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PROOFS OF CERTAIN CONJECTURES OF VUKŠIĆ

CONCERNING THE INEQUALITIES FOR MEANS

CHAO-PING CHEN AND NEVEN ELEZOVIĆ

(Communicated by S. Varošanec)

Abstract. By using the asymptotic expansion method, Vukšić conjectured inequalities between
Seiffert means and convex combinations of other means. In this paper, we prove certain conjec-
tures given by Vukšić.

1. Introduction

For x,y > 0 with x �= y , the first and second Seiffert means P(x,y) and T (x,y) are
defined in [16] and [17], respectively by

P(x,y) =
x− y

2arcsin x−y
x+y

and T (x,y) =
x− y

2arctan x−y
x+y

.

In what follows we will assume that the numbers x and y are positive and unequal. Let

H =
2xy
x+ y

, G =
√

xy, L =
x− y

lnx− lny
, A =

x+ y
2

, Q =

√
x2 + y2

2
, N =

x2 + y2

x+ y

be the harmonic, geometric, logarithmic, arithmetic, root-square, and contraharmonic
means of x and y , respectively. It is known (see [18]) that

H < G < L < P < A < T < Q < N.

There is a large number of papers studying inequalities between Seiffert means
and convex combinations of other means [5, 6, 7, 14, 15, 18, 19]. For example, Chu et
al. [5] established that the double inequality

μA+(1− μ)H < P < νA+(1−ν)H

holds if and only if μ � 2/π and ν � 5/6. Liu and Meng [15] proved that the double
inequality

(1− μ)G+ μN < P < (1−ν)G+ νN
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holds if and only if μ � 2/9 and ν � 1/π . Chu et al. [6] proved that the double
inequality

μQ+(1− μ)A < T < νQ+(1−ν)A (1.1)

holds if and only if μ � (4−π)/
(
π(

√
2−1)

)
and ν � 2/3. The inequality (1.1) was

also proved by Witkowski [19].
Recently, Vukšić [18], by using the asymptotic expansion method, gave a system-

atic study of inequalities of the form

(1− μ)M1 + μM3 < M2 < (1−ν)M1 + νM3,

where Mj are chosen from the class of elementary means given above. For example,
Vukšić [18, Theorem 3.5, (3.15)] proved the double inequality

(1− μ)H + μN < T < (1−ν)H + νN

holds if and only if μ � 2/π and ν � 1/3. See [4, 9, 10, 11, 12, 13] for more de-
tails about comparison of means using asymptotic methods. Also Vukšić [18] has con-
jectured certain inequalities related to the first and second Seiffert means P(x,y) and
T (x,y) .

CONJECTURE 1.1. ([18, Conjecture 3.4]) The following double inequalities hold
true with the best possible parameters:

π −2
π

G+
2
π

A < P <
1
3
G+

2
3
A, (1.2)

2
3
G+

1
3
Q < P <

π −√
2

π
G+

√
2

π
Q, (1.3)

3
4
P+

1
4
Q < A <

(
√

2−1)π√
2π −2

P+
π −2√
2π −2

Q, (1.4)

4
5
L+

1
5
Q < P <

π −√
2

π
L+

√
2

π
Q, (1.5)

7
8
L+

1
8
N < P <

π −1
π

L+
1
π

N. (1.6)

CONJECTURE 1.2. ([18, Conjecture 3.6]) The following double inequalities hold
true with the best possible parameters:

1
4
H +

3
4
T < A <

4−π
4

H +
π
4

T, (1.7)



PROOFS OF CERTAIN CONJECTURES OF VUKŠIĆ INEQUALITIES 1161

1
9
H +

8
9
Q < T <

π −2
√

2
π

H +
2
√

2
π

Q, (1.8)

π −2
π

H +
2
π

N < T <
1
3
H +

2
3
N, (1.9)

1
6
G+

5
6
Q < T <

π −2
√

2
π

G+
2
√

2
π

Q, (1.10)

1
2
L+

1
2
T < A <

4−π
4

L+
π
4

T, (1.11)

1
5
L+

4
5
Q < T <

π −2
√

2
π

L+
2
√

2
π

Q, (1.12)

2π −4
π

A+
4−π

π
N < T <

2
3
A+

1
3
N, (1.13)

(2−√
2)π

2π −4
T +

√
2π −4

2π −4
N < Q <

3
4
T +

1
4
N. (1.14)

Note that the formulae (1.12) and (1.13) in the original paper [18] contain a typo,which
has been corrected here.

The aim of this paper is to offer a proof of these inequalities.

REMARK 1.1. Let (x− y)/(x+ y) = z , and suppose x > y . Then z ∈ (0,1) , and
the following identities hold true:

P(x,y)
A(x,y)

=
z

arcsinz
,

T (x,y)
A(x,y)

=
z

arctanz
,

H(x,y)
A(x,y)

= 1− z2,
G(x,y)
A(x,y)

=
√

1− z2,

L(x,y)
A(x,y)

=
2z

ln 1+z
1−z

,
Q(x,y)
A(x,y)

=
√

1+ z2,
N(x,y)
A(x,y)

= 1+ z2.

The following elementary power series expansions are useful in our investigation.

sinx =
∞

∑
n=0

(−1)n x2n+1

(2n+1)!
, |x| < ∞, (1.15)

cosx =
∞

∑
n=0

(−1)n x2n

(2n)!
, |x| < ∞, (1.16)

tanx =
∞

∑
n=1

22n(22n−1)|B2n|
(2n)!

x2n−1, |x| < π
2

, (1.17)

cotx =
1
x
−

∞

∑
n=1

22n|B2n|
(2n)!

x2n−1, 0 < |x| < π , (1.18)

cscx =
1
x

+
∞

∑
n=1

2(22n−1−1)|B2n|
(2n)!

x2n−1, 0 < |x| < π , (1.19)
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where Bn (n = 0,1,2, . . .) are Bernoulli numbers, defined by

t
et −1

=
∞

∑
n=0

Bn
tn

n!
.

