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A NOTE ON HÖLDER’S INEQUALITY

FOR MATRIX–VALUED MEASURES
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(Communicated by I. Perić)

Abstract. Following [1], we prove a version of Holder’s inequality for matrix-valued measures.
As corollaries, an integral version of moment type inequalities in [3] and Minkowski inequality
are derived.

1. Introduction and preliminary notation

We present a useful generalization of Hölder’s inequality to matrix-valued prob-
ability measures. Compared to the scalar case, the inequality holds only for a very
restricted set of couples (p,q) , where q = (1− 1/p)−1 is the Hölder conjugate, but
only if the random objects integrated are matrix-valued.

Before stating the main result, we introduce some notation and concepts. We refer
to Farenick and Zhou (2007) for more details.

For n ∈ N , let Hn denote the vector space of n× n Hermitian matrices over the
field C . The space Hn is a partially ordered set, and we say A � B if and only if
〈Av,v〉 � 〈Bv,v〉 for all v ∈ Cn , and 〈·, ·〉 the inner product in Cn .

We denote by ‖v‖ = (〈v,v〉)1/2 the (Euclidean) norm in Cn and by ‖A‖ the oper-
ator norm induced on Hn , namely:

‖A‖ = max
‖v‖=1

{‖Av‖}, ∀A ∈ Hn.

By the spectral theorem, ‖A‖ = max{|λ1|, . . . , |λn|} where λ j are the eigenvalues of
A . We denote by λ (A) the spectrum of A , i.e. the set of all (real) eigenvalues of A .

Positive definiteness of A is equivalent to min{λ (A)} > 0. If min{λ (A)} � 0
then A is said to be positive semi-definite.

Let J ⊂ R be an interval and λ (A) ∈ J . Let ϕ : J �→ R be a continuous function.
Then the operator ϕ(A) , A ∈ Hn is defined and has spectrum {ϕ(λ ),λ ∈ λ (A)} .

We say that ϕ : J �→ R is an operator-convex function if for all n , A,B ∈ Hn such
that λ (A)∪λ (B) ⊂ J and for all t ∈ [0,1] ,

ϕ(tA+(1− t)B)� tϕ(A)+ (1− t)ϕ(B).
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DEFINITION 1. Given a measurable space (X ,S ) , a function f : X �→Hn is mea-
surable if and only if for all v∈Cn , the function 〈 f v,v〉 : X �→R is measurable, namely,
for all E ∈ B(R) , {x : 〈 f (x)v,v〉 ∈ E} ∈ S .

DEFINITION 2. Let (X ,S ,μ) be a probability space and f : X �→ Hn . Then f
is integrable if for every v ∈ Cn , the function 〈 f v,v〉 is integrable and the integral is
denoted by ∫

X
〈 f (x)v,v〉dμ(x).

There exists a unique matrix A ∈ Hn , such that

〈Av,u〉 =
∫

X
〈 f (x)v,u〉dμ(x) for all u,v ∈ C

n.

The matrix A is the Bochner integral and is denoted by
∫

f dμ . Two important proper-
ties of this integral are linearity and monotonicity:∫

( f +g)dμ =
∫

f dμ +
∫

gdμ∫
f dμ �

∫
gdμ iff f (x) � g(x) (in Hn ) for all x ∈ X .

DEFINITION 3. If (X ,S ) is a measurable space, a matrix-valued probabilitymea-
sure is a function ν : S �→ Hn such that ν( /0) = 0 , ν(E) is positive semi-definite, ν
is countably additive and ν(X) = In (the identity matrix).

Note that the function μX (E) = 1
k trace(ν(E)) , E ∈S is a scalar-valued measure

and is absolutely continuous w.r.t ν .
We say that f : X �→Hn is a nonnegative (positive) function if f (x) is nonnegative

(positive) definite for all x ∈ X .

