A NOTE ON HÖLDER'S INEQUALITY FOR MATRIX-VALUED MEASURES

SAMANTHA LEORATO

(Communicated by I. Perić)

Abstract. Following [1], we prove a version of Holder's inequality for matrix-valued measures. As corollaries, an integral version of moment type inequalities in [3] and Minkowski inequality are derived.

1. Introduction and preliminary notation

We present a useful generalization of Hölder's inequality to matrix-valued probability measures. Compared to the scalar case, the inequality holds only for a very restricted set of couples (p,q), where $q = (1 - 1/p)^{-1}$ is the Hölder conjugate, but only if the random objects integrated are matrix-valued.

Before stating the main result, we introduce some notation and concepts. We refer to Farenick and Zhou (2007) for more details.

For $n \in \mathbb{N}$, let H^n denote the vector space of $n \times n$ Hermitian matrices over the field \mathbb{C} . The space H^n is a partially ordered set, and we say $A \leq B$ if and only if $\langle Av, v \rangle \leq \langle Bv, v \rangle$ for all $v \in \mathbb{C}^n$, and $\langle \cdot, \cdot \rangle$ the inner product in \mathbb{C}^n .

We denote by $||v|| = (\langle v, v \rangle)^{1/2}$ the (Euclidean) norm in \mathbb{C}^n and by ||A|| the operator norm induced on H^n , namely:

$$||A|| = \max_{||v||=1} \{ ||Av|| \}, \quad \forall A \in H^n.$$

By the spectral theorem, $||A|| = \max\{|\lambda_1|, \dots, |\lambda_n|\}$ where λ_j are the eigenvalues of *A*. We denote by $\lambda(A)$ the spectrum of *A*, i.e. the set of all (real) eigenvalues of *A*.

Positive definiteness of A is equivalent to $\min{\{\lambda(A)\}} > 0$. If $\min{\{\lambda(A)\}} \ge 0$ then A is said to be positive semi-definite.

Let $J \subset \mathbb{R}$ be an interval and $\lambda(A) \in J$. Let $\varphi: J \mapsto \mathbb{R}$ be a continuous function. Then the operator $\varphi(A), A \in H^n$ is defined and has spectrum $\{\varphi(\lambda), \lambda \in \lambda(A)\}$.

We say that $\varphi: J \mapsto \mathbb{R}$ is an operator-convex function if for all $n, A, B \in H^n$ such that $\lambda(A) \cup \lambda(B) \subset J$ and for all $t \in [0, 1]$,

$$\varphi(tA + (1-t)B) \leq t\varphi(A) + (1-t)\varphi(B).$$

Mathematics subject classification (2010): 46L53, 47LXX.

Keywords and phrases: Matrix-valued probability measures, Jensen's inequality, Hölder's inequality.

DEFINITION 1. Given a measurable space (X, \mathscr{S}) , a function $f : X \mapsto H^n$ is measurable if and only if for all $v \in \mathbb{C}^n$, the function $\langle fv, v \rangle : X \mapsto \mathbb{R}$ is measurable, namely, for all $E \in \mathscr{B}(\mathbb{R}), \{x : \langle f(x)v, v \rangle \in E\} \in \mathscr{S}$.

DEFINITION 2. Let (X, \mathscr{S}, μ) be a probability space and $f : X \mapsto H^n$. Then f is integrable if for every $v \in \mathbb{C}^n$, the function $\langle fv, v \rangle$ is integrable and the integral is denoted by

$$\int_X \langle f(x)v,v\rangle d\mu(x).$$

There exists a unique matrix $A \in H^n$, such that

$$\langle Av, u \rangle = \int_X \langle f(x)v, u \rangle d\mu(x)$$
 for all $u, v \in \mathbb{C}^n$.

The matrix A is the Bochner integral and is denoted by $\int f d\mu$. Two important properties of this integral are linearity and monotonicity:

$$\int (f+g)d\mu = \int fd\mu + \int gd\mu$$
$$\int fd\mu \leqslant \int gd\mu \text{ iff } f(x) \leqslant g(x) \text{ (in } H^n) \text{ for all } x \in X.$$

DEFINITION 3. If (X, \mathscr{S}) is a measurable space, a matrix-valued probability measure is a function $v : \mathscr{S} \mapsto H^n$ such that $v(\emptyset) = 0$, v(E) is positive semi-definite, v is countably additive and $v(X) = I_n$ (the identity matrix).

Note that the function $\mu_X(E) = \frac{1}{k} trace(v(E)), E \in \mathