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A NOTE ON HOLDER’S INEQUALITY
FOR MATRIX-VALUED MEASURES

SAMANTHA LEORATO

(Communicated by I. Peri¢)

Abstract. Following [1], we prove a version of Holder’s inequality for matrix-valued measures.
As corollaries, an integral version of moment type inequalities in [3] and Minkowski inequality
are derived.

1. Introduction and preliminary notation

We present a useful generalization of Holder’s inequality to matrix-valued prob-
ability measures. Compared to the scalar case, the inequality holds only for a very
restricted set of couples (p,q), where ¢ = (1 —1/p)~! is the Holder conjugate, but
only if the random objects integrated are matrix-valued.

Before stating the main result, we introduce some notation and concepts. We refer
to Farenick and Zhou (2007) for more details.

For n € N, let H" denote the vector space of n x n Hermitian matrices over the
field C. The space H" is a partially ordered set, and we say A < B if and only if
(Av,v) < (Bv,v) forall ve C", and (-,-) the inner product in C".

We denote by ||v|| = ((v, v))l/ ? the (Euclidean) norm in C" and by ||A| the oper-
ator norm induced on H", namely:

Al = max {l4v]}, VA € H".
v||=1
By the spectral theorem, [|A|| = max{|Ai|,...,|A,|} where A; are the eigenvalues of

A. We denote by A(A) the spectrum of A, i.e. the set of all (real) eigenvalues of A.

Positive definiteness of A is equivalent to min{A(A)} > 0. If min{A(A)} >0
then A is said to be positive semi-definite.

Let J C R be an interval and A(A) € J. Let ¢ : J — R be a continuous function.
Then the operator ¢(A), A € H" is defined and has spectrum {@(1),A € 1(A)}.

We say that ¢ : J — R is an operator-convex function if for all n, A,B € H" such
that A(A)UA(B) C J and for all 7 € [0,1],

@A+ (1-1)B) <19(A)+ (1 —1)¢(B).
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DEFINITION 1. Given a measurable space (X,.7), afunction f:X — H" is mea-
surable if and only if for all v € C", the function (fv,v) : X — R is measurable, namely,
forall E € B(R), {x: (f(x)n,v) €E} €.7.

DEFINITION 2. Let (X,.”, 1) be a probability space and f : X +— H". Then f
is integrable if for every v € C", the function (fv,v) is integrable and the integral is
denoted by

[ rmduc.
X

There exists a unique matrix A € H", such that

(Av,u) = /}((f(x)v,u)d,u(x) forall u,v € C".

The matrix A is the Bochner integral and is denoted by [ fdu . Two important proper-
ties of this integral are linearity and monotonicity:

[(r+epdu= [ sdu+ [ ean

/fd,u < /gdu iff f(x) < g(x) (in H") forall x € X.

DEFINITION 3. If (X,.¥) is a measurable space, a matrix-valued probability mea-
sure is a function v : . — H" such that v(0) =0, v(E) is positive semi-definite, v
is countably additive and v(X) = I, (the identity matrix).

Note that the function iy (E) = t trace(v(E)), E € .7 is a scalar-valued measure
and is absolutely continuous w.r.t v.

We say that f: X — H" is a nonnegative (positive) function if f(x) is nonnegative
(positive) definite for all x € X.

2. Holder’s inequality

THEOREM 1. (Holder’s inequality for matrix functions) Let 1 < p <2, and g =
1/(1— p~1) its Holder conjugate.

(i) (Scalar measures) Let (X,.7, i) be a probability space. Let f: X — H", g: X
H" be two positive 1 —measurable functions and let J C R be a closed subset,
such that A(f(x)) UA(g(y)) € J for all x,y € X. Let ¢ be the matrix-valued
function satisfying g(x) = c(x)c(X)* for all x.

1/29 1/p 1/2q
/X cfc*du<</x quu> (/X f”du> (/X quu) O

(i) (matrix-valued measures) Let v a matrix-valued probability measure defined on
(X,”). Let f: X +— H", g:X +— H" be two positive v—measurable functions
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and let J C R be a closed subset, such that A (f(x))UA(g(y)) €J forall x,y € X.
Let ¢ be the matrix-valued function satisfying g(x) = c¢(x)c(X)* for all x. Then,

1/2q 1/p 1/2q
/X cfetdv < ( /X quv) ( /X fl’dv) ( /X quv> o ©

Proof. (i) The function @, : R — R, ¢,(z) = z” is operator convex for all 1 <
p<2or—-1<p<O.