2. Hölder’s inequality

THEOREM 1. (Hölder’s inequality for matrix functions) Let 1 � p � 2, and q =
1/(1− p−1) its Hölder conjugate.

(i) (Scalar measures) Let (X ,S ,μ) be a probability space. Let f : X �→Hn , g : X �→
Hn be two positive μ−measurable functions and let J ⊂ R be a closed subset,
such that λ ( f (x)) ∪ λ (g(y)) ∈ J for all x,y ∈ X . Let c be the matrix-valued
function satisfying g(x) = c(x)c(X)∗ for all x .

∫
X

c f c∗dμ �
(∫

X
gqdμ

)1/2q(∫
X

f pdμ
)1/p(∫

X
gqdμ

)1/2q

. (1)

(ii) (matrix-valued measures) Let ν a matrix-valued probability measure defined on
(X ,S ) . Let f : X �→ Hn , g : X �→ Hn be two positive ν−measurable functions
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and let J ⊂R be a closed subset, such that λ ( f (x))∪λ (g(y)) ∈ J for all x,y∈X .
Let c be the matrix-valued function satisfying g(x) = c(x)c(X)∗ for all x . Then,

∫
X

c f c∗dν �
(∫

X
gqdν

)1/2q(∫
X

f pdν
)1/p(∫

X
gqdν

)1/2q

. (2)

Proof. (i) The function ϕp : R �→ R , ϕp(z) = zp is operator convex for all 1 �
p � 2 or −1 � p � 0.

Let

ν =
(∫

gqdμ
)−1/2

cqμ (c∗)q
(∫

gqdμ
)−1/2

be a matrix-valued probability measure. Then ν is absolutely continuous w.r.t. μ , with
Radon-Nicodỳm derivative equal to the p.s.d. matrix dν

dμ such that

∫
E

dν
dμ

dμ =
∫

E
dν, ∀E ∈ S .

Note that, for any integrable function h , the integral
∫
X hdν can be written as an integral

of the scalar measure μ :

∫
X

hdν =
∫

X

(
dν
dμ

)1/2

h

(
dν
dμ

)1/2

dμ

=
(∫

gqdμ
)−1/2∫

cqh(c∗)qdμ
(∫

gqdμ
)−1/2

.

Since f is ν−measurable, we can apply Theorem 4.2 of Farenick and Zhou (2007) to
the operator-convex function ϕp and to the nonnegative function h = c1−q f (c∗)1−q :

ϕp

(∫
hdν

)
�
∫

ϕp (h)dν

which also implies, since 1/p ∈ [1/2,1] and z1/p is operator monotone:

∫
c1−q f (c∗)1−qdν �

[∫
ϕp
(
c1−q f (c∗)1−q)dν

]1/p

Then,

(∫
gqdμ

)−1/2∫
X

c f c∗dμ
(∫

gqdμ
)−1/2

=
∫

X
c1−q f (c∗)1−qdν

�
[∫

X

(
c1−q f (c∗)1−q)p

dν
]1/p

=
(∫

X
c−q f p(c∗)−qdν

)1/p

=
(∫

gqdμ
)−1/2p(∫

X
f pdμ

)1/p(∫
gqdμ

)−1/2p

.
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By noting that (
∫

gqdμ)(p−1)/2p = (
∫

gqdμ)1/2q the result follows.
(ii) Let the scalar measure μ be defined as μ(E) = 1

k trace(ν(E)) . Then ν is
absolutely continuous w.r. to μ , with Radon-Nicodỳm derivative h = dν/dμ and f , g
and c are μ−measurable and μ− integrable. Equation (2) then writes:

∫
X

h1/2c f c∗h1/2dμ �
(∫

X
h1/2gqh1/2dμ

)1/2q(∫
X

h1/2 f ph1/2dμ
)1/p

×
(∫

X
h1/2gqh1/2dμ

)1/2q

.

