash\{o\}$ and $K, L \subset \mathbb{R}^{n}$ star bodies with respect to the origin.
In [3], Gardner, Hug and Weil also established the following Orlicz-Brunn-Minkowski inequality for convex bodies (see also Xi, Jin, Leng [15]).

THEOREM 1. Let $\varphi \in \Phi_{2}$. If K, L are compact sets in \mathbb{R}^{n} with $V(K) V(L)>0$, then

$$
\begin{equation*}
\varphi\left(\left(\frac{V(K)}{V\left(K+{ }_{\varphi} L\right)}\right)^{1 / n},\left(\frac{V(L)}{V\left(K+{ }_{\varphi} L\right)}\right)^{1 / n}\right) \leqslant 1 \tag{8}
\end{equation*}
$$

When φ is strictly convex, equality holds if and only if K, L are convex bodies containing the origin in their interior and are dilatates of each other.

When $\varphi\left(x_{1}, x_{2}\right)=x_{1}^{p}+x_{2}^{p}$ for $p \geqslant 1$, Orlicz addition (6) reduce to L_{p}-addition (2) and hence (8) yields (3).

The Orlicz-Brunn-Minkowski inequality for star bodies was established by Gardner, Hug, Weil and Ye [4].

THEOREM 2. Let $\varphi \in \widetilde{\Phi}_{2} \cup \widetilde{\Psi}_{2}$ and let K, L be star bodies with respect to the origin. If $\varphi_{0}\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}^{1 / n}, x_{2}^{1 / n}\right)$ is concave then

$$
\begin{equation*}
\varphi\left(\left(\frac{V(K)}{V\left(K_{\varphi} L\right)}\right)^{1 / n},\left(\frac{V(L)}{V\left(K_{\varphi} L\right)}\right)^{1 / n}\right) \geqslant 1 \tag{9}
\end{equation*}
$$

If φ_{0} is convex, then the reverse inequality holds.
When φ_{0} is strictly concave (or convex, as appropriate), equality holds if and only if K, L are dilatates.

When $\varphi\left(x_{1}, x_{2}\right)=x_{1}^{p}+x_{2}^{p}$ for $p \in \mathbb{R} \backslash\{0\}$, radial Orlicz addition (7) reduce to $L_{p^{-}}$radial addition (4) and hence (9) yields (5).

The purpose of this article is to establish the following Orlicz-Brunn-Minkowski inequality for polar bodies and dual star bodies.

THEOREM 3. Let $\varphi \in \Phi_{2}$. If K, L are convex bodies in \mathbb{R}^{n} containing the origin in their interior, then

$$
\begin{equation*}
\varphi\left(\left(\frac{V\left(K^{*}\right)}{V\left(\left[K+{ }_{\varphi} L\right]^{*}\right)}\right)^{-1 / n},\left(\frac{V\left(L^{*}\right)}{V\left(\left[K+{ }_{\varphi} L\right]^{*}\right)}\right)^{-1 / n}\right) \leqslant 1 \tag{10}
\end{equation*}
$$

When φ is strictly convex, equality holds if and only if K, L are dilatates.
Here K^{*} denotes the polar set of the convex body K. Taking $\varphi\left(x_{1}, x_{2}\right)=x_{1}^{p}+$ x_{2}^{p} for $p \geqslant 1$, (10) yields the following L_{p}-Brunn-Minkowski inequality for polar bodies due to Hernández Cifre and Yepes Nicolás [6]: if $p \geqslant 1$, and K, L are convex bodies in \mathbb{R}^{n} containing the origin in their interior, then

$$
\begin{equation*}
V\left(\left[K+{ }_{p} L\right]^{*}\right)^{-p / n} \geqslant V\left(K^{*}\right)^{-p / n}+V\left(L^{*}\right)^{-p / n} \tag{11}
\end{equation*}
$$

with equality if and only if K and L are dilatates. This inequality for $p=1$ was obtained by Firey [1] in 1961. Moreover, Saroglou [14] recently established this inequality for $p \geqslant 0$.