The following lemma is also needed in the sequel.

LEMMA 1.1. ([2, 3]) Let −∞ < a < b< ∞ , and let f , g : [a,b]→R be continuous
on [a,b] , differentiable on (a,b) . Let g′ (x) �= 0 on (a,b) . If f ′ (x)/g′ (x) is increasing
(decreasing) on (a,b) , then so are

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

The numerical values given in this paper have been calculated via the computer
program MAPLE 13.

2. Proof of Conjecture 1.1

The inequalities (1.2) have been proved in [19]. We here provide an alternative
proof.

THEOREM 2.1. The following double inequality hold:

π −2
π

G+
2
π

A < P <
1
3
G+

2
3
A. (2.1)

Proof. By Remark 1.1, (2.1) may be rewritten as

2
π

<
z

arcsin z −
√

1− z2

1−√
1− z2

<
2
3
, 0 < z < 1. (2.2)

By an elementary change of variable z = sinx (0 < x < π/2) , (2.2) becomes

2
π

<
sinx
x − cosx

1− cosx
<

2
3
, 0 < x <

π
2

. (2.3)

For 0 � x � π/2, let

f1(x) =

⎧⎨
⎩

sinx
x

− cosx, x �= 0

0, x = 0,
f2(x) = 1− cosx,

and let

f (x) =
f1(x)
f2(x)

=
sinx
x − cosx

1− cosx
, 0 < x <

π
2

. (2.4)
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Then,

f ′1(x)
f ′2(x)

=
cosx

x − sinx
x2 + sinx

sinx
=

xcotx−1+ x2

x2 =: f3(x).

Using (1.18), we find

f3(x) =
2
3
−

∞

∑
n=2

22n|B2n|
(2n)!

x2n−2.

Differentiation yields

f ′3(x) = −
∞

∑
n=2

(2n−2)22n|B2n|
(2n)!

x2n−3 < 0.

Therefore, the functions f3(x) and f ′1(x)/ f ′2(x) are strictly decreasing on (0,π/2) . By
Lemma 1.1, the function

f (x) =
f1(x)
f2(x)

=
f1(x)− f1(0)
f2(x)− f2(0)

is strictly decreasing on (0,π/2) , and we have

2
π

= f
(π

2

)
< f (x) =

sinx
x − cosx

1− cosx
< lim

t→0+
f (t) =

2
3

for 0 < x < π/2. The proof is complete. �

REMARK 2.1. Let f (x) be given in (2.4). By the monotonicity property of f (x) ,
we here provide a proof of (1.1).

By Remark 1.1, (1.1) may be written as

μ <
z

arctan z −1√
1+ z2−1

< ν, 0 < z < 1.

By an elementary change of variable z = tanx (0 < x < π/4) , we find

μ <
tanx

x −1

secx−1
=

sinx
x − cosx

1− cosx
= f (x) < ν, 0 < x <

π
4

.

Since f (x) is strictly decreasing on (0,π/4) , we obtain, for 0 < x < π/4,

4−π
(
√

2−1)π
= f

(π
4

)
< f (x) =

tanx
x −1

secx−1
< lim

t→0+
f (t) =

2
3
.

Hence, (1.1) holds if and only if μ � (4−π)/
(
π(

√
2−1)

)
and ν � 2/3.
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THEOREM 2.2. The following double inequalities hold true:

2
3
G+

1
3
Q < P <

π −√
2

π
G+

√
2

π
Q (2.5)

and

3
4
P+

1
4
Q < A <

(
√

2−1)π√
2π −2

P+
π −2√
2π −2

Q. (2.6)

Proof. By Remark 1.1, (2.5) and (2.6) may be written for 0 < z < 1 as

1
3

<
z

arcsin z −
√

1− z2

√
1+ z2−√

1− z2
<

√
2

π
and

1
4

<
1− z

arcsin z√
1+ z2− z

arcsin z

<
π −2√
2π −2

,

respectively. By an elementary change of variable z = sinx (0 < x < π/2) , these two
inequalities become

1
3

< F(x) <

√
2

π
and

1
4

< H(x) <
π −2√
2π −2

for 0 < x <
π
2

,

where

F(x) =
sinx
x − cosx√

1+ sin2 x− cosx
and H(x) =

1− sinx
x√

1+ sin2 x− sinx
x

.

Elementary calculations reveal that

lim
x→0+

F(x) =
1
3
, F

(π
2

)
=

√
2

π
, lim

x→0+
H(x) =

1
4
, H

(π
2

)
=

π −2√
2π −2

.

In order prove (2.5) and (2.6), it suffices to show that F(x) and H(x) are both strictly
increasing for 0 < x < π/2.

Differentiation yields

2x2 cosx
√

1+ sin2 x
(√

1+ tan2 x−
√

1+ sin2 x
)
F ′(x)

= xcosx+ sinxcos2 x+(2x2−2)sinx− (x− sinxcosx)
√

1+ sin2 x

> xcosx+ sinxcos2 x+(2x2−2)sinx− (x− sinxcosx)
(

1+
1
2

sin2 x

)

= (2x2−2)sinx+ sinxcos2 x− 1
2

sinxcos3 x+
3
4

sin(2x)+ xcosx+
1
2
xcos2 x− 3

2
x

=
(

2x2− 7
4

)
sinx+

5
8

sin(2x)+
1
4

sin(3x)− 1
16

sin(4x)+ xcosx+
1
4
xcos(2x)− 5

4
x

=
13
180

x7 − 223
7560

x9 +
1621

302400
x11− 5189

8553600
x13 +

∞

∑
n=7

(−1)n−1un(x),
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where

un(x) =
16n−3 ·9n− (2n+6)4n +32n2 +8n+3

4 · (2n+1)!
x2n+1.