Since μ is a scalar probability measure, (1) holds:

∫
X

c f c∗dμ �
(∫

X
gqdμ

)1/2q(∫
X

f pdμ
)1/p(∫

X
gqdμ

)1/2q

.

Define the matrix-valued measure ν̃ by

∫
E

dν̃ =
(∫

h1/2gqh1/2dμ
)−1/2 ∫

E
h1/2 cq dμ (c∗)q h1/2

(∫
h1/2gqh1/2dμ

)−1/2

,

such that

(∫
h1/2gqh1/2dμ

)−1/2∫
E

h1/2 c f c∗ h1/2dμ
(∫

h1/2gqh1/2dμ
)−1/2

=
∫

c1−q f (c∗)1−qdν̃.

Then, by repeating the same steps as in (i), we get (2). �

REMARK 1. If f and g are commuting functions, inequalities (1) and (2) simplify
to: ∫

X
f gdμ �

(∫
X

f pdμ
)1/p(∫

X
gqdμ

)1/q

that is equivalent to the scalar Hölder’s inequality, if μ is a probability measure and

∫
X

f gdν �
(∫

X
gqdν

)1/2q(∫
X

f pdν
)1/p(∫

X
gqdν

)1/2q

if ν is a matrix-valued probability.

By taking alternatively g = I , f = f r and p = s/r , or f = f s and p = r/s one
obtains an integral version of Theorem 2.3 in [3], as a corollary of Hölder’s inequality
and (for negative values of p ) of Jensen’s inequality.
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COROLLARY 1. Let ν{ f > 0} = I . If s � r and (s,r) �∈ (−1,1)2 , or 1/2 � r �
1 � s or −1/2 � s � −1 � r then

(∫
f rdν

)1/r

�
(∫

f sdν
)1/s

.

Theorem 1 can be used to prove a Minkowski inequality for matrix-valued mea-
sures and random elements.

THEOREM 2. Let 1 � p � 2 and (X ,S ,μ) be a probability space. If f : X �→Hn ,
g : X �→ Hn are two real positive μ−measurable functions and J ⊂ R be a closed
subset, such that λ ( f (x))∪λ (g(y)) ∈ J for all x,y ∈ X , then,

(∫
X
( f +g)pdμ

)1/p

�
(∫

X
f pdμ

)1/p

+
(∫

X
gpdμ

)1/p

. (3)

Let ν a matrix-valued probabilitymeasure defined on (X ,S ) . If f ,g are ν−measurable,

(∫
X
( f +g)pdν

)1/p

�
(∫

X
f pdν

)1/p

+
(∫

X
gpdν

)1/p

. (4)

Proof. We consider the more general case (4). Since f and g are Hermitian and
nonnegative, we can write ( f +g)p−1 = hh∗ . Thus, from Theorem 1:

∫
( f +g)pdν �

∫
h( f +g)h∗dν

�
(∫

( f +g)q(p−1)dν
)1/2q∫

( f +g)dν
(∫

( f +g)q(p−1)dν
)1/2q

�
(∫

( f +g)pdν
)1/2q

((∫
f pdν

)1/p

+
(∫

gpdν
)1/p

)

×
(∫

( f +g)pdν
)1/2q

(5)

where we have exploited the linearity of the Bochner integral and applied (1) to f and
to g in the particular case r = 1, s = 2.

Now by pre and post-multiplying both terms of (5) by (
∫
( f +g)p)−1/2q , we get:

(∫
( f +g)p

)1−1/q

�
(∫

f pdν
)1/p

+
(∫

gpdν
)1/p

which completes the proof once noting that 1−1/q = 1/p . �
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[3] J. PEČARIĆ, Power matrix means and related inequalities, Mathematical Communications 1 (2)
(1996) 91–110.

(Received December 28, 2016) Samantha Leorato
Department of Economics and Finance

University of Rome Tor Vergata
via Columbia, 2, 00133 Rome, Italy

e-mail: samantha.leorato@uniroma2.it

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