THEOREM 4. Let $\varphi \in \widetilde{\Phi}_{2} \cup \widetilde{\Psi}_{2}$ and let K, L be star bodies with respect to the origin. If $\psi_{0}\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}^{-1 / n}, x_{2}^{-1 / n}\right)$ is concave then

$$
\varphi\left(\left(\frac{V\left(K^{o}\right)}{V\left([K \widetilde{+} L]^{o}\right)}\right)^{-1 / n},\left(\frac{V\left(L^{o}\right)}{V\left(\left[K \widetilde{+}_{\varphi} L\right]^{o}\right)}\right)^{-1 / n}\right) \geqslant 1
$$

If ψ_{0} is convex, then the reverse inequality holds.
When ψ_{0} is strictly concave (or convex, as appropriate), equality holds if and only if K, L are dilatates.

Here K^{o} denotes the dual star body of the body K. Taking $\varphi\left(x_{1}, x_{2}\right)=x_{1}^{p}+$ x_{2}^{p} for $p \in \mathbb{R} \backslash\{0\}$, we get the L_{p}-Brunn-Minkowski inequality for dual star bodies:

COROLLARY 1. If K, L are star bodies with respect to the origin, then, for $-n \leqslant$ $p<0$,

$$
V\left(\left[K \widetilde{+}_{p} L\right]^{o}\right)^{-p / n} \leqslant V\left(K^{o}\right)^{-p / n}+V\left(L^{o}\right)^{-p / n} .
$$

The reverse inequality holds when either $p<-n$ or $p>0$. Equality holds when $p \neq$ $-n$ if and only if K, L are dilatates.

2. Proof of the main results

A convex body is a compact convex set of \mathbb{R}^{n} with nonempty interior. For a convex body K, the support function $h_{K}(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by $h_{K}(x)=\sup \{x \cdot y$: $y \in K\}$, where $x \cdot y$ denotes the standard inner product of x and y in \mathbb{R}^{n}.

A compact set $K \subset \mathbb{R}^{n}$ is a star-shaped set (with respect to the origin) if the intersection of every straight line through the origin with K is a line segment. Given a compact star-shaped set $K \subset \mathbb{R}^{n}$ (with respect to the origin), the radial function $\rho_{K}(\cdot)$: $\mathbb{R}^{n} \backslash\{o\} \rightarrow \mathbb{R}$ is defined by $\rho_{K}(x)=\max \{\lambda \geqslant 0: \lambda x \in K\}$. If ρ_{K} is strictly positive and continuous, then we call K a star body (with respect to the origin).

The polar set K^{*} of a convex body K containing the origin in its interior is the convex body defined by

$$
K^{*}=\left\{x \in \mathbb{R}^{n}: x \cdot y \leqslant 1 \text { for all } y \in K\right\} .
$$

In this case, for every $x \in \mathbb{R}^{n} \backslash\{o\}$,

$$
\begin{equation*}
h_{K^{*}}(x)=\frac{1}{\rho_{K}(x)} \tag{12}
\end{equation*}
$$

The possible way to define the 'polar' body of a star body K was provided by Moszyńska [12] (see also [13]). Let $i: \mathbb{R}^{n} \backslash\{o\} \rightarrow \mathbb{R}^{n} \backslash\{o\}$ be defined by

$$
i(x):=\frac{x}{|x|^{2}}
$$

Moszyńska [12] introduced the dual star body K^{o} of a star body K as

$$
K^{o}=\operatorname{cl}\left(\mathbb{R}^{n} \backslash i(K)\right)
$$

where cl denotes the closure of the given set. It is easy to verify that for every $u \in$ S^{n-1} (see [12]),

$$
\begin{equation*}
\rho_{K^{o}}(u)=\frac{1}{\rho_{K}(u)} . \tag{13}
\end{equation*}
$$