Let
1/2

V= ( / quu>_ clu(c ( / quu)

be a matrix-valued probability measure. Then v is absolutely continuous w.r.t. i, with

Radon-Nicodym derivative equal to the p.s.d. matrix d“: such that

1/2

dvdu /dv VEe.&.

Note that, for any integrable function %, the integral | x hdv can be written as an integral
of the scalar measure i :

1))
_ ( / quy>_1/2 / h(c*)idp ( / quu>

Since f is v—measurable, we can apply Theorem 4.2 of Farenick and Zhou (2007) to
the operator-convex function ¢, and to the nonnegative function i = clmaf(cr)-a:

op (/hdv) < /(p,, (h)dv

which also implies, since 1/p € [1/2,1] and z!/? is operator monotone:

~1/2

/Cl_qf(C*)l_qu < {/ oy (I f(c)9) dv] v

Then,

—1/2 -1/2

</ qu“> Jyeperan (/ qu“) = [eapen) v
s Ux C (c*)lq)pd‘/} = (/X C"fﬂ(c*)W)l/p
- </quu)l/2p (/Xf”du>1/p (/g”d.u)lm-
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By noting that ([ g9du)P~V/% = ([ gdu)"/* the result follows.
(ii) Let the scalar measure u be defined as ((E) = itrace(v(E)). Then v is

absolutely continuous w.r. to i, with Radon-Nicodym derivative h =dv/du and f, g
and ¢ are {—measurable and p—integrable. Equation (2) then writes:

1/2q 1/p
/hl/chc*hl/zd” < (/ hl/zgth/zdu) (/ hl/prhl/2d”)
X X X

1/2q
x (/ hl/zgth/zdu> :
X

Since u is a scalar probability measure, (1) holds:

/XCfC*d[J < </ngd”>l/2q </Xfpdu>l/17 </ngd”)l/211.

Define the matrix-valued measure Vv by

—~1/2 -1/2
/E v = ( / hl/zgth/zdu) /E W2 d () ' ( / hl/zgth/zdu> :
such that
~1/2 ~1/2
(/hl/2gth/2du) /h1/2cfc*hl/2du (/hl/zgth/zd“>
E
z/clqu(c*)lfqdf/.

Then, by repeating the same steps as in (i), we get (2). U

REMARK 1. If f and g are commuting functions, inequalities (1) and (2) simplify

to:
| fedu < ( / f”du> W ( / g‘fdu) v

that is equivalent to the scalar Holder’s inequality, if u is a probability measure and

/ngdvg </ngdv>1/2q </Xfpdv)1/p </ngdv>1/2q

if v is a matrix-valued probability.

By taking alternatively g =1, f= f" and p=s/r,or f = f* and p =r/s one
obtains an integral version of Theorem 2.3 in [3], as a corollary of Holder’s inequality
and (for negative values of p) of Jensen’s inequality.
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COROLLARY 1. Let v{f >0} =1.If s > r and (s,r) & (—1,1)> ,or 1/2< r<
I<sor—1/2>s>—1>r then

(fra)"<([ra)"

Theorem 1 can be used to prove a Minkowski inequality for matrix-valued mea-
sures and random elements.

THEOREM 2. Let 1 < p <2 and (X,.%, 1) be aprobability space. If f:X — H",
g: X — H" are two real positive u—measurable functions and J C R be a closed
subset, such that A (f(x))UA(g(y)) € J forall x,y € X, then,

( /. (f+g)”du)1/p < ( /. f”du)l/p+ ( /. gﬁdu)l/p. 3)

Let v a matrix-valued probability measure defined on (X,.). If f,g are v—measurable,

(/}((f—kg)pdv)l/p < (/Xfpdv>l/p+ (/Xgpdv>l/p. 4

Proof. We consider the more general case (4). Since f and g are Hermitian and
nonnegative, we can write (f 4+ g)?~! = hh*. Thus, from Theorem 1:

/(f+g)”dv < /h(f+g)h*dv
< ( / (f +g)q<”‘”dv> v / (f +g)dv ( / (f+g)q<l’—1>dv>
<(firvoron) ™ (o) "+ (few) )

x ( / (f+g)”dv) o 5)

where we have exploited the linearity of the Bochner integral and applied (1) to f and
to g in the particularcase r =1, s =2.

Now by pre and post-multiplying both terms of (5) by ([(f+g)? )71/ 2 we get:

(/(f+g)p>l_l/q < (/fpdv)l/p+ (/gpdv> v

which completes the proof once noting that 1 —1/¢g=1/p. O

1/2q
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