Noting that 1
2x2 < 1

2 (π
2 )2 < 2 holds for 0 < x < π/2, we find that for 0 < x < π/2

and n � 7,

un+1(x)
un(x)

=
1
2x2
(
16 ·16n−27 ·9n− (8n+32)4n+32n2 +72n+43

)
(n+1)(2n+3)

(
16n−3 ·9n− (2n+6)4n +32n2 +8n+3

)

<
2
(
16 ·16n +32n2 +72n+43

)
(n+1)(2n+3)

(
16n−3 ·9n− (2n+6)4n

)
=

2(16+Rn)
(n+1)(2n+3)(1−Sn)

,

where

Rn =
32n2 +72n+43

16n and Sn = 3

(
9
16

)n

+(2n+6)
(

4
16

)n

.

Noting that the sequence {Rn} and {Sn} are both strictly decreasing for n � 7, we
have, for n � 7,

0 < Rn � R7 =
2115

268435456
and 0 < Sn � S7 =

14676587
268435456

.

We then obtain that for 0 < x < π/2 and n � 7,

un+1(x)
un(x)

<
2
(
16+ 2115

268435456

)
(n+1)(2n+3)

(
1− 14676587

268435456

) < 1.

Therefore, for fixed x ∈ (0,π/2) , the sequence n �−→ un(x) is strictly decreasing for
n � 7. We then obtain that for 0 < x < π/2,

2x2 cosx
√

1+ sin2 x
(√

1+ tan2 x−
√

1+ sin2 x
)
F ′(x)

> x7
(

13
180

− 223
7560

x2 +
1621

302400
x4− 5189

8553600
x6
)

> 0.

Hence, F(x) is strictly increasing for 0 < x < π/2.
Differentiation yields√

1+ sin2 x
(
x
√

1+ sin2 x− sinx
)2

sinx− xcosx
H ′(x) = 1+

sinx(sin2 x− x2 cosx)
sinx− xcosx

−
√

1+ sin2 x

> 1+
sinx(sin2 x− x2 cosx)

sinx− xcosx
−
(

1+
1
2

sin2 x

)
=

tanxH1(x)
2(tanx− x)

,
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with

H1(x) = sin2 x+ xsinxcosx−2x2 cosx =
17
180

x6− 11
840

x8 +
∞

∑
n=5

(−1)n−1Pn(x),

where

Pn(x) =
(n+1)4n−16n2 +8n

2 · (2n)!
x2n.

Noting that 2x2 < 2(π/2)2 < 5 holds for 0 < x < π/2, we find that for 0 < x <
π/2 and n � 5,

Pn+1(x)
Pn(x)

=
2x2
(
(n+2)4n−2(n+1)(2n+1)

)
(2n+1)(n+1)

(
(n+1)4n−8n(2n−1)

)
<

5(n+2)4n

(2n+1)(n+1)
(
(n+1)4n−8n(2n−1)

)
=

5(n+2)

(2n+1)(n+1)
(
(n+1)−Qn

) ,

where

Qn =
8n(2n−1)

4n .

Noting that the sequence {Qn} is strictly decreasing for n � 5, we have

0 < Qn � Q5 =
45
128

, n � 5.

We then obtain that for 0 < x < π/2 and n � 5,

Pn+1(x)
Pn(x)

<
5(n+2)

(2n+1)(n+1)
(
(n+1)− 45

128

) < 1.

Therefore, for fixed x ∈ (0,π/2) , the sequence n �−→ Pn(x) is strictly decreasing for
n � 5. We then obtain that, for 0 < x < π/2,

H1(x) > x6
(

17
180

− 11
840

x2
)

> 0 and H ′(x) > 0.

So, H(x) is strictly increasing for 0 < x < π/2. The proof is complete. �

THEOREM 2.3. The inequalities

(1− μ1)L+ μ1Q < P < (1−ν1)L+ ν1Q (2.7)
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and

(1− μ2)L+ μ2N < P < (1−ν2)L+ ν2N (2.8)

hold if and only if

μ1 � 1
5
, ν1 �

√
2

π
, μ2 � 1

8
, ν2 � 1

π
. (2.9)

Proof. We first prove (2.7) and (2.8) with μ1 = 1
5 ,ν1 =

√
2

π ,μ2 = 1
8 ,ν2 = 1

π , namely,

4
5
L+

1
5
Q < P <

(
1−

√
2

π

)
L+

√
2

π
Q (2.10)

and

7
8
L+

1
8
N < P <

(
1− 1

π

)
L+

1
π

N. (2.11)

We claim that(
1−

√
2

π

)
G+

√
2

π
Q <

(
1−

√
2

π

)
L+

√
2

π
Q <

(
1− 1

π

)
L+

1
π

N. (2.12)

This claim shows that, among the second inequalities in (2.5), (2.10) and (2.11), the
upper bound (

1−
√

2
π

)
G+

√
2

π
Q

is the best, in the sense that it is the smallest one among the three upper bounds in (2.5),
(2.10) and (2.11).

Obvious, the left-hand side of (2.12) holds. We now prove the right-hand side of
(2.12). Noting that G < L holds, we have

(
1− 1

π

)
L+

1
π

N−
{(

1−
√

2
π

)
L+

√
2

π
Q

}

=
1
π

{
(
√

2−1)L+N−
√

2Q
}

>
1
π

{
(
√

2−1)G+N−
√

2Q
}

.

In order prove the right-hand side of (2.12), it suffices to show that

(
√

2−1)G+N >
√

2Q,

which can be written, by Remark 1.1, as

(
√

2−1)
√

1− z2 +(1+ z2) >
√

2
√

1+ z2, 0 < z < 1,
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i.e.,

(
√

2−1)
√

1− t +(1+ t) >
√

2
√

1+ t, 0 < t < 1. (2.13)

We find (
(
√

2−1)
√

1− t +(1+ t)
)2−

(√
2
√

1+ t
)2

= 2(
√

2−1)(1+ t)
√

1− t− (2
√

2−2+ t)(1− t)

and (
2(
√

2−1)(1+ t)
√

1− t
)2−

(
(2
√

2−2+ t)(1− t)
)2

= t(1− t)
{
t2 +(7−4

√
2)t +40−28

√
2
}

> 0 for 0 < t < 1.

Hence, (2.13) holds. The claim (2.12) is proved.
By Remark 1.1, the first inequalities in (2.10) and (2.11) can be written for 0 <

z < 1 as

4
5

2z

ln 1+z
1−z

+
1
5

√
1+ z2 <

z
arcsinz

(2.14)

and

7
8

2z

ln 1+z
1−z

+
1
8
(1+ z2) <

z
arcsinz

, (2.15)

respectively.
We first prove (2.14) for 0 < z < 0.7. From the well known continued fraction for

ln 1+x
1−x (see [8, p. 196, Eq. (11.2.4)]), we find that for 0 < x < 1,

2x(15−4x2)
3(5−3x2)

=
2x

1+ − 1
3 x2

1+
− 4

15 x2

1

< ln
1+ x
1− x

. (2.16)

Using (2.16), we have

z
arcsinz

−
(

4
5

2z

ln 1+z
1−z

+
1
5

√
1+ z2

)
>

z
arcsinz

−
{

4
5

3(5−3z2)
15−4z2 +

1
5

(
1+

1
2
z2
)}

=
z

arcsinz
− 150−65z2−4z4

10(15−4z2)
.

In order to prove (2.14) for 0 < z < 0.7, it suffices to show that

θ (z) > 0 for 0 < z < 0.7,
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where

θ (z) =
10z(15−4z2)

150−65z2−4z4 − arcsinz.

Differentiation yields

θ ′(z) =
10(2250−825z2+440z4−16z6)

(150−65z2−4z4)2 − 1√
1− z2

.

Elementary calculations reveal that, for 0 < z < 0.7,

(
10(2250−825z2+440z4−16z6)

(150−65z2−4z4)2

)2

− 1
1− z2

=
1

(1− z2)
(
150−65z2−4z4

)4 [120937500−251287500z2+112209375z4

−25930000z6+ z8(1066400−42240z2−256z4)
]

> 0.

We then obtain θ ′(z) > 0 for 0 < z < 0.7. Hence, θ (z) is strictly increasing for 0 <
z < 0.7, and we have

θ (z) =
10z(15−4z2)

150−65z2−4z4 − arcsinz > θ (0) = 0 for 0 < z < 0.7.

Therefore, (2.14) holds for 0 < z < 0.7.
Second, we prove (2.14) for 0.7 � z < 1. Let

ω(z) = ω1(z)+ ω2(z),

where

ω1(z) = −
(

4
5

2z

ln 1+z
1−z

+
1
5

√
1+ z2

)
and ω2(z) =

z
arcsinz

.

Let 0.7 � r � z � s < 1. Since ω1(z) is increasing and ω2(z) is decreasing, we obtain

ω(z) � ω1(r)+ ω2(s) =: σ(r,s).

We divide the interval [0.7,1] into 30 subintervals:

[0.7,1] =
29⋃

k=0

[
0.7+

k
100

,0.7+
k+1
100

]
for k = 0,1,2, . . . ,29.

By direct computation we get

σ
(

0.7+
k

100
,0.7+

k+1
100

)
> 0 for k = 0,1,2, . . . ,29.
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Hence,

ω(z) > 0 for z ∈
[
0.7+

k
100

,0.7+
k+1
100

]
and k = 0,1,2, . . . ,29.

This implies that ω(z) is positive on [0.7,1) . This proves (2.14) for 0.7 � z < 1.
Hence, (2.14) holds for all 0 < z < 1.

We now prove (2.15). We first prove (2.15) for 0 < z < 0.7. Using (2.16), we have

z
arcsinz

−
(

7
8

2z

ln 1+z
1−z

+
1
8
(1+ z2)

)
>

z
arcsinz

−
{

7
8

3(5−3z2)
15−4z2 +

1
8
(1+ z2)

}

=
z

arcsinz
− 30−13z2− z4

2(15−4z2)
.

In order to prove (2.15) for 0 < z < 0.7, it suffices to show that

Θ(z) > 0 for 0 < z < 0.7,

where

Θ(z) =
2z(15−4z2)

30−13z2− z4 − arcsinz.

Differentiation yields

Θ′(z) =
2(450−165z2+97z4−4z6)

(30−13z2− z4)2 − 1√
1− z2

.

Elementary calculations reveal that, for 0 < z < 0.7,

(
2(450−165z2+97z4−4z6)

(30−13z2− z4)2

)2

− 1
1− z2

=
(247500−477300z2)+ z4(212235−50128z2)+ z8(2274−116z2− z4)(

30−13z2− z4
)4(1− z2)

> 0.

We then obtain Θ′(z) > 0 for 0 < z < 0.7. Hence, Θ(z) is strictly increasing for
0 < z < 0.7, and we have

Θ(z) =
2z(15−4z2)

30−13z2− z4 − arcsinz > Θ(0) = 0 for 0 < z < 0.7.

Therefore, (2.15) holds for 0 < z < 0.7.
Second, we prove (2.15) for 0.7 � z < 1. Let

y(z) = y1(z)+ y2(z),
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where

y1(z) = −
(

7
8

2z

ln 1+z
1−z

+
1
8
(1+ z2)

)
and y2(z) =

z
arcsinz

.

Let 0.7 � r � z � s < 1. Since y1(z) is increasing and y2(z) is decreasing, we obtain

y(z) � y1(r)+ y2(s) =: ρ(r,s).

We divide the interval [0.7,1] into 30 subintervals:

[0.7,1] =
29⋃

k=0

[
0.7+

k
100

,0.7+
k+1
100

]
for k = 0,1,2, . . . ,29.

By direct computation we get

ρ
(

0.7+
k

100
,0.7+

k+1
100

)
> 0 for k = 0,1,2, . . . ,29.

Hence,

y(z) > 0 for z ∈
[
0.7+

k
100

,0.7+
k+1
100

]
and k = 0,1,2, . . . ,29.

This implies that y(z) is positive on [0.7,1) . This proves (2.15) for 0.7 � z < 1. Hence,
(2.15) holds for all 0 < z < 1.

We then obtain (2.7) and (2.8) with μ1 = 1
5 , ν1 =

√
2

π ,μ2 = 1
8 ,ν2 = 1

π .
Conversely, if (2.7) and (2.8) are valid, then we get

μ1 <
P−L
Q−L

=

z
arcsin z − 2z

ln 1+z
1−z√

1+ z2− 2z
ln 1+z

1−z

< ν1 and μ2 <
P−L
N−L

=

z
arcsinz − 2z

ln 1+z
1−z

1+ z2− 2z
ln 1+z

1−z

< ν2.

The limit relations

lim
z→0+

z
arcsinz − 2z

ln 1+z
1−z√

1+ z2− 2z
ln 1+z

1−z

=
1
5
, lim

z→1−

z
arcsinz − 2z

ln 1+z
1−z√

1+ z2− 2z
ln 1+z

1−z

=
√

2
π

,

lim
z→0+

z
arcsinz − 2z

ln 1+z
1−z

1+ z2− 2z
ln 1+z

1−z

=
1
8
, lim

z→1−

z
arcsin z − 2z

ln 1+z
1−z

1+ z2− 2z
ln 1+z

1−z

=
1
π

yield

μ1 � 1
5
, ν1 �

√
2

π
, μ2 � 1

8
, ν2 � 1

π
.

The proof is complete. �
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3. Proof of Conjecture 1.2

THEOREM 3.1. The following double inequality holds true:

2π −4
π

A+
4−π

π
N < T <

2
3
A+

1
3
N. (3.1)

Proof. By Remark 1.1, (3.1) may be rewritten as

4−π
π

<
z

arctan z −1

z2 <
1
3

for 0 < z < 1. (3.2)

By an elementary change of variable z = tanx (0 < x < π/4) , (3.2) becomes

4−π
π

< U(x) <
1
3

for 0 < x <
π
4

, (3.3)

where

U(x) =
tanx

x −1

tan2 x
.

Differentiation yields

U ′(x) = − U1(x)
x2 sin2 x tanx

,

where

U1(x) = x tanx−2x2 + sin2 x = x tanx− 1
2

cos(2x)−2x2 +
1
2

=
∞

∑
n=3

22n−1
(
2(22n−1)|B2n|− (−1)n

)
(2n)!

x2n. (3.4)

It is well known [1, p. 805] that

2(2n)!
(2π)2n < |B2n| < 2(2n)!

(2π)2n(1−21−2n)
, n � 1. (3.5)

By the first inequality in (3.5), we find

2(22n−1)|B2n| > 2(22n−1)
2(2n)!
(2π)2n > 1, n � 3.

We see from (3.4) that

U1(x) > 0, 0 < x <
π
4

. (3.6)

We then obtain U ′(x) < 0 for 0 < x < π/4. Hence, U(x) are strictly decreasing on
(0,π/4) , and we have

4−π
π

= U
(π

4

)
< U(x) =

tanx
x −1

tan2 x
< lim

t→0+
U(t) =

1
3

for 0 < x < π/4. The proof is complete. �
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REMARK 3.1. Noting that H +N = 2A holds, (3.1) can be written as (1.9).

THEOREM 3.2. The following double inequalities hold true:

1
4
H +

3
4
T < A <

4−π
4

H +
π
4

T, (3.7)

1
9
H +

8
9
Q < T <

π −2
√

2
π

H +
2
√

2
π

Q, (3.8)

1
6
G+

5
6
Q < T <

π −2
√

2
π

G+
2
√

2
π

Q, (3.9)

(2−√
2)π

2π −4
T +

√
2π −4

2π −4
N < Q <

3
4
T +

1
4
N. (3.10)

Proof. By Remark 1.1, (3.7), (3.8), (3.9) and (3.10) may be rewritten for 0 < z < 1
as

3
4

<
z2

z
arctan z − (1− z2)

<
π
4

,
8
9

<
z

arctan z − (1− z2)√
1+ z2− (1− z2)

<
2
√

2
π

,

5
6

<
z

arctan z −
√

1− z2

√
1+ z2−√

1− z2
<

2
√

2
π

,

√
2π −4

2π −4
<

√
1+ z2− z

arctan z

1+ z2− z
arctan z

<
1
4
,

respectively. By an elementary change of variable z = tanx (0 < x < π/4) , these four
inequalities become

3
4

< J1(x) <
π
4

,
8
9

< J2(x) <
2
√

2
π

,
5
6

< J3(x) <
2
√

2
π

,

√
2π −4

2π −4
< J4(x) <

1
4

for 0 < x < π/4, where

J1(x) =
tan2 x

tanx
x − (1− tan2 x)

, J2(x) =
tanx

x − (1− tan2 x)
secx− (1− tan2 x)

,

J3(x) =
tanx

x −√
1− tan2 x

secx−√
1− tan2 x

=
sinx
x −√cos(2x)

1−√cos(2x)
, J4(x) =

secx− tanx
x

sec2 x− tanx
x

.

Elementary calculations reveal that

lim
x→0+

J1(x) =
3
4
, J1

(π
4

)
=

π
4

, lim
x→0+

J2(x) =
8
9
, J2

(π
4

)
=

2
√

2
π

,

lim
x→0+

J3(x) =
5
6
, J3

(π
4

)
=

2
√

2
π

, lim
x→0+

J4(x) =
1
4
, J4

(π
4

)
=

√
2π −4

2π −4
.
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In order prove (3.7), (3.8), (3.9) and (3.10), it suffices to show that J1(x) , J2(x) and
J3(x) are strictly increasing and J4(x) is strictly decreasing for 0 < x < π/4.

Differentiation yields

J′1(x) =
sinxcosxU1(x)

U2(x)
, 0 < x <

π
4

,

where

U1(x) = x tanx+ sin2 x−2x2 > 0 (see (3.6))

and

U2(x) = 2xsinxcosx− (4x2−1)sin2 xcos2 x−4xcos3 xsinx+ x2.

We find

U2(x) = −1
2

(
x2 − 1

4

)(
1− cos(4x)

)− 1
2
xsin(4x)+ x2

=
∞

∑
n=3

(−1)n−1vn(x) =
16
9

x6 − 64
45

x8 +
∞

∑
n=5

(−1)n−1vn(x), (3.11)

where

vn(x) =
24n−5(n−2)
n · (2n−2)!

x2n.

Elementary calculations reveal that, for 0 < x < π/4 and n � 5,

vn+1(x)
vn(x)

=
8(n−1)x2

(n+1)(2n−1)(n−2)
<

8(n−1)(π/4)2

(n+1)(2n−1)(n−2)

<
8(n−1)

(n+1)(2n−1)(n−2)
< 1.

Hence, for all 0 < x < π/4 and n � 5,

vn+1(x)
vn(x)

< 1.

Therefore, for fixed x ∈ (0,π/4) , the sequence n �−→ vn(x) is strictly decreasing for
n � 5. We then obtain from (3.11) that

U2(x) > x6
(

16
9

− 64
45

x2
)

> 0, 0 < x <
π
4

.

Thus, we have

J′1(x) > 0, 0 < x <
π
4

.
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Hence, J1(x) is strictly increasing for 0 < x < π/4.
Differentiation yields

x2(1− cosx)2(1+2cosx)2J′2(x)

= 2sinxcos3 x+2x2 sinxcos2 x− sinxcosx+ x2 sinx− sinxcos2 x− x+ xcos3 x

=
1
4

sin(4x)+
(

x2

2
− 1

4

)
sin(3x)+

1
4
xcos(3x)+

(
3x2

2
− 1

4

)
sinx+

3
4
xcosx− x

=
1
15

x7− 1
105

x9− 53
25200

x11 +
∞

∑
n=6

(−1)nVn(x), (3.12)

where

Vn(x) =
6 ·16n− (4n2−n+3)9n−36n2−9n+3

6(2n+1)!
x2n+1.

Noting that 3
2x2 < 3

2 (π
4 )2 < 1 holds for 0 < x < π/4, we find that for 0 < x < π/4

and n � 6,

Vn+1(x)
Vn(x)

=
3
2x2
(
32 ·16n− (12n2 +21n+18)9n− (12n2 +27n+14)

)
(n+1)(2n+3)

(
6 ·16n− (4n2−n+3)9n− (36n2 +9n−3)

)
<

32 ·16n

(n+1)(2n+3)
(
6 ·16n− (4n2−n+3)9n− (36n2 +9n−3)

)
=

32
(n+1)(2n+3)(6− xn)

,

where

xn = (4n2−n+3)
(

9
16

)n

+
36n2 +9n−3

16n .

Noting that the sequence {xn} is strictly decreasing for n � 6, we have

0 < xn � x6 =
37465917
8388608

, n � 6.

We then obtain that, for 0 < x < π/4 and n � 6,

Vn+1(x)
Vn(x)

<
32

(n+1)(2n+3)
(
6− 37465917

8388608

) < 1.

Therefore, for fixed x ∈ (0,π/4) , the sequence n �−→ Vn(x) is strictly decreasing for
n � 6. We then obtain from (3.12) that, for 0 < x < π/4,

x2(1− cosx)2(1+2cosx)2J′2(x) > x7
(

1
15

− 1
105

x2− 53
25200

x4
)

> 0.
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Hence, J2(x) is strictly increasing for 0 < x < π/4.
Differentiation yields

x2
√

cos(2x)
(
1−
√

cos(2x)
)2

J′3(x) = D2(x)−D1(x),

where

D2(x) = (sinx− xcosx)cos(2x)+ x(x− sinx)sin(2x) > 0

and

D1(x) = (sinx− xcosx)
√

cos(2x) > 0

for 0 < x < π/4.
We now prove J′3(x) > 0 for 0 < x < π/4, it suffices to show that D2(x) > D1(x) .
Elementary calculations reveal that

D2
2(x)−D2

1(x)
2sinx

= −2x3 cos2 x+ sinx+2sinxcos4 x+4x2 sinxcos3 x

+(2x4 + x2−3)sinxcos2 x− x2 sin(2x)

= −x3− x3 cos(2x)+
(

1
2
x4 +

1
4
x2 +

1
2

)
sinx

+
(

1
2
x4 +

1
4
x2− 3

8

)
sin(3x)+

1
2
x2 sin(4x)+

1
8

sin(5x)

=
13
540

x9 +
1

9450
x11− 37

20160
x13 +

108961
349272000

x15

− 1864237
108972864000

x17− 493
583783200

x19 +
2419136561

11204153985024000
x21

− 25139133427
1300926768261120000

x23 +
∞

∑
n=12

(−1)nXn(x), (3.13)

where

Xn(x) =
(
135 ·25n−54n(2n+1)16n+(64n4−64n3−88n2−20n−243)9n

+108n(2n−1)(2n+1)4n+108(2n−1)(8n3−4n2−5n−1)
) x2n+1

216 · (2n+1)!
.

We find that for 0 < x < π/4 and n � 12,

Xn+1(x)
Xn(x)

=
(

9x2

2

)
Yn

Zn
<

9
2

(π
4

)2 Yn

Zn
<

3Yn

Zn
,

where

Yn = 375 ·25n−E1(n)+E2(n)+E3(n)+E4(n)
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and

Zn = (n+1)(2n+3)
(
135 ·25n−E5(n)+ (64n4−64n3−88n2−20n−243)9n

+108n(2n−1)(2n+1)4n+108(2n−1)(8n3−4n2−5n−1)
)
,

with

E1(n) = 96(2n+3)(n+1)16n, E2(n) = (64n4 +192n3 +104n2−132n−351)9n,

E3(n) = 48(2n+3)(2n+1)(n+1)4n, E4(n) = 12(2n+1)(8n3+20n2 +11n−2),
E5(n) = 54n(2n+1)16n.

It is easy to see that, for n � 12,

3Yn

Zn
<

3
(
375 ·25n +E2(n)+E3(n)+E4(n)

)
(n+1)(2n+3)

(
135 ·25n−E5(n)

) =
3
(
375+ E2(n)

25n + E3(n)
25n + E4(n)

25n

)
(n+1)(2n+3)

(
135− E5(n)

25n

) .

Noting that the sequences
{E j(n)

25n

}
( j = 2,3,4,5) are strictly decreasing for n � 12,

we have, for n � 12,

0 <
E2(n)
25n +

E3(n)
25n +

E4(n)
25n � E2(12)

2512 +
E3(12)
2512 +

E4(12)
2512

=
472199873062850001
59604644775390625

+
282662535168

2384185791015625
+

202008
2384185791015625

=
472206939631279401
59604644775390625

and

0 <
E5(n)
25n � E5(12)

2512 =
182395784908505088
2384185791015625

.

We then obtain that for 0 < x < π/4 and n � 12,

Xn+1(x)
Xn(x)

<
3Yn

Zn
<

3
(
375+ 472206939631279401

59604644775390625

)
(n+1)(2n+3)

(
135− 182395784908505088

2384185791015625

) < 1.

Therefore, for fixed x ∈ (0,π/4) , the sequence n �−→ Xn(x) is strictly decreasing for
n � 12. We obtain from (3.13) that, for 0 < x < π/4,

D2
2(x)−D2

1(x)
2sinx

= x9
(

13
540

+
1

9450
x2 − 37

20160
x4
)

+ x15
(

108961
349272000

− 1864237
108972864000

x2− 493
583783200

x4
)

+ x21
(

2419136561
11204153985024000

− 25139133427
1300926768261120000

x2
)

> 0.



1178 C.-P. CHEN AND N. ELEZOVIĆ

We then obtain that for 0 < x < π/4,

D2(x) > D1(x) and J′3(x) > 0.

Hence, J3(x) is strictly increasing for 0 < x < π/4.
Differentiation yields

J′4(x) = − I1(x)
I2(x)

,

where

I1(x) = x2 sinx− sinxcosx+ sinxcos2 x+2xcos2 x− xcos3 x− x

and

I2(x) = x2− xsin(2x)+
1
4

sin2(2x).

We now prove J′4(x) < 0 for 0 < x < π/4, it suffices to show that I1(x) > 0 and
I2(x) > 0 for 0 < x < π/4.

Elementary calculations reveal that

I1(x) =
(

x2 +
1
4

)
sinx− 1

2
sin(2x)+

1
4

sin(3x)− 3
4
xcosx+ xcos(2x)− 1

4
xcos(3x)

=
7
90

x7 − 41
1890

x9 +
∞

∑
n=5

(−1)n−1Wn(x), (3.14)

where

Wn(x) =
(n−1)9n−4n ·4n +8n2 +7n+1

2 · (2n+1)!
x2n+1.

Noting that 1
2x2 < 1

2 (π
4 )2 < 1 holds for 0 < x < π/4, we find that, for 0 < x < π/4

and n � 5,

Wn+1(x)
Wn(x)

=
1
2x2
(
9n ·9n− (16n+16)4n+8n2 +23n+16

)
(n+1)(2n+3)

(
(n−1)9n−4n ·4n +8n2 +7n+1

)
<

9n ·9n +8n2 +23n+16

(n+1)(2n+3)
(
(n−1)9n−4n ·4n

)

=
9n+ 8n2+23n+16

9n

(n+1)(2n+3)
(
(n−1)−4n

(
4
9

)n) .

Noting that the sequences
{

8n2+23n+16
9n

}
and

{
4n
(

4
9

)n}
are both strictly decreasing

for n � 5, we have, for n � 5,

0 <
8n2 +23n+16

9n �
[
8n2 +23n+16

9n

]
n=5

=
331

59049
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and

0 < 4n

(
4
9

)n

�
[
4n

(
4
9

)n]
n=5

=
20480
59049

.