In particular, if K is a convex body in \mathbb{R}^{n} that contains the origin in its interior, then

$$
K^{*} \subset K^{o}
$$

and $K^{*}=K^{o}$ if and only if K is a centered ball (see [12]).
After these preparations, we now prove our main results by using Theorem 2.
Proof of Theorem 3. Let $\psi\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}^{-1}, x_{2}^{-1}\right)$. It follows from $\varphi \in \Phi_{2}$ that ψ is convex and strictly decreasing in each component, and furthermore $\psi \in \widetilde{\Phi}_{2} \cup \widetilde{\Psi}_{2}$. Consequently, $\psi_{0}\left(x_{1}, x_{2}\right)=\psi\left(x_{1}^{1 / n}, x_{2}^{1 / n}\right)$ is convex. On the other hand, by (6) and (12), we have

$$
\begin{aligned}
& 1=\varphi\left(\frac{h_{K}(x)}{h_{K+{ }_{\varphi} L}(x)}, \frac{h_{L}(x)}{h_{K+\varphi} L(x)}\right) \\
& =\psi\left(\frac{h_{K+{ }_{\varphi}} L(x)}{h_{K}(x)}, \frac{h_{K+{ }_{\varphi} L}(x)}{h_{L}(x)}\right)=\psi\left(\frac{\rho_{K^{*}}(x)}{\rho_{\left[K+{ }_{\varphi} L\right]^{*}}(x)}, \frac{\rho_{L^{*}}(x)}{\rho_{\left[K+{ }_{\varphi} L\right]^{*}}(x)}\right),
\end{aligned}
$$

for $x \in \mathbb{R}^{n} \backslash\{o\}$. Then, it follows from the definition of the radial Orlicz addition (7) that

$$
\begin{equation*}
\left[K+{ }_{\varphi} L\right]^{*}=K^{*} \widetilde{+}_{\psi} L^{*} \tag{14}
\end{equation*}
$$

Using Theorem 2 with ψ, K^{*}, L^{*} in the place of φ, K, L, respectively, we immediately get

$$
\begin{aligned}
1 & \geqslant \psi\left(\left(\frac{V\left(K^{*}\right)}{V\left(K^{*} \widetilde{+}_{\psi} L^{*}\right)}\right)^{1 / n},\left(\frac{V\left(L^{*}\right)}{V\left(K^{*} \widetilde{+}_{\psi} L^{*}\right)}\right)^{1 / n}\right) \\
& =\varphi\left(\left(\frac{V\left(K^{*}\right)}{V\left(\left[K+{ }_{\varphi} L\right]^{*}\right)}\right)^{-1 / n},\left(\frac{V\left(L^{*}\right)}{V\left(\left[K+{ }_{\varphi} L\right]^{*}\right)}\right)^{-1 / n}\right) .
\end{aligned}
$$

The equality case follows from the equality case of Theorem 2.
For the L_{p}-case, relation (14) can be interpreted as $\left[K+{ }_{p} L\right]^{*}=K^{*} \widetilde{+}_{-p} L^{*}$ for $p \geqslant$ 1 , and hence inequality (11) can be deduced from (5).

We shall mention that another proof of Theorem 3 can be obtained with the approach followed in Section 7 of [3] together with (11) for $p=1$.

Proof of Theorem 4. Without loss of generality, we may consider the case in which $\varphi \in \widetilde{\Phi}_{2}$ and $\psi_{0}\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}^{-1 / n}, x_{2}^{-1 / n}\right)$ is concave. Then $\psi\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}^{-1}, x_{2}^{-1}\right) \in$ $\widetilde{\Psi}_{2}$. On the other hand, by (7), (13) and the fact that the radial functions are homogeneous of degree -1 , we have

$$
\begin{aligned}
& 1=\varphi\left(\frac{\rho_{K}(x)}{\rho_{K \tilde{+} \varphi} L}(x), \frac{\rho_{L}(x)}{\rho_{K \tilde{+} \varphi} L}(x) \quad\right)=\varphi\left(\frac{\rho_{K}(u)}{\rho_{K \tilde{+} \varphi} L}(u), \frac{\rho_{L}(u)}{\rho_{K \tilde{+}_{\varphi} L}(u)}\right) \\
& =\psi\left(\frac{\rho_{K \widetilde{+}}^{\varphi} L}{}(u), \frac{\rho_{K \widetilde{+}} L}{}(u),\right. \\
& =\psi\left(\frac{\rho_{K^{o}}(u)}{\rho_{\left[K \tilde{+} \tilde{\varphi}_{\varphi} L\right]^{o}}(u)}, \frac{\rho_{L^{o}}(u)}{\rho_{\left[K \tilde{+}_{\varphi} L\right]^{o}}(u)}\right)=\psi\left(\frac{\rho_{K^{o}}(x)}{\rho_{\left[K \tilde{+}_{\varphi} L\right]^{o}}(x)}, \frac{\rho_{L^{o}}(x)}{\rho_{\left[K \tilde{+}_{\varphi} L\right]^{o}}(x)}\right),
\end{aligned}
$$

for $x=r u$ in polar coordinates. Then, it follows from the definition of the radial Orlicz addition (7) that

$$
\left[K \widetilde{+}_{\varphi} L\right]^{o}=K^{o} \widetilde{+}_{\psi} L^{o} .
$$

