PROOFS OF CERTAIN CONJECTURES OF VUKŠIĆ CONCERNING THE INEQUALITIES FOR MEANS

Chao-Ping Chen and Neven Elezović

(Communicated by S. Varošanec)

Abstract

By using the asymptotic expansion method, Vukšić conjectured inequalities between Seiffert means and convex combinations of other means. In this paper, we prove certain conjectures given by Vukšić.

1. Introduction

For $x, y>0$ with $x \neq y$, the first and second Seiffert means $P(x, y)$ and $T(x, y)$ are defined in [16] and [17], respectively by

$$
P(x, y)=\frac{x-y}{2 \arcsin \frac{x-y}{x+y}} \quad \text { and } \quad T(x, y)=\frac{x-y}{2 \arctan \frac{x-y}{x+y}} .
$$

In what follows we will assume that the numbers x and y are positive and unequal. Let

$$
H=\frac{2 x y}{x+y}, G=\sqrt{x y}, L=\frac{x-y}{\ln x-\ln y}, A=\frac{x+y}{2}, Q=\sqrt{\frac{x^{2}+y^{2}}{2}}, N=\frac{x^{2}+y^{2}}{x+y}
$$

be the harmonic, geometric, logarithmic, arithmetic, root-square, and contraharmonic means of x and y, respectively. It is known (see [18]) that

$$
H<G<L<P<A<T<Q<N .
$$

There is a large number of papers studying inequalities between Seiffert means and convex combinations of other means [5, 6, 7, 14, 15, 18, 19]. For example, Chu et al. [5] established that the double inequality

$$
\mu A+(1-\mu) H<P<v A+(1-v) H
$$

holds if and only if $\mu \leqslant 2 / \pi$ and $v \geqslant 5 / 6$. Liu and Meng [15] proved that the double inequality

$$
(1-\mu) G+\mu N<P<(1-v) G+v N
$$

Mathematics subject classification (2010): 26E60, 26D05.
Keywords and phrases: Seiffert means, inequality.
holds if and only if $\mu \leqslant 2 / 9$ and $v \geqslant 1 / \pi$. Chu et al. [6] proved that the double inequality

$$
\begin{equation*}
\mu Q+(1-\mu) A<T<v Q+(1-v) A \tag{1.1}
\end{equation*}
$$

holds if and only if $\mu \leqslant(4-\pi) /(\pi(\sqrt{2}-1))$ and $v \geqslant 2 / 3$. The inequality (1.1) was also proved by Witkowski [19].

Recently, Vukšić [18], by using the asymptotic expansion method, gave a systematic study of inequalities of the form

$$
(1-\mu) M_{1}+\mu M_{3}<M_{2}<(1-v) M_{1}+v M_{3}
$$

where M_{j} are chosen from the class of elementary means given above. For example, Vukšić [18, Theorem 3.5, (3.15)] proved the double inequality

$$
(1-\mu) H+\mu N<T<(1-v) H+v N
$$

holds if and only if $\mu \leqslant 2 / \pi$ and $v \geqslant 1 / 3$. See $[4,9,10,11,12,13]$ for more details about comparison of means using asymptotic methods. Also Vukšić [18] has conjectured certain inequalities related to the first and second Seiffert means $P(x, y)$ and $T(x, y)$.

Conjecture 1.1. ([18, Conjecture 3.4]) The following double inequalities hold true with the best possible parameters:

$$
\begin{gather*}
\frac{\pi-2}{\pi} G+\frac{2}{\pi} A<P<\frac{1}{3} G+\frac{2}{3} A \tag{1.2}\\
\frac{2}{3} G+\frac{1}{3} Q<P<\frac{\pi-\sqrt{2}}{\pi} G+\frac{\sqrt{2}}{\pi} Q \tag{1.3}\\
\frac{3}{4} P+\frac{1}{4} Q<A<\frac{(\sqrt{2}-1) \pi}{\sqrt{2} \pi-2} P+\frac{\pi-2}{\sqrt{2} \pi-2} Q \tag{1.4}\\
\frac{4}{5} L+\frac{1}{5} Q<P<\frac{\pi-\sqrt{2}}{\pi} L+\frac{\sqrt{2}}{\pi} Q \tag{1.5}\\
\frac{7}{8} L+\frac{1}{8} N<P<\frac{\pi-1}{\pi} L+\frac{1}{\pi} N \tag{1.6}
\end{gather*}
$$

Conjecture 1.2. ([18, Conjecture 3.6]) The following double inequalities hold true with the best possible parameters:

$$
\begin{equation*}
\frac{1}{4} H+\frac{3}{4} T<A<\frac{4-\pi}{4} H+\frac{\pi}{4} T \tag{1.7}
\end{equation*}
$$

$$
\begin{gather*}
\frac{1}{9} H+\frac{8}{9} Q<T<\frac{\pi-2 \sqrt{2}}{\pi} H+\frac{2 \sqrt{2}}{\pi} Q \tag{1.8}\\
\frac{\pi-2}{\pi} H+\frac{2}{\pi} N<T<\frac{1}{3} H+\frac{2}{3} N \tag{1.9}\\
\frac{1}{6} G+\frac{5}{6} Q<T<\frac{\pi-2 \sqrt{2}}{\pi} G+\frac{2 \sqrt{2}}{\pi} Q \tag{1.10}\\
\frac{1}{2} L+\frac{1}{2} T<A<\frac{4-\pi}{4} L+\frac{\pi}{4} T \tag{1.11}\\
\frac{1}{5} L+\frac{4}{5} Q<T<\frac{\pi-2 \sqrt{2}}{\pi} L+\frac{2 \sqrt{2}}{\pi} Q \tag{1.12}\\
\frac{2 \pi-4}{\pi} A+\frac{4-\pi}{\pi} N<T<\frac{2}{3} A+\frac{1}{3} N \tag{1.13}\\
\frac{(2-\sqrt{2}) \pi}{2 \pi-4} T+\frac{\sqrt{2} \pi-4}{2 \pi-4} N<Q<\frac{3}{4} T+\frac{1}{4} N . \tag{1.14}
\end{gather*}
$$

Note that the formulae (1.12) and (1.13) in the original paper [18] contain a typo,which has been corrected here.

The aim of this paper is to offer a proof of these inequalities.
REMARK 1.1. Let $(x-y) /(x+y)=z$, and suppose $x>y$. Then $z \in(0,1)$, and the following identities hold true:

$$
\begin{aligned}
& \frac{P(x, y)}{A(x, y)}=\frac{z}{\arcsin z}, \quad \frac{T(x, y)}{A(x, y)}=\frac{z}{\arctan z}, \quad \frac{H(x, y)}{A(x, y)}=1-z^{2}, \quad \frac{G(x, y)}{A(x, y)}=\sqrt{1-z^{2}} \\
& \frac{L(x, y)}{A(x, y)}=\frac{2 z}{\ln \frac{1+z}{1-z},} \quad \frac{Q(x, y)}{A(x, y)}=\sqrt{1+z^{2}}, \quad \frac{N(x, y)}{A(x, y)}=1+z^{2} .
\end{aligned}
$$

The following elementary power series expansions are useful in our investigation.

$$
\begin{array}{lr}
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, & |x|<\infty \\
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, & |x|<\infty \\
\tan x=\sum_{n=1}^{\infty} \frac{2^{2 n}\left(2^{2 n}-1\right)\left|B_{2 n}\right|}{(2 n)!} x^{2 n-1}, & 0<|x|<\frac{\pi}{2}, \\
\cot x=\frac{1}{x}-\sum_{n=1}^{\infty} \frac{2^{2 n}\left|B_{2 n}\right|}{(2 n)!} x^{2 n-1}, & 0<|x|<\pi \\
\csc x=\frac{1}{x}+\sum_{n=1}^{\infty} \frac{2\left(2^{2 n-1}-1\right)\left|B_{2 n}\right|}{(2 n)!} x^{2 n-1}, &
\end{array}
$$

where $B_{n}(n=0,1,2, \ldots)$ are Bernoulli numbers, defined by

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}
$$

The following lemma is also needed in the sequel.
Lemma 1.1. ([2,3]) Let $-\infty<a<b<\infty$, and let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$, differentiable on (a, b). Let $g^{\prime}(x) \neq 0$ on (a, b). If $f^{\prime}(x) / g^{\prime}(x)$ is increasing (decreasing) on (a, b), then so are

$$
\frac{f(x)-f(a)}{g(x)-g(a)} \text { and } \frac{f(x)-f(b)}{g(x)-g(b)}
$$

If $f^{\prime}(x) / g^{\prime}(x)$ is strictly monotone, then the monotonicity in the conclusion is also strict.
The numerical values given in this paper have been calculated via the computer program MAPLE 13.

2. Proof of Conjecture 1.1

The inequalities (1.2) have been proved in [19]. We here provide an alternative proof.

THEOREM 2.1. The following double inequality hold:

$$
\begin{equation*}
\frac{\pi-2}{\pi} G+\frac{2}{\pi} A<P<\frac{1}{3} G+\frac{2}{3} A . \tag{2.1}
\end{equation*}
$$

Proof. By Remark 1.1, (2.1) may be rewritten as

$$
\begin{equation*}
\frac{2}{\pi}<\frac{\frac{z}{\arcsin z}-\sqrt{1-z^{2}}}{1-\sqrt{1-z^{2}}}<\frac{2}{3}, \quad 0<z<1 \tag{2.2}
\end{equation*}
$$

By an elementary change of variable $z=\sin x(0<x<\pi / 2)$, (2.2) becomes

$$
\begin{equation*}
\frac{2}{\pi}<\frac{\frac{\sin x}{x}-\cos x}{1-\cos x}<\frac{2}{3}, \quad 0<x<\frac{\pi}{2} \tag{2.3}
\end{equation*}
$$

For $0 \leqslant x \leqslant \pi / 2$, let

$$
f_{1}(x)=\left\{\begin{array}{ll}
\frac{\sin x}{x}-\cos x, & x \neq 0 \\
0, & x=0,
\end{array} \quad f_{2}(x)=1-\cos x\right.
$$

and let

$$
\begin{equation*}
f(x)=\frac{f_{1}(x)}{f_{2}(x)}=\frac{\frac{\sin x}{x}-\cos x}{1-\cos x}, \quad 0<x<\frac{\pi}{2} \tag{2.4}
\end{equation*}
$$

Then,

$$
\frac{f_{1}^{\prime}(x)}{f_{2}^{\prime}(x)}=\frac{\frac{\cos x}{x}-\frac{\sin x}{x^{2}}+\sin x}{\sin x}=\frac{x \cot x-1+x^{2}}{x^{2}}=: f_{3}(x)
$$

Using (1.18), we find

$$
f_{3}(x)=\frac{2}{3}-\sum_{n=2}^{\infty} \frac{2^{2 n}\left|B_{2 n}\right|}{(2 n)!} x^{2 n-2}
$$

Differentiation yields

$$
f_{3}^{\prime}(x)=-\sum_{n=2}^{\infty} \frac{(2 n-2) 2^{2 n}\left|B_{2 n}\right|}{(2 n)!} x^{2 n-3}<0
$$

Therefore, the functions $f_{3}(x)$ and $f_{1}^{\prime}(x) / f_{2}^{\prime}(x)$ are strictly decreasing on $(0, \pi / 2)$. By Lemma 1.1, the function

$$
f(x)=\frac{f_{1}(x)}{f_{2}(x)}=\frac{f_{1}(x)-f_{1}(0)}{f_{2}(x)-f_{2}(0)}
$$

is strictly decreasing on $(0, \pi / 2)$, and we have

$$
\frac{2}{\pi}=f\left(\frac{\pi}{2}\right)<f(x)=\frac{\frac{\sin x}{x}-\cos x}{1-\cos x}<\lim _{t \rightarrow 0^{+}} f(t)=\frac{2}{3}
$$

for $0<x<\pi / 2$. The proof is complete.
REMARK 2.1. Let $f(x)$ be given in (2.4). By the monotonicity property of $f(x)$, we here provide a proof of (1.1).

By Remark 1.1, (1.1) may be written as

$$
\mu<\frac{\frac{z}{\arctan z}-1}{\sqrt{1+z^{2}}-1}<v, \quad 0<z<1 .
$$

By an elementary change of variable $z=\tan x(0<x<\pi / 4)$, we find

$$
\mu<\frac{\frac{\tan x}{x}-1}{\sec x-1}=\frac{\frac{\sin x}{x}-\cos x}{1-\cos x}=f(x)<v, \quad 0<x<\frac{\pi}{4}
$$

Since $f(x)$ is strictly decreasing on $(0, \pi / 4)$, we obtain, for $0<x<\pi / 4$,

$$
\frac{4-\pi}{(\sqrt{2}-1) \pi}=f\left(\frac{\pi}{4}\right)<f(x)=\frac{\frac{\tan x}{x}-1}{\sec x-1}<\lim _{t \rightarrow 0^{+}} f(t)=\frac{2}{3} .
$$

Hence, (1.1) holds if and only if $\mu \leqslant(4-\pi) /(\pi(\sqrt{2}-1))$ and $v \geqslant 2 / 3$.

THEOREM 2.2. The following double inequalities hold true:

$$
\begin{equation*}
\frac{2}{3} G+\frac{1}{3} Q<P<\frac{\pi-\sqrt{2}}{\pi} G+\frac{\sqrt{2}}{\pi} Q \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{3}{4} P+\frac{1}{4} Q<A<\frac{(\sqrt{2}-1) \pi}{\sqrt{2} \pi-2} P+\frac{\pi-2}{\sqrt{2} \pi-2} Q \tag{2.6}
\end{equation*}
$$

Proof. By Remark 1.1, (2.5) and (2.6) may be written for $0<z<1$ as

$$
\frac{1}{3}<\frac{\frac{z}{\arcsin z}-\sqrt{1-z^{2}}}{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}}<\frac{\sqrt{2}}{\pi} \quad \text { and } \quad \frac{1}{4}<\frac{1-\frac{z}{\arcsin z}}{\sqrt{1+z^{2}}-\frac{z}{\arcsin z}}<\frac{\pi-2}{\sqrt{2} \pi-2}
$$

respectively. By an elementary change of variable $z=\sin x(0<x<\pi / 2)$, these two inequalities become

$$
\frac{1}{3}<F(x)<\frac{\sqrt{2}}{\pi} \quad \text { and } \quad \frac{1}{4}<H(x)<\frac{\pi-2}{\sqrt{2} \pi-2} \quad \text { for } \quad 0<x<\frac{\pi}{2}
$$

where

$$
F(x)=\frac{\frac{\sin x}{x}-\cos x}{\sqrt{1+\sin ^{2} x}-\cos x} \quad \text { and } \quad H(x)=\frac{1-\frac{\sin x}{x}}{\sqrt{1+\sin ^{2} x}-\frac{\sin x}{x}} .
$$

Elementary calculations reveal that

$$
\lim _{x \rightarrow 0^{+}} F(x)=\frac{1}{3}, \quad F\left(\frac{\pi}{2}\right)=\frac{\sqrt{2}}{\pi}, \quad \lim _{x \rightarrow 0^{+}} H(x)=\frac{1}{4}, \quad H\left(\frac{\pi}{2}\right)=\frac{\pi-2}{\sqrt{2} \pi-2}
$$

In order prove (2.5) and (2.6), it suffices to show that $F(x)$ and $H(x)$ are both strictly increasing for $0<x<\pi / 2$.

Differentiation yields

$$
\begin{aligned}
& 2 x^{2} \cos x \sqrt{1+\sin ^{2} x}\left(\sqrt{1+\tan ^{2} x}-\sqrt{1+\sin ^{2} x}\right) F^{\prime}(x) \\
& =x \cos x+\sin x \cos ^{2} x+\left(2 x^{2}-2\right) \sin x-(x-\sin x \cos x) \sqrt{1+\sin ^{2} x} \\
& >x \cos x+\sin x \cos ^{2} x+\left(2 x^{2}-2\right) \sin x-(x-\sin x \cos x)\left(1+\frac{1}{2} \sin ^{2} x\right) \\
& =\left(2 x^{2}-2\right) \sin x+\sin x \cos ^{2} x-\frac{1}{2} \sin x \cos ^{3} x+\frac{3}{4} \sin (2 x)+x \cos x+\frac{1}{2} x \cos ^{2} x-\frac{3}{2} x \\
& =\left(2 x^{2}-\frac{7}{4}\right) \sin x+\frac{5}{8} \sin (2 x)+\frac{1}{4} \sin (3 x)-\frac{1}{16} \sin (4 x)+x \cos x+\frac{1}{4} x \cos (2 x)-\frac{5}{4} x \\
& =\frac{13}{180} x^{7}-\frac{223}{7560} x^{9}+\frac{1621}{302400} x^{11}-\frac{5189}{8553600} x^{13}+\sum_{n=7}^{\infty}(-1)^{n-1} u_{n}(x),
\end{aligned}
$$

where

$$
u_{n}(x)=\frac{16^{n}-3 \cdot 9^{n}-(2 n+6) 4^{n}+32 n^{2}+8 n+3}{4 \cdot(2 n+1)!} x^{2 n+1}
$$

Noting that $\frac{1}{2} x^{2}<\frac{1}{2}\left(\frac{\pi}{2}\right)^{2}<2$ holds for $0<x<\pi / 2$, we find that for $0<x<\pi / 2$ and $n \geqslant 7$,

$$
\begin{aligned}
\frac{u_{n+1}(x)}{u_{n}(x)} & =\frac{\frac{1}{2} x^{2}\left(16 \cdot 16^{n}-27 \cdot 9^{n}-(8 n+32) 4^{n}+32 n^{2}+72 n+43\right)}{(n+1)(2 n+3)\left(16^{n}-3 \cdot 9^{n}-(2 n+6) 4^{n}+32 n^{2}+8 n+3\right)} \\
& <\frac{2\left(16 \cdot 16^{n}+32 n^{2}+72 n+43\right)}{(n+1)(2 n+3)\left(16^{n}-3 \cdot 9^{n}-(2 n+6) 4^{n}\right)} \\
& =\frac{2\left(16+R_{n}\right)}{(n+1)(2 n+3)\left(1-S_{n}\right)},
\end{aligned}
$$

where

$$
R_{n}=\frac{32 n^{2}+72 n+43}{16^{n}} \quad \text { and } \quad S_{n}=3\left(\frac{9}{16}\right)^{n}+(2 n+6)\left(\frac{4}{16}\right)^{n}
$$

Noting that the sequence $\left\{R_{n}\right\}$ and $\left\{S_{n}\right\}$ are both strictly decreasing for $n \geqslant 7$, we have, for $n \geqslant 7$,

$$
0<R_{n} \leqslant R_{7}=\frac{2115}{268435456} \quad \text { and } \quad 0<S_{n} \leqslant S_{7}=\frac{14676587}{268435456}
$$

We then obtain that for $0<x<\pi / 2$ and $n \geqslant 7$,

$$
\frac{u_{n+1}(x)}{u_{n}(x)}<\frac{2\left(16+\frac{2115}{268435456}\right)}{(n+1)(2 n+3)\left(1-\frac{14676587}{268435456}\right)}<1
$$

Therefore, for fixed $x \in(0, \pi / 2)$, the sequence $n \longmapsto u_{n}(x)$ is strictly decreasing for $n \geqslant 7$. We then obtain that for $0<x<\pi / 2$,

$$
\begin{aligned}
& 2 x^{2} \cos x \sqrt{1+\sin ^{2} x}\left(\sqrt{1+\tan ^{2} x}-\sqrt{1+\sin ^{2} x}\right) F^{\prime}(x) \\
& \quad>x^{7}\left(\frac{13}{180}-\frac{223}{7560} x^{2}+\frac{1621}{302400} x^{4}-\frac{5189}{8553600} x^{6}\right)>0 .
\end{aligned}
$$

Hence, $F(x)$ is strictly increasing for $0<x<\pi / 2$.

Differentiation yields

$$
\begin{gathered}
\frac{\sqrt{1+\sin ^{2} x}\left(x \sqrt{1+\sin ^{2} x}-\sin x\right)^{2}}{\sin x-x \cos x} H^{\prime}(x)=1+\frac{\sin x\left(\sin ^{2} x-x^{2} \cos x\right)}{\sin x-x \cos x}-\sqrt{1+\sin ^{2} x} \\
>1+\frac{\sin x\left(\sin ^{2} x-x^{2} \cos x\right)}{\sin x-x \cos x}-\left(1+\frac{1}{2} \sin ^{2} x\right)=\frac{\tan x H_{1}(x)}{2(\tan x-x)}
\end{gathered}
$$

with

$$
H_{1}(x)=\sin ^{2} x+x \sin x \cos x-2 x^{2} \cos x=\frac{17}{180} x^{6}-\frac{11}{840} x^{8}+\sum_{n=5}^{\infty}(-1)^{n-1} P_{n}(x)
$$

where

$$
P_{n}(x)=\frac{(n+1) 4^{n}-16 n^{2}+8 n}{2 \cdot(2 n)!} x^{2 n}
$$

Noting that $2 x^{2}<2(\pi / 2)^{2}<5$ holds for $0<x<\pi / 2$, we find that for $0<x<$ $\pi / 2$ and $n \geqslant 5$,

$$
\begin{aligned}
\frac{P_{n+1}(x)}{P_{n}(x)} & =\frac{2 x^{2}\left((n+2) 4^{n}-2(n+1)(2 n+1)\right)}{(2 n+1)(n+1)\left((n+1) 4^{n}-8 n(2 n-1)\right)} \\
& <\frac{5(n+2) 4^{n}}{(2 n+1)(n+1)\left((n+1) 4^{n}-8 n(2 n-1)\right)} \\
& =\frac{5(n+2)}{(2 n+1)(n+1)\left((n+1)-Q_{n}\right)}
\end{aligned}
$$

where

$$
Q_{n}=\frac{8 n(2 n-1)}{4^{n}}
$$

Noting that the sequence $\left\{Q_{n}\right\}$ is strictly decreasing for $n \geqslant 5$, we have

$$
0<Q_{n} \leqslant Q_{5}=\frac{45}{128}, \quad n \geqslant 5
$$

We then obtain that for $0<x<\pi / 2$ and $n \geqslant 5$,

$$
\frac{P_{n+1}(x)}{P_{n}(x)}<\frac{5(n+2)}{(2 n+1)(n+1)\left((n+1)-\frac{45}{128}\right)}<1
$$

Therefore, for fixed $x \in(0, \pi / 2)$, the sequence $n \longmapsto P_{n}(x)$ is strictly decreasing for $n \geqslant 5$. We then obtain that, for $0<x<\pi / 2$,

$$
H_{1}(x)>x^{6}\left(\frac{17}{180}-\frac{11}{840} x^{2}\right)>0 \quad \text { and } \quad H^{\prime}(x)>0
$$

So, $H(x)$ is strictly increasing for $0<x<\pi / 2$. The proof is complete.

Theorem 2.3. The inequalities

$$
\begin{equation*}
\left(1-\mu_{1}\right) L+\mu_{1} Q<P<\left(1-v_{1}\right) L+v_{1} Q \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-\mu_{2}\right) L+\mu_{2} N<P<\left(1-v_{2}\right) L+v_{2} N \tag{2.8}
\end{equation*}
$$

hold if and only if

$$
\begin{equation*}
\mu_{1} \leqslant \frac{1}{5}, \quad v_{1} \geqslant \frac{\sqrt{2}}{\pi}, \quad \mu_{2} \leqslant \frac{1}{8}, \quad v_{2} \geqslant \frac{1}{\pi} . \tag{2.9}
\end{equation*}
$$

Proof. We first prove (2.7) and (2.8) with $\mu_{1}=\frac{1}{5}, v_{1}=\frac{\sqrt{2}}{\pi}, \mu_{2}=\frac{1}{8}, v_{2}=\frac{1}{\pi}$, namely,

$$
\begin{equation*}
\frac{4}{5} L+\frac{1}{5} Q<P<\left(1-\frac{\sqrt{2}}{\pi}\right) L+\frac{\sqrt{2}}{\pi} Q \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{7}{8} L+\frac{1}{8} N<P<\left(1-\frac{1}{\pi}\right) L+\frac{1}{\pi} N . \tag{2.11}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\left(1-\frac{\sqrt{2}}{\pi}\right) G+\frac{\sqrt{2}}{\pi} Q<\left(1-\frac{\sqrt{2}}{\pi}\right) L+\frac{\sqrt{2}}{\pi} Q<\left(1-\frac{1}{\pi}\right) L+\frac{1}{\pi} N \tag{2.12}
\end{equation*}
$$

This claim shows that, among the second inequalities in (2.5), (2.10) and (2.11), the upper bound

$$
\left(1-\frac{\sqrt{2}}{\pi}\right) G+\frac{\sqrt{2}}{\pi} Q
$$

is the best, in the sense that it is the smallest one among the three upper bounds in (2.5), (2.10) and (2.11).

Obvious, the left-hand side of (2.12) holds. We now prove the right-hand side of (2.12). Noting that $G<L$ holds, we have

$$
\begin{aligned}
(1- & \left.\frac{1}{\pi}\right) L+\frac{1}{\pi} N-\left\{\left(1-\frac{\sqrt{2}}{\pi}\right) L+\frac{\sqrt{2}}{\pi} Q\right\} \\
& =\frac{1}{\pi}\{(\sqrt{2}-1) L+N-\sqrt{2} Q\}>\frac{1}{\pi}\{(\sqrt{2}-1) G+N-\sqrt{2} Q\}
\end{aligned}
$$

In order prove the right-hand side of (2.12), it suffices to show that

$$
(\sqrt{2}-1) G+N>\sqrt{2} Q
$$

which can be written, by Remark 1.1, as

$$
(\sqrt{2}-1) \sqrt{1-z^{2}}+\left(1+z^{2}\right)>\sqrt{2} \sqrt{1+z^{2}}, \quad 0<z<1
$$

i.e.,

$$
\begin{equation*}
(\sqrt{2}-1) \sqrt{1-t}+(1+t)>\sqrt{2} \sqrt{1+t}, \quad 0<t<1 \tag{2.13}
\end{equation*}
$$

We find

$$
\begin{aligned}
& ((\sqrt{2}-1) \sqrt{1-t}+(1+t))^{2}-(\sqrt{2} \sqrt{1+t})^{2} \\
& \quad=2(\sqrt{2}-1)(1+t) \sqrt{1-t}-(2 \sqrt{2}-2+t)(1-t)
\end{aligned}
$$

and

$$
\begin{aligned}
& (2(\sqrt{2}-1)(1+t) \sqrt{1-t})^{2}-((2 \sqrt{2}-2+t)(1-t))^{2} \\
& \quad=t(1-t)\left\{t^{2}+(7-4 \sqrt{2}) t+40-28 \sqrt{2}\right\}>0 \quad \text { for } \quad 0<t<1
\end{aligned}
$$

Hence, (2.13) holds. The claim (2.12) is proved.
By Remark 1.1, the first inequalities in (2.10) and (2.11) can be written for $0<$ $z<1$ as

$$
\begin{equation*}
\frac{4}{5} \frac{2 z}{\ln \frac{1+z}{1-z}}+\frac{1}{5} \sqrt{1+z^{2}}<\frac{z}{\arcsin z} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{7}{8} \frac{2 z}{\ln \frac{1+z}{1-z}}+\frac{1}{8}\left(1+z^{2}\right)<\frac{z}{\arcsin z} \tag{2.15}
\end{equation*}
$$

respectively.
We first prove (2.14) for $0<z<0.7$. From the well known continued fraction for $\ln \frac{1+x}{1-x}$ (see [8, p. 196, Eq. (11.2.4)]), we find that for $0<x<1$,

$$
\begin{equation*}
\frac{2 x\left(15-4 x^{2}\right)}{3\left(5-3 x^{2}\right)}=\frac{2 x}{1+\frac{-\frac{1}{3} x^{2}}{1+\frac{-\frac{4}{1!} x^{2}}{1}}}<\ln \frac{1+x}{1-x} \tag{2.16}
\end{equation*}
$$

Using (2.16), we have

$$
\begin{aligned}
\frac{z}{\arcsin z}-\left(\frac{4}{5} \frac{2 z}{\ln \frac{1+z}{1-z}}+\frac{1}{5} \sqrt{1+z^{2}}\right) & >\frac{z}{\arcsin z}-\left\{\frac{4}{5} \frac{3\left(5-3 z^{2}\right)}{15-4 z^{2}}+\frac{1}{5}\left(1+\frac{1}{2} z^{2}\right)\right\} \\
& =\frac{z}{\arcsin z}-\frac{150-65 z^{2}-4 z^{4}}{10\left(15-4 z^{2}\right)}
\end{aligned}
$$

In order to prove (2.14) for $0<z<0.7$, it suffices to show that

$$
\theta(z)>0 \quad \text { for } \quad 0<z<0.7
$$

where

$$
\theta(z)=\frac{10 z\left(15-4 z^{2}\right)}{150-65 z^{2}-4 z^{4}}-\arcsin z
$$

Differentiation yields

$$
\theta^{\prime}(z)=\frac{10\left(2250-825 z^{2}+440 z^{4}-16 z^{6}\right)}{\left(150-65 z^{2}-4 z^{4}\right)^{2}}-\frac{1}{\sqrt{1-z^{2}}}
$$

Elementary calculations reveal that, for $0<z<0.7$,

$$
\begin{aligned}
& \left(\frac{10\left(2250-825 z^{2}+440 z^{4}-16 z^{6}\right)}{\left(150-65 z^{2}-4 z^{4}\right)^{2}}\right)^{2}-\frac{1}{1-z^{2}} \\
& =\frac{1}{\left(1-z^{2}\right)\left(150-65 z^{2}-4 z^{4}\right)^{4}}\left[120937500-251287500 z^{2}+112209375 z^{4}\right. \\
& \left.\quad-25930000 z^{6}+z^{8}\left(1066400-42240 z^{2}-256 z^{4}\right)\right]>0
\end{aligned}
$$

We then obtain $\theta^{\prime}(z)>0$ for $0<z<0.7$. Hence, $\theta(z)$ is strictly increasing for $0<$ $z<0.7$, and we have

$$
\theta(z)=\frac{10 z\left(15-4 z^{2}\right)}{150-65 z^{2}-4 z^{4}}-\arcsin z>\theta(0)=0 \quad \text { for } \quad 0<z<0.7
$$

Therefore, (2.14) holds for $0<z<0.7$.
Second, we prove (2.14) for $0.7 \leqslant z<1$. Let

$$
\omega(z)=\omega_{1}(z)+\omega_{2}(z)
$$

where

$$
\omega_{1}(z)=-\left(\frac{4}{5} \frac{2 z}{\ln \frac{1+z}{1-z}}+\frac{1}{5} \sqrt{1+z^{2}}\right) \quad \text { and } \quad \omega_{2}(z)=\frac{z}{\arcsin z}
$$

Let $0.7 \leqslant r \leqslant z \leqslant s<1$. Since $\omega_{1}(z)$ is increasing and $\omega_{2}(z)$ is decreasing, we obtain

$$
\omega(z) \geqslant \omega_{1}(r)+\omega_{2}(s)=: \sigma(r, s)
$$

We divide the interval $[0.7,1]$ into 30 subintervals:

$$
[0.7,1]=\bigcup_{k=0}^{29}\left[0.7+\frac{k}{100}, 0.7+\frac{k+1}{100}\right] \quad \text { for } \quad k=0,1,2, \ldots, 29
$$

By direct computation we get

$$
\sigma\left(0.7+\frac{k}{100}, 0.7+\frac{k+1}{100}\right)>0 \quad \text { for } \quad k=0,1,2, \ldots, 29
$$

Hence,

$$
\omega(z)>0 \quad \text { for } \quad z \in\left[0.7+\frac{k}{100}, 0.7+\frac{k+1}{100}\right] \quad \text { and } \quad k=0,1,2, \ldots, 29
$$

This implies that $\omega(z)$ is positive on $[0.7,1)$. This proves (2.14) for $0.7 \leqslant z<1$. Hence, (2.14) holds for all $0<z<1$.

We now prove (2.15). We first prove (2.15) for $0<z<0.7$. Using (2.16), we have

$$
\begin{aligned}
\frac{z}{\arcsin z}-\left(\frac{7}{8} \frac{2 z}{\ln \frac{1+z}{1-z}}+\frac{1}{8}\left(1+z^{2}\right)\right) & >\frac{z}{\arcsin z}-\left\{\frac{7}{8} \frac{3\left(5-3 z^{2}\right)}{15-4 z^{2}}+\frac{1}{8}\left(1+z^{2}\right)\right\} \\
& =\frac{z}{\arcsin z}-\frac{30-13 z^{2}-z^{4}}{2\left(15-4 z^{2}\right)}
\end{aligned}
$$

In order to prove (2.15) for $0<z<0.7$, it suffices to show that

$$
\Theta(z)>0 \quad \text { for } \quad 0<z<0.7
$$

where

$$
\Theta(z)=\frac{2 z\left(15-4 z^{2}\right)}{30-13 z^{2}-z^{4}}-\arcsin z
$$

Differentiation yields

$$
\Theta^{\prime}(z)=\frac{2\left(450-165 z^{2}+97 z^{4}-4 z^{6}\right)}{\left(30-13 z^{2}-z^{4}\right)^{2}}-\frac{1}{\sqrt{1-z^{2}}}
$$

Elementary calculations reveal that, for $0<z<0.7$,

$$
\begin{aligned}
& \left(\frac{2\left(450-165 z^{2}+97 z^{4}-4 z^{6}\right)}{\left(30-13 z^{2}-z^{4}\right)^{2}}\right)^{2}-\frac{1}{1-z^{2}} \\
& \quad=\frac{\left(247500-477300 z^{2}\right)+z^{4}\left(212235-50128 z^{2}\right)+z^{8}\left(2274-116 z^{2}-z^{4}\right)}{\left(30-13 z^{2}-z^{4}\right)^{4}\left(1-z^{2}\right)}>0
\end{aligned}
$$

We then obtain $\Theta^{\prime}(z)>0$ for $0<z<0.7$. Hence, $\Theta(z)$ is strictly increasing for $0<z<0.7$, and we have

$$
\Theta(z)=\frac{2 z\left(15-4 z^{2}\right)}{30-13 z^{2}-z^{4}}-\arcsin z>\Theta(0)=0 \quad \text { for } \quad 0<z<0.7
$$

Therefore, (2.15) holds for $0<z<0.7$.
Second, we prove (2.15) for $0.7 \leqslant z<1$. Let

$$
y(z)=y_{1}(z)+y_{2}(z)
$$

where

$$
y_{1}(z)=-\left(\frac{7}{8} \frac{2 z}{\ln \frac{1+z}{1-z}}+\frac{1}{8}\left(1+z^{2}\right)\right) \quad \text { and } \quad y_{2}(z)=\frac{z}{\arcsin z} .
$$

Let $0.7 \leqslant r \leqslant z \leqslant s<1$. Since $y_{1}(z)$ is increasing and $y_{2}(z)$ is decreasing, we obtain

$$
y(z) \geqslant y_{1}(r)+y_{2}(s)=: \rho(r, s) .
$$

We divide the interval $[0.7,1]$ into 30 subintervals:

$$
[0.7,1]=\bigcup_{k=0}^{29}\left[0.7+\frac{k}{100}, 0.7+\frac{k+1}{100}\right] \quad \text { for } \quad k=0,1,2, \ldots, 29
$$

By direct computation we get

$$
\rho\left(0.7+\frac{k}{100}, 0.7+\frac{k+1}{100}\right)>0 \quad \text { for } \quad k=0,1,2, \ldots, 29
$$

Hence,

$$
y(z)>0 \quad \text { for } \quad z \in\left[0.7+\frac{k}{100}, 0.7+\frac{k+1}{100}\right] \quad \text { and } \quad k=0,1,2, \ldots, 29
$$

This implies that $y(z)$ is positive on $[0.7,1)$. This proves (2.15) for $0.7 \leqslant z<1$. Hence, (2.15) holds for all $0<z<1$.

We then obtain (2.7) and (2.8) with $\mu_{1}=\frac{1}{5}, v_{1}=\frac{\sqrt{2}}{\pi}, \mu_{2}=\frac{1}{8}, v_{2}=\frac{1}{\pi}$.
Conversely, if (2.7) and (2.8) are valid, then we get

$$
\mu_{1}<\frac{P-L}{Q-L}=\frac{\frac{z}{\arcsin z}-\frac{2 z}{\ln \frac{1+z}{1-z}}}{\sqrt{1+z^{2}}-\frac{2 z}{\ln \frac{1+z}{1-z}}}<v_{1} \quad \text { and } \quad \mu_{2}<\frac{P-L}{N-L}=\frac{\frac{z}{\arcsin z}-\frac{2 z}{\ln \frac{1+z}{1-z}}}{1+z^{2}-\frac{2 z}{\ln \frac{1+z}{1-z}}}<v_{2}
$$

The limit relations

$$
\begin{gathered}
\lim _{z \rightarrow 0^{+}} \frac{\frac{z}{\arcsin z}-\frac{2 z}{\ln \frac{1+z}{1-z}}}{\sqrt{1+z^{2}}-\frac{2 z}{\ln \frac{1+z}{1-z}}}=\frac{1}{5}, \quad \lim _{z \rightarrow 1^{-}} \frac{\frac{z}{\arcsin z}-\frac{2 z}{\ln \frac{1+z}{1-z}}}{\sqrt{1+z^{2}}-\frac{2 z}{\ln \frac{1+z}{1-z}}}=\frac{\sqrt{2}}{\pi}, \\
\lim _{z \rightarrow 0^{+}} \frac{\frac{z}{\arcsin z}-\frac{2 z}{\ln \frac{1+z}{1-z}}}{1+z^{2}-\frac{2 z}{\ln \frac{1+z}{1-z}}}=\frac{1}{8}, \quad \lim _{z \rightarrow 1^{-}} \frac{\frac{z}{\arcsin z}-\frac{2 z}{\ln \frac{1+z}{1-z}}}{1+z^{2}-\frac{2 z}{\ln \frac{1+z}{1-z}}}=\frac{1}{\pi}
\end{gathered}
$$

yield

$$
\mu_{1} \leqslant \frac{1}{5}, \quad v_{1} \geqslant \frac{\sqrt{2}}{\pi}, \quad \mu_{2} \leqslant \frac{1}{8}, \quad v_{2} \geqslant \frac{1}{\pi} .
$$

The proof is complete.

3. Proof of Conjecture 1.2

THEOREM 3.1. The following double inequality holds true:

$$
\begin{equation*}
\frac{2 \pi-4}{\pi} A+\frac{4-\pi}{\pi} N<T<\frac{2}{3} A+\frac{1}{3} N . \tag{3.1}
\end{equation*}
$$

Proof. By Remark 1.1, (3.1) may be rewritten as

$$
\begin{equation*}
\frac{4-\pi}{\pi}<\frac{\frac{z}{\arctan z}-1}{z^{2}}<\frac{1}{3} \quad \text { for } \quad 0<z<1 \tag{3.2}
\end{equation*}
$$

By an elementary change of variable $z=\tan x(0<x<\pi / 4)$, (3.2) becomes

$$
\begin{equation*}
\frac{4-\pi}{\pi}<U(x)<\frac{1}{3} \quad \text { for } \quad 0<x<\frac{\pi}{4} \tag{3.3}
\end{equation*}
$$

where

$$
U(x)=\frac{\frac{\tan x}{x}-1}{\tan ^{2} x}
$$

Differentiation yields

$$
U^{\prime}(x)=-\frac{U_{1}(x)}{x^{2} \sin ^{2} x \tan x}
$$

where

$$
\begin{align*}
U_{1}(x) & =x \tan x-2 x^{2}+\sin ^{2} x=x \tan x-\frac{1}{2} \cos (2 x)-2 x^{2}+\frac{1}{2} \\
& =\sum_{n=3}^{\infty} \frac{2^{2 n-1}\left(2\left(2^{2 n}-1\right)\left|B_{2 n}\right|-(-1)^{n}\right)}{(2 n)!} x^{2 n} . \tag{3.4}
\end{align*}
$$

It is well known [1, p. 805] that

$$
\begin{equation*}
\frac{2(2 n)!}{(2 \pi)^{2 n}}<\left|B_{2 n}\right|<\frac{2(2 n)!}{(2 \pi)^{2 n}\left(1-2^{1-2 n}\right)}, \quad n \geqslant 1 \tag{3.5}
\end{equation*}
$$

By the first inequality in (3.5), we find

$$
2\left(2^{2 n}-1\right)\left|B_{2 n}\right|>2\left(2^{2 n}-1\right) \frac{2(2 n)!}{(2 \pi)^{2 n}}>1, \quad n \geqslant 3
$$

We see from (3.4) that

$$
\begin{equation*}
U_{1}(x)>0, \quad 0<x<\frac{\pi}{4} \tag{3.6}
\end{equation*}
$$

We then obtain $U^{\prime}(x)<0$ for $0<x<\pi / 4$. Hence, $U(x)$ are strictly decreasing on $(0, \pi / 4)$, and we have

$$
\frac{4-\pi}{\pi}=U\left(\frac{\pi}{4}\right)<U(x)=\frac{\frac{\tan x}{x}-1}{\tan ^{2} x}<\lim _{t \rightarrow 0^{+}} U(t)=\frac{1}{3}
$$

for $0<x<\pi / 4$. The proof is complete.

REmark 3.1. Noting that $H+N=2 A$ holds, (3.1) can be written as (1.9).
THEOREM 3.2. The following double inequalities hold true:

$$
\begin{gather*}
\frac{1}{4} H+\frac{3}{4} T<A<\frac{4-\pi}{4} H+\frac{\pi}{4} T \tag{3.7}\\
\frac{1}{9} H+\frac{8}{9} Q<T<\frac{\pi-2 \sqrt{2}}{\pi} H+\frac{2 \sqrt{2}}{\pi} Q \tag{3.8}\\
\frac{1}{6} G+\frac{5}{6} Q<T<\frac{\pi-2 \sqrt{2}}{\pi} G+\frac{2 \sqrt{2}}{\pi} Q, \tag{3.9}\\
\frac{(2-\sqrt{2}) \pi}{2 \pi-4} T+\frac{\sqrt{2} \pi-4}{2 \pi-4} N<Q<\frac{3}{4} T+\frac{1}{4} N . \tag{3.10}
\end{gather*}
$$

Proof. By Remark 1.1, (3.7), (3.8), (3.9) and (3.10) may be rewritten for $0<z<1$ as

$$
\begin{array}{ll}
\frac{3}{4}<\frac{z^{2}}{\frac{z}{\arctan z}-\left(1-z^{2}\right)}<\frac{\pi}{4}, & \frac{8}{9}<\frac{\frac{z}{\arctan z}-\left(1-z^{2}\right)}{\sqrt{1+z^{2}}-\left(1-z^{2}\right)}<\frac{2 \sqrt{2}}{\pi} \\
\frac{5}{6}<\frac{\frac{z}{\arctan z}-\sqrt{1-z^{2}}}{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}}<\frac{2 \sqrt{2}}{\pi}, & \frac{\sqrt{2} \pi-4}{2 \pi-4}<\frac{\sqrt{1+z^{2}}-\frac{z}{\arctan z}}{1+z^{2}-\frac{z}{\arctan z}}<\frac{1}{4}
\end{array}
$$

respectively. By an elementary change of variable $z=\tan x(0<x<\pi / 4)$, these four inequalities become

$$
\frac{3}{4}<J_{1}(x)<\frac{\pi}{4}, \quad \frac{8}{9}<J_{2}(x)<\frac{2 \sqrt{2}}{\pi}, \quad \frac{5}{6}<J_{3}(x)<\frac{2 \sqrt{2}}{\pi}, \quad \frac{\sqrt{2} \pi-4}{2 \pi-4}<J_{4}(x)<\frac{1}{4}
$$

for $0<x<\pi / 4$, where

$$
\begin{aligned}
& J_{1}(x)=\frac{\tan ^{2} x}{\frac{\tan x}{x}-\left(1-\tan ^{2} x\right)}, \quad J_{2}(x)=\frac{\frac{\tan x}{x}-\left(1-\tan ^{2} x\right)}{\sec x-\left(1-\tan ^{2} x\right)} \\
& J_{3}(x)=\frac{\frac{\tan x}{x}-\sqrt{1-\tan ^{2} x}}{\sec x-\sqrt{1-\tan ^{2} x}}=\frac{\frac{\sin x}{x}-\sqrt{\cos (2 x)}}{1-\sqrt{\cos (2 x)}}, \quad J_{4}(x)=\frac{\sec x-\frac{\tan x}{x}}{\sec ^{2} x-\frac{\tan x}{x}} .
\end{aligned}
$$

Elementary calculations reveal that

$$
\begin{array}{llll}
\lim _{x \rightarrow 0^{+}} J_{1}(x)=\frac{3}{4}, & J_{1}\left(\frac{\pi}{4}\right)=\frac{\pi}{4}, & \lim _{x \rightarrow 0^{+}} J_{2}(x)=\frac{8}{9}, & J_{2}\left(\frac{\pi}{4}\right)=\frac{2 \sqrt{2}}{\pi}, \\
\lim _{x \rightarrow 0^{+}} J_{3}(x)=\frac{5}{6}, & J_{3}\left(\frac{\pi}{4}\right)=\frac{2 \sqrt{2}}{\pi}, & \lim _{x \rightarrow 0^{+}} J_{4}(x)=\frac{1}{4}, & J_{4}\left(\frac{\pi}{4}\right)=\frac{\sqrt{2} \pi-4}{2 \pi-4} .
\end{array}
$$

In order prove (3.7), (3.8), (3.9) and (3.10), it suffices to show that $J_{1}(x), J_{2}(x)$ and $J_{3}(x)$ are strictly increasing and $J_{4}(x)$ is strictly decreasing for $0<x<\pi / 4$.