We then obtain that for 0 < x < π/4 and n � 5,

Wn+1(x)
Wn(x)

<
9n+ 331

59049

(n+1)(2n+3)
(
(n−1)− 20480

59049

) < 1.

Therefore, for fixed x ∈ (0,π/4) , the sequence n �−→Wn(x) is strictly decreasing for
n � 5. We then obtain from (3.14) that, for 0 < x < π/4,

I1(x) > x7
(

7
90

− 41
1890

x2
)

> 0.

Using (1.15) and (1.19), we obtain

I2(x)
sin(2x)

= x2 csc(2x)− x+
1
4

sin(2x)

=
∞

∑
n=2

{
2(2n+1)(22n−1−1)|B2n|+(−1)n

(2n+1)!

}
22n−1x2n+1. (3.15)

By the first inequality in (3.5), we find that for n � 2,

2(2n+1)(22n−1−1)|B2n| > 2(2n+1)(22n−1−1)
2(2n)!
(2π)2n > 1.

We see from (3.15) that

I2(x) > 0, 0 < x <
π
4

.

We then obtain J′4(x) < 0 for 0 < x < π/4. Hence, J4(x) is strictly decreasing for
0 < x < π/4. The proof is complete. �

THEOREM 3.3. The inequalities

(1− μ3)L+ μ3T < A < (1−ν3)L+ ν3T (3.16)

and

(1− μ4)L+ μ4Q < T < (1−ν4)L+ ν4Q (3.17)

hold if and only if

μ3 � 1
2
, ν3 � π

4
, μ4 � 4

5
, ν4 � 2

√
2

π
. (3.18)
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Proof. We first prove (3.16) and (3.17) with μ3 = 1
2 ,ν3 = π

4 ,μ4 = 4
5 ,ν4 = 2

√
2

π ,
namely,

1
2
L+

1
2
T < A <

(
1− π

4

)
L+

π
4

T (3.19)

and

1
5
L+

4
5
Q < T <

(
1− 2

√
2

π

)
L+

2
√

2
π

Q. (3.20)

In fact, (3.7) =⇒ (3.19) and (3.8) =⇒ (3.20). More precisely, the following
inequalities are true:

1
2
L+

1
2
T <

1
4
H +

3
4
T < A <

(
1− π

4

)
H +

π
4

T <
(
1− π

4

)
L+

π
4

T (3.21)

and

1
5
L+

4
5
Q <

1
9
H +

8
9
Q < T <

(
1− 2

√
2

π

)
H +

2
√

2
π

Q <

(
1− 2

√
2

π

)
L+

2
√

2
π

Q.

(3.22)

Obviously, the last inequalities in (3.21) and (3.22) hold. The first inequalities in (3.21)
and (3.22) can be written, respectively, as

H +T
2

> L and
5H +4Q

9
> L.

We now prove that

H +T
2

>
5H +4Q

9
> L. (3.23)

The first inequality in (3.23) can be written as

H +8Q
9

< T,

which is the left-hand side of (3.8). The second inequality in (3.23) is mentioned in [9,
Table 2]. It can be written, by Remark 1.1, as

5(1− z2)+4
√

1+ z2 >
18z

ln 1+z
1−z

. (3.24)

For 0 < z < 1, let

ξ (z) = ln
1+ z
1− z

− 18z

5(1− z2)+4
√

1+ z2
.
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Differentiation yields

ξ ′(z) =
2
(
(5−7z2 +52z4)

√
1+ z2−5+45z2−40z4

)
(1− z2)(4−4z2 +5

√
1+ z2)2

√
1+ z2

.

By an elementary change of variable z =
√

y2−1 (1 < y <
√

2) , we find

(5−7z2 +52z4)
√

1+ z2−5+45z2−40z4

= 52y5−40y4−111y3 +125y2 +64y−90

= 81(y−1)+72(y−1)2+249(y−1)3+220(y−1)4+52(y−1)5 > 0.

We then obtain ξ ′(z) > 0 for 0 < z < 1. Hence, ξ (z) is strictly increasing for 0< z < 1,
and we have

ln
1+ z
1− z

− 18z

5(1− z2)+4
√

1+ z2
= ξ (z) > ξ (0) = 0

for 0 < z < 1. This means that (3.24) holds. Hence, the second inequality in (3.23)
holds.

We then obtain (3.16) and (3.17) with μ3 = 1
2 ,ν3 = π

4 ,μ4 = 4
5 ,ν4 = 2

√
2

π .
Conversely, if (3.16) and (3.17) are valid, then we get

μ3 <
1− 2z

ln 1+z
1−z

z
arctan z − 2z

ln 1+z
1−z

< ν3 and μ4 <

z
arcsin z − 2z

ln 1+z
1−z√

1+ z2− 2z
ln 1+z

1−z

< ν4.

The limit relations

lim
z→0+

1− 2z
ln 1+z

1−z
z

arctan z − 2z
ln 1+z

1−z

=
1
2
, lim

z→1−

1− 2z
ln 1+z

1−z
z

arctan z − 2z
ln 1+z

1−z

=
π
4

,

lim
z→0+

z
arcsinz − 2z

ln 1+z
1−z√

1+ z2− 2z
ln 1+z

1−z

=
4
5
, lim

z→1−

z
arcsin z − 2z

ln 1+z
1−z√

1+ z2− 2z
ln 1+z

1−z

=
2
√

2
π

yield

μ3 � 1
2
, ν3 � π

4
, μ4 � 4

5
, ν4 � 2

√
2

π
.

The proof is complete. �
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