Using Theorem 2 with ψ, K^{o}, L^{o} in the place of φ, K, L, respectively, we immediately get

$$
\begin{aligned}
1 & \leqslant \psi\left(\left(\frac{V\left(K^{o}\right)}{V\left(K^{o} \widetilde{+}_{\psi} L^{o}\right)}\right)^{1 / n},\left(\frac{V\left(L^{o}\right)}{V\left(K^{o} \widetilde{+}_{\psi} L^{o}\right)}\right)^{1 / n}\right) \\
& =\varphi\left(\left(\frac{V\left(K^{o}\right)}{V\left(\left[K_{\varphi} L\right]^{o}\right)}\right)^{-1 / n},\left(\frac{V\left(L^{o}\right)}{V\left(\left[K \widetilde{+}_{\varphi} L\right]^{o}\right)}\right)^{-1 / n}\right) .
\end{aligned}
$$

The equality case follows from the equality case of Theorem 2.

REFERENCES

[1] W. J. Firey, Polar means of convex bodies and a dual to the Brunn-Minkowski theorem, Canad. J. Math., 13, (1961), 444-453.
[2] W. J. Firey, p-means of convex bodies, Math. Scand., 10, (1962), 17-24.
[3] R. J. Gardner, D. Hug and W. Weil, The Orlicz Brunn-Minkowski theory: a general framework, additions, and inequalities, J. Differential Geom., 97, (2014), 427-476.
[4] R. J. Gardner, D. Hug, W. Weil and D. Ye, The dual Orlicz-Brunn-Minkowski theory, J. Math. Anal. Appl., 430, (2015), 810-829.
[5] C. HABERL AND F. SChUSTER, General L_{p} affine isoperimetric inequalities, J. Differential Geom., 83, (2009), 1-26.
[6] M. A. Hernández Cifre and J. Y. Nicolás, On Brunn-Minkowski-type inequalities for polar bodies, J. Geom. Anal., 26, (2016), 143-155.
[7] E. LuTwak, Dual mixed volumes, Pacific J. Math., 58, (1975), 531-538.
[8] E. Lutwak, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem, J. Differential Geom., 38, (1993), 131-150.
[9] E. Lutwak, The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas, Adv. Math., 118, (1996), 244-294.
[10] E. Lutwak, D. Yang and G. Zhang, Orlicz projection bodies, Adv. Math., 223, (2010), 220-242.
[11] E. Lutwak, D. Yang and G. Zhang, Orlicz centroid bodies, J. Differential Geom., 84, (2010), 365-387.
[12] M. Moszyńska, Quotient star bodies, intersection bodies and star duality, J. Math. Anal. Appl., 232, (1999), 45-60.
[13] M. MosZyńska, Selected Topics in Convex Geometry, Springer Verlag, 2005.
[14] C. Saroglou, More on logarithmic sums of convex bodies, Mathematika, 62, (2016), 818-841.
[15] D. Xi, H. Jin and G. Leng, The Orlicz Brunn-Minkowski inequality, Adv. Math., 260, (2014), 350-374.
(Received November 7, 2016)
Yan Wang
Department of Mathematics
Shanghai University
Shanghai, 200444, China e-mail: wangy0509@163.com

Qingzhong Huang
College of Mathematics Physics and Information Engineering
Jiaxing University
Jiaxing 314001, China
e-mail: hqz376560571@163.com

[^1]
[^0]: Mathematics subject classification (2010): 52A30, 53A40.
 Keywords and phrases: Polar bodies, dual star bodies, Orlicz addition, radial Orlicz addition, Orlicz-Brunn-Minkowski inequality.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