Differentiation yields

$$
J_{1}^{\prime}(x)=\frac{\sin x \cos x U_{1}(x)}{U_{2}(x)}, \quad 0<x<\frac{\pi}{4}
$$

where

$$
U_{1}(x)=x \tan x+\sin ^{2} x-2 x^{2}>0
$$

and

$$
U_{2}(x)=2 x \sin x \cos x-\left(4 x^{2}-1\right) \sin ^{2} x \cos ^{2} x-4 x \cos ^{3} x \sin x+x^{2}
$$

We find

$$
\begin{align*}
U_{2}(x) & =-\frac{1}{2}\left(x^{2}-\frac{1}{4}\right)(1-\cos (4 x))-\frac{1}{2} x \sin (4 x)+x^{2} \\
& =\sum_{n=3}^{\infty}(-1)^{n-1} v_{n}(x)=\frac{16}{9} x^{6}-\frac{64}{45} x^{8}+\sum_{n=5}^{\infty}(-1)^{n-1} v_{n}(x) \tag{3.11}
\end{align*}
$$

where

$$
v_{n}(x)=\frac{2^{4 n-5}(n-2)}{n \cdot(2 n-2)!} x^{2 n}
$$

Elementary calculations reveal that, for $0<x<\pi / 4$ and $n \geqslant 5$,

$$
\begin{aligned}
\frac{v_{n+1}(x)}{v_{n}(x)} & =\frac{8(n-1) x^{2}}{(n+1)(2 n-1)(n-2)}<\frac{8(n-1)(\pi / 4)^{2}}{(n+1)(2 n-1)(n-2)} \\
& <\frac{8(n-1)}{(n+1)(2 n-1)(n-2)}<1
\end{aligned}
$$

Hence, for all $0<x<\pi / 4$ and $n \geqslant 5$,

$$
\frac{v_{n+1}(x)}{v_{n}(x)}<1
$$

Therefore, for fixed $x \in(0, \pi / 4)$, the sequence $n \longmapsto v_{n}(x)$ is strictly decreasing for $n \geqslant 5$. We then obtain from (3.11) that

$$
U_{2}(x)>x^{6}\left(\frac{16}{9}-\frac{64}{45} x^{2}\right)>0, \quad 0<x<\frac{\pi}{4}
$$

Thus, we have

$$
J_{1}^{\prime}(x)>0, \quad 0<x<\frac{\pi}{4}
$$

Hence, $J_{1}(x)$ is strictly increasing for $0<x<\pi / 4$.
Differentiation yields

$$
\begin{align*}
& x^{2}(1-\cos x)^{2}(1+2 \cos x)^{2} J_{2}^{\prime}(x) \\
& =2 \sin x \cos ^{3} x+2 x^{2} \sin x \cos ^{2} x-\sin x \cos x+x^{2} \sin x-\sin x \cos ^{2} x-x+x \cos ^{3} x \\
& =\frac{1}{4} \sin (4 x)+\left(\frac{x^{2}}{2}-\frac{1}{4}\right) \sin (3 x)+\frac{1}{4} x \cos (3 x)+\left(\frac{3 x^{2}}{2}-\frac{1}{4}\right) \sin x+\frac{3}{4} x \cos x-x \\
& =\frac{1}{15} x^{7}-\frac{1}{105} x^{9}-\frac{53}{25200} x^{11}+\sum_{n=6}^{\infty}(-1)^{n} V_{n}(x) \tag{3.12}
\end{align*}
$$

where

$$
V_{n}(x)=\frac{6 \cdot 16^{n}-\left(4 n^{2}-n+3\right) 9^{n}-36 n^{2}-9 n+3}{6(2 n+1)!} x^{2 n+1}
$$

Noting that $\frac{3}{2} x^{2}<\frac{3}{2}\left(\frac{\pi}{4}\right)^{2}<1$ holds for $0<x<\pi / 4$, we find that for $0<x<\pi / 4$ and $n \geqslant 6$,

$$
\begin{aligned}
\frac{V_{n+1}(x)}{V_{n}(x)} & =\frac{\frac{3}{2} x^{2}\left(32 \cdot 16^{n}-\left(12 n^{2}+21 n+18\right) 9^{n}-\left(12 n^{2}+27 n+14\right)\right)}{(n+1)(2 n+3)\left(6 \cdot 16^{n}-\left(4 n^{2}-n+3\right) 9^{n}-\left(36 n^{2}+9 n-3\right)\right)} \\
& <\frac{32 \cdot 16^{n}}{(n+1)(2 n+3)\left(6 \cdot 16^{n}-\left(4 n^{2}-n+3\right) 9^{n}-\left(36 n^{2}+9 n-3\right)\right)} \\
& =\frac{32}{(n+1)(2 n+3)\left(6-x_{n}\right)},
\end{aligned}
$$

where

$$
x_{n}=\left(4 n^{2}-n+3\right)\left(\frac{9}{16}\right)^{n}+\frac{36 n^{2}+9 n-3}{16^{n}}
$$

Noting that the sequence $\left\{x_{n}\right\}$ is strictly decreasing for $n \geqslant 6$, we have

$$
0<x_{n} \leqslant x_{6}=\frac{37465917}{8388608}, \quad n \geqslant 6
$$

We then obtain that, for $0<x<\pi / 4$ and $n \geqslant 6$,

$$
\frac{V_{n+1}(x)}{V_{n}(x)}<\frac{32}{(n+1)(2 n+3)\left(6-\frac{37465917}{8388608}\right)}<1
$$

Therefore, for fixed $x \in(0, \pi / 4)$, the sequence $n \longmapsto V_{n}(x)$ is strictly decreasing for $n \geqslant 6$. We then obtain from (3.12) that, for $0<x<\pi / 4$,

$$
x^{2}(1-\cos x)^{2}(1+2 \cos x)^{2} J_{2}^{\prime}(x)>x^{7}\left(\frac{1}{15}-\frac{1}{105} x^{2}-\frac{53}{25200} x^{4}\right)>0
$$

Hence, $J_{2}(x)$ is strictly increasing for $0<x<\pi / 4$.
Differentiation yields

$$
x^{2} \sqrt{\cos (2 x)}(1-\sqrt{\cos (2 x)})^{2} J_{3}^{\prime}(x)=D_{2}(x)-D_{1}(x)
$$

where

$$
D_{2}(x)=(\sin x-x \cos x) \cos (2 x)+x(x-\sin x) \sin (2 x)>0
$$

and

$$
D_{1}(x)=(\sin x-x \cos x) \sqrt{\cos (2 x)}>0
$$

for $0<x<\pi / 4$.
We now prove $J_{3}^{\prime}(x)>0$ for $0<x<\pi / 4$, it suffices to show that $D_{2}(x)>D_{1}(x)$. Elementary calculations reveal that

$$
\begin{align*}
\frac{D_{2}^{2}(x)-D_{1}^{2}(x)}{2 \sin x}= & -2 x^{3} \cos ^{2} x+\sin x+2 \sin x \cos ^{4} x+4 x^{2} \sin x \cos ^{3} x \\
& +\left(2 x^{4}+x^{2}-3\right) \sin x \cos ^{2} x-x^{2} \sin (2 x) \\
= & -x^{3}-x^{3} \cos (2 x)+\left(\frac{1}{2} x^{4}+\frac{1}{4} x^{2}+\frac{1}{2}\right) \sin x \\
& +\left(\frac{1}{2} x^{4}+\frac{1}{4} x^{2}-\frac{3}{8}\right) \sin (3 x)+\frac{1}{2} x^{2} \sin (4 x)+\frac{1}{8} \sin (5 x) \\
= & \frac{13}{540} x^{9}+\frac{1}{9450} x^{11}-\frac{37}{20160} x^{13}+\frac{108961}{349272000} x^{15} \\
& -\frac{1864237}{108972864000} x^{17}-\frac{493}{583783200} x^{19}+\frac{2419136561}{11204153985024000} x^{21} \\
& -\frac{25139133427}{1300926768261120000} x^{23}+\sum_{n=12}^{\infty}(-1)^{n} X_{n}(x), \tag{3.13}
\end{align*}
$$

where

$$
\begin{aligned}
X_{n}(x) & =\left(135 \cdot 25^{n}-54 n(2 n+1) 16^{n}+\left(64 n^{4}-64 n^{3}-88 n^{2}-20 n-243\right) 9^{n}\right. \\
& \left.+108 n(2 n-1)(2 n+1) 4^{n}+108(2 n-1)\left(8 n^{3}-4 n^{2}-5 n-1\right)\right) \frac{x^{2 n+1}}{216 \cdot(2 n+1)!}
\end{aligned}
$$

We find that for $0<x<\pi / 4$ and $n \geqslant 12$,

$$
\frac{X_{n+1}(x)}{X_{n}(x)}=\left(\frac{9 x^{2}}{2}\right) \frac{Y_{n}}{Z_{n}}<\frac{9}{2}\left(\frac{\pi}{4}\right)^{2} \frac{Y_{n}}{Z_{n}}<\frac{3 Y_{n}}{Z_{n}}
$$

where

$$
Y_{n}=375 \cdot 25^{n}-\mathscr{E}_{1}(n)+\mathscr{E}_{2}(n)+\mathscr{E}_{3}(n)+\mathscr{E}_{4}(n)
$$

and

$$
\begin{aligned}
Z_{n}=(n+1)(2 n+3) & \left(135 \cdot 25^{n}-\mathscr{E}_{5}(n)+\left(64 n^{4}-64 n^{3}-88 n^{2}-20 n-243\right) 9^{n}\right. \\
& \left.+108 n(2 n-1)(2 n+1) 4^{n}+108(2 n-1)\left(8 n^{3}-4 n^{2}-5 n-1\right)\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& \mathscr{E}_{1}(n)=96(2 n+3)(n+1) 16^{n}, \quad \mathscr{E}_{2}(n)=\left(64 n^{4}+192 n^{3}+104 n^{2}-132 n-351\right) 9^{n} \\
& \mathscr{E}_{3}(n)=48(2 n+3)(2 n+1)(n+1) 4^{n}, \quad \mathscr{E}_{4}(n)=12(2 n+1)\left(8 n^{3}+20 n^{2}+11 n-2\right), \\
& \mathscr{E}_{5}(n)=54 n(2 n+1) 16^{n} .
\end{aligned}
$$

It is easy to see that, for $n \geqslant 12$,

$$
\frac{3 Y_{n}}{Z_{n}}<\frac{3\left(375 \cdot 25^{n}+\mathscr{E}_{2}(n)+\mathscr{E}_{3}(n)+\mathscr{E}_{4}(n)\right)}{(n+1)(2 n+3)\left(135 \cdot 25^{n}-\mathscr{E}_{5}(n)\right)}=\frac{3\left(375+\frac{\mathscr{E}_{2}(n)}{25^{n}}+\frac{\mathscr{E}_{3}(n)}{25^{n}}+\frac{\mathscr{E}_{4}(n)}{25^{n}}\right)}{(n+1)(2 n+3)\left(135-\frac{\mathscr{C}_{5}(n)}{25^{n}}\right)}
$$

Noting that the sequences $\left\{\frac{\mathscr{E}_{j}(n)}{25^{n}}\right\} \quad(j=2,3,4,5)$ are strictly decreasing for $n \geqslant 12$, we have, for $n \geqslant 12$,

$$
\begin{aligned}
0 & <\frac{\mathscr{E}_{2}(n)}{25^{n}}+\frac{\mathscr{E}_{3}(n)}{25^{n}}+\frac{\mathscr{E}_{4}(n)}{25^{n}} \leqslant \frac{\mathscr{E}_{2}(12)}{25^{12}}+\frac{\mathscr{E}_{3}(12)}{25^{12}}+\frac{\mathscr{E}_{4}(12)}{25^{12}} \\
& =\frac{472199873062850001}{59604644775390625}+\frac{282662535168}{2384185791015625}+\frac{202008}{2384185791015625} \\
& =\frac{472206939631279401}{59604644775390625}
\end{aligned}
$$

and

$$
0<\frac{\mathscr{E}_{5}(n)}{25^{n}} \leqslant \frac{\mathscr{E}_{5}(12)}{25^{12}}=\frac{182395784908505088}{2384185791015625}
$$

We then obtain that for $0<x<\pi / 4$ and $n \geqslant 12$,

$$
\frac{X_{n+1}(x)}{X_{n}(x)}<\frac{3 Y_{n}}{Z_{n}}<\frac{3\left(375+\frac{472206939631279401}{59604644775390625}\right)}{(n+1)(2 n+3)\left(135-\frac{182395784908505088}{2384185791015625}\right)}<1
$$

Therefore, for fixed $x \in(0, \pi / 4)$, the sequence $n \longmapsto X_{n}(x)$ is strictly decreasing for $n \geqslant 12$. We obtain from (3.13) that, for $0<x<\pi / 4$,

$$
\begin{aligned}
\frac{D_{2}^{2}(x)-D_{1}^{2}(x)}{2 \sin x}= & x^{9}\left(\frac{13}{540}+\frac{1}{9450} x^{2}-\frac{37}{20160} x^{4}\right) \\
& +x^{15}\left(\frac{108961}{349272000}-\frac{1864237}{108972864000} x^{2}-\frac{493}{583783200} x^{4}\right) \\
& +x^{21}\left(\frac{2419136561}{11204153985024000}-\frac{25139133427}{1300926768261120000} x^{2}\right)>0
\end{aligned}
$$

We then obtain that for $0<x<\pi / 4$,

$$
D_{2}(x)>D_{1}(x) \quad \text { and } \quad J_{3}^{\prime}(x)>0
$$

Hence, $J_{3}(x)$ is strictly increasing for $0<x<\pi / 4$.
Differentiation yields

$$
J_{4}^{\prime}(x)=-\frac{I_{1}(x)}{I_{2}(x)}
$$

where

$$
I_{1}(x)=x^{2} \sin x-\sin x \cos x+\sin x \cos ^{2} x+2 x \cos ^{2} x-x \cos ^{3} x-x
$$

and

$$
I_{2}(x)=x^{2}-x \sin (2 x)+\frac{1}{4} \sin ^{2}(2 x)
$$

We now prove $J_{4}^{\prime}(x)<0$ for $0<x<\pi / 4$, it suffices to show that $I_{1}(x)>0$ and $I_{2}(x)>0$ for $0<x<\pi / 4$.

Elementary calculations reveal that

$$
\begin{align*}
I_{1}(x) & =\left(x^{2}+\frac{1}{4}\right) \sin x-\frac{1}{2} \sin (2 x)+\frac{1}{4} \sin (3 x)-\frac{3}{4} x \cos x+x \cos (2 x)-\frac{1}{4} x \cos (3 x) \\
& =\frac{7}{90} x^{7}-\frac{41}{1890} x^{9}+\sum_{n=5}^{\infty}(-1)^{n-1} W_{n}(x) \tag{3.14}
\end{align*}
$$

where

$$
W_{n}(x)=\frac{(n-1) 9^{n}-4 n \cdot 4^{n}+8 n^{2}+7 n+1}{2 \cdot(2 n+1)!} x^{2 n+1}
$$

Noting that $\frac{1}{2} x^{2}<\frac{1}{2}\left(\frac{\pi}{4}\right)^{2}<1$ holds for $0<x<\pi / 4$, we find that, for $0<x<\pi / 4$ and $n \geqslant 5$,

$$
\begin{aligned}
\frac{W_{n+1}(x)}{W_{n}(x)} & =\frac{\frac{1}{2} x^{2}\left(9 n \cdot 9^{n}-(16 n+16) 4^{n}+8 n^{2}+23 n+16\right)}{(n+1)(2 n+3)\left((n-1) 9^{n}-4 n \cdot 4^{n}+8 n^{2}+7 n+1\right)} \\
& <\frac{9 n \cdot 9^{n}+8 n^{2}+23 n+16}{(n+1)(2 n+3)\left((n-1) 9^{n}-4 n \cdot 4^{n}\right)} \\
& =\frac{9 n+\frac{8 n^{2}+23 n+16}{9^{n}}}{(n+1)(2 n+3)\left((n-1)-4 n\left(\frac{4}{9}\right)^{n}\right)}
\end{aligned}
$$

Noting that the sequences $\left\{\frac{8 n^{2}+23 n+16}{9^{n}}\right\}$ and $\left\{4 n\left(\frac{4}{9}\right)^{n}\right\}$ are both strictly decreasing for $n \geqslant 5$, we have, for $n \geqslant 5$,

$$
0<\frac{8 n^{2}+23 n+16}{9^{n}} \leqslant\left[\frac{8 n^{2}+23 n+16}{9^{n}}\right]_{n=5}=\frac{331}{59049}
$$

and

$$
0<4 n\left(\frac{4}{9}\right)^{n} \leqslant\left[4 n\left(\frac{4}{9}\right)^{n}\right]_{n=5}=\frac{20480}{59049}
$$

We then obtain that for $0<x<\pi / 4$ and $n \geqslant 5$,

$$
\frac{W_{n+1}(x)}{W_{n}(x)}<\frac{9 n+\frac{331}{59049}}{(n+1)(2 n+3)\left((n-1)-\frac{20480}{59049}\right)}<1
$$

Therefore, for fixed $x \in(0, \pi / 4)$, the sequence $n \longmapsto W_{n}(x)$ is strictly decreasing for $n \geqslant 5$. We then obtain from (3.14) that, for $0<x<\pi / 4$,

$$
I_{1}(x)>x^{7}\left(\frac{7}{90}-\frac{41}{1890} x^{2}\right)>0
$$

Using (1.15) and (1.19), we obtain

$$
\begin{align*}
\frac{I_{2}(x)}{\sin (2 x)} & =x^{2} \csc (2 x)-x+\frac{1}{4} \sin (2 x) \\
& =\sum_{n=2}^{\infty}\left\{\frac{2(2 n+1)\left(2^{2 n-1}-1\right)\left|B_{2 n}\right|+(-1)^{n}}{(2 n+1)!}\right\} 2^{2 n-1} x^{2 n+1} \tag{3.15}
\end{align*}
$$

By the first inequality in (3.5), we find that for $n \geqslant 2$,

$$
2(2 n+1)\left(2^{2 n-1}-1\right)\left|B_{2 n}\right|>2(2 n+1)\left(2^{2 n-1}-1\right) \frac{2(2 n)!}{(2 \pi)^{2 n}}>1
$$

We see from (3.15) that

$$
I_{2}(x)>0, \quad 0<x<\frac{\pi}{4}
$$

We then obtain $J_{4}^{\prime}(x)<0$ for $0<x<\pi / 4$. Hence, $J_{4}(x)$ is strictly decreasing for $0<x<\pi / 4$. The proof is complete.

Theorem 3.3. The inequalities

$$
\begin{equation*}
\left(1-\mu_{3}\right) L+\mu_{3} T<A<\left(1-v_{3}\right) L+v_{3} T \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-\mu_{4}\right) L+\mu_{4} Q<T<\left(1-v_{4}\right) L+v_{4} Q \tag{3.17}
\end{equation*}
$$

hold if and only if

$$
\begin{equation*}
\mu_{3} \leqslant \frac{1}{2}, \quad v_{3} \geqslant \frac{\pi}{4}, \quad \mu_{4} \leqslant \frac{4}{5}, \quad v_{4} \geqslant \frac{2 \sqrt{2}}{\pi} . \tag{3.18}
\end{equation*}
$$

Proof. We first prove (3.16) and (3.17) with $\mu_{3}=\frac{1}{2}, v_{3}=\frac{\pi}{4}, \mu_{4}=\frac{4}{5}, v_{4}=\frac{2 \sqrt{2}}{\pi}$, namely,

$$
\begin{equation*}
\frac{1}{2} L+\frac{1}{2} T<A<\left(1-\frac{\pi}{4}\right) L+\frac{\pi}{4} T \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{5} L+\frac{4}{5} Q<T<\left(1-\frac{2 \sqrt{2}}{\pi}\right) L+\frac{2 \sqrt{2}}{\pi} Q \tag{3.20}
\end{equation*}
$$

In fact, $(3.7) \Longrightarrow$ (3.19) and $(3.8) \Longrightarrow$ (3.20). More precisely, the following inequalities are true:

$$
\begin{equation*}
\frac{1}{2} L+\frac{1}{2} T<\frac{1}{4} H+\frac{3}{4} T<A<\left(1-\frac{\pi}{4}\right) H+\frac{\pi}{4} T<\left(1-\frac{\pi}{4}\right) L+\frac{\pi}{4} T \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{5} L+\frac{4}{5} Q<\frac{1}{9} H+\frac{8}{9} Q<T<\left(1-\frac{2 \sqrt{2}}{\pi}\right) H+\frac{2 \sqrt{2}}{\pi} Q<\left(1-\frac{2 \sqrt{2}}{\pi}\right) L+\frac{2 \sqrt{2}}{\pi} Q \tag{3.22}
\end{equation*}
$$

Obviously, the last inequalities in (3.21) and (3.22) hold. The first inequalities in (3.21) and (3.22) can be written, respectively, as

$$
\frac{H+T}{2}>L \quad \text { and } \quad \frac{5 H+4 Q}{9}>L
$$

We now prove that

$$
\begin{equation*}
\frac{H+T}{2}>\frac{5 H+4 Q}{9}>L \tag{3.23}
\end{equation*}
$$

The first inequality in (3.23) can be written as

$$
\frac{H+8 Q}{9}<T
$$

which is the left-hand side of (3.8). The second inequality in (3.23) is mentioned in [9, Table 2]. It can be written, by Remark 1.1, as

$$
\begin{equation*}
5\left(1-z^{2}\right)+4 \sqrt{1+z^{2}}>\frac{18 z}{\ln \frac{1+z}{1-z}} \tag{3.24}
\end{equation*}
$$

For $0<z<1$, let

$$
\xi(z)=\ln \frac{1+z}{1-z}-\frac{18 z}{5\left(1-z^{2}\right)+4 \sqrt{1+z^{2}}}
$$

Differentiation yields

$$
\xi^{\prime}(z)=\frac{2\left(\left(5-7 z^{2}+52 z^{4}\right) \sqrt{1+z^{2}}-5+45 z^{2}-40 z^{4}\right)}{\left(1-z^{2}\right)\left(4-4 z^{2}+5 \sqrt{1+z^{2}}\right)^{2} \sqrt{1+z^{2}}}
$$

By an elementary change of variable $z=\sqrt{y^{2}-1}(1<y<\sqrt{2})$, we find

$$
\begin{aligned}
& \left(5-7 z^{2}+52 z^{4}\right) \sqrt{1+z^{2}}-5+45 z^{2}-40 z^{4} \\
& \quad=52 y^{5}-40 y^{4}-111 y^{3}+125 y^{2}+64 y-90 \\
& \quad=81(y-1)+72(y-1)^{2}+249(y-1)^{3}+220(y-1)^{4}+52(y-1)^{5}>0
\end{aligned}
$$

We then obtain $\xi^{\prime}(z)>0$ for $0<z<1$. Hence, $\xi(z)$ is strictly increasing for $0<z<1$, and we have

$$
\ln \frac{1+z}{1-z}-\frac{18 z}{5\left(1-z^{2}\right)+4 \sqrt{1+z^{2}}}=\xi(z)>\xi(0)=0
$$

for $0<z<1$. This means that (3.24) holds. Hence, the second inequality in (3.23) holds.

We then obtain (3.16) and (3.17) with $\mu_{3}=\frac{1}{2}, v_{3}=\frac{\pi}{4}, \mu_{4}=\frac{4}{5}, v_{4}=\frac{2 \sqrt{2}}{\pi}$.
Conversely, if (3.16) and (3.17) are valid, then we get

$$
\mu_{3}<\frac{1-\frac{2 z}{\ln \frac{1+z}{1-z}}}{\frac{z}{\arctan z}-\frac{2 z}{\ln \frac{1+z}{1-z}}}<v_{3} \quad \text { and } \quad \mu_{4}<\frac{\frac{z}{\arcsin z}-\frac{2 z}{\ln \frac{1+z}{1-z}}}{\sqrt{1+z^{2}}-\frac{2 z}{\ln \frac{1+z}{1-z}}}<v_{4} .
$$

The limit relations

$$
\begin{gathered}
\lim _{z \rightarrow 0^{+}} \frac{1-\frac{2 z}{\ln \frac{1+z}{1-z}}}{\frac{\arctan z}{}-\frac{2 z}{\ln \frac{1+z}{1-z}}}=\frac{1}{2}, \quad \lim _{z \rightarrow 1^{-}} \frac{1-\frac{2 z}{\ln \frac{1+z}{1-z}}}{\frac{\arctan z}{}-\frac{2 z}{\ln \frac{1+z}{1-z}}}=\frac{\pi}{4}, \\
\lim _{z \rightarrow 0^{+}} \frac{\frac{z}{\arcsin z}-\frac{2 z}{\ln \frac{1+z}{1-z}}}{\sqrt{1+z^{2}}-\frac{2 z}{\ln \frac{1+z}{1-z}}}=\frac{4}{5}, \quad \lim _{z \rightarrow 1^{-}} \frac{\frac{z}{\arcsin z}-\frac{2 z}{\ln \frac{1+z}{1-z}}}{\sqrt{1+z^{2}}-\frac{2 z}{\ln \frac{1+z}{1-z}}}=\frac{2 \sqrt{2}}{\pi}
\end{gathered}
$$

yield

$$
\mu_{3} \leqslant \frac{1}{2}, \quad v_{3} \geqslant \frac{\pi}{4}, \quad \mu_{4} \leqslant \frac{4}{5}, \quad v_{4} \geqslant \frac{2 \sqrt{2}}{\pi} .
$$

The proof is complete.

Acknowledgement. The authors thank the referees for their careful reading of the manuscript and insightful comments.

REFERENCES

[1] M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 9th printing, Washington, 1970.
[2] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Inequalities for quasiconformal mappings in space, Pacific J. Math. 160 (1993), 1-18.
[3] G. D. Anderson, S.-L. Qiu, M. K. Vamanamurthy and M. Vuorinen, Generalized elliptic integral and modular equations, Pacific J. Math. 192 (2000), 1-37.
[4] T. Burić, N. Elezović, Asymptotic expansion of Arithmetic-Geometric mean, J. Math. Inequal. 9, 4 (2015), 1181-1190.
[5] Y. M. Chu, Y. F. Qiu, M. K. Wang and G. D. Wang, The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert's mean, J. Inequal. Appl. 2010, Article ID 436457, 7 pages.
[6] Y. M. Chu, M. K. Wang and W. M. Gong, Two sharp double inequalities for Seiffert mean, J. Inequal. Appl. 2011, 44, 7 pages.
[7] Y. M. Chu, C. Zong and G. D. Wang, Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean, J. Math. Inequal. 5 (2011), 429-434.
[8] A. Cuyt, V. B. Petersen, B. Verdonk, H. Waadeland and W. B. Jones, Handbook of Continued Fractions for Special Functions, Springer, New York, 2008.
[9] N. Elezović, Asymptotic inequalities and comparison of classical means, J. Math. Inequal. 9, 1 (2015), 177-196.
[10] N. ELEZOVIĆ, Asymptotic expansions of gamma and related functions, binomial coefficients, inequalities and means, J. Math. Inequal. 9, 4 (2015), 1001-1054.
[11] N. ELEZOVIĆ AND L. VUKŠIĆ, Asymptotic expansions of bivariate classical means and related inequalities, J. Math. Inequal. 8, 4 (2014), 707-724.
[12] N. ELEzović and L. VUKšić, Neuman-Sandor means, asymptotic expansions and related inequalities, J. Math. Inequal. 9, 4 (2015), 1337-1348.
[13] N. Elezović, L. Mihoković, Asymptotic behaviour of power means, Math. Inequal. Appl. 19, 4 (2016), 1399-1412.
[14] S.-Q. GaO, H.-Y. GaO And W.-Y. Shi, Optimal convex combination bounds of the centroidal and harmonic means for the Seiffert mean, Int. J. Pure Appl. Math. 70 (2011), 701-709.
[15] H. Liu and X. J. Meng, The optimal convex combination bounds for Seiffert's mean, J. Inequal. Appl. 2011, Art. ID 686834, 9 pages.
[16] H.-J. Seiffert, Problem 887, Nieuw Arch. Wiskunde, 11 (1993), 176.
[17] H.-J. Seiffert, Aufgabe $\beta 16$, Wurzel, 29 (1995), 221-222.
[18] L. VUKŠIĆ, Seiffert means, asymptotic expansions and inequalities, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 19 (2015), 129-142.
[19] A. WitKowski, Interpolations of Scwab-Borchardt mean, Math. Ineq. Appl. 16, 1 (2013), 193-206.

Neven Elezović

Unska 3, 10000 Zagreb, Croatia
e-mail: neven.elez@fer.hr

[^0]
[^0]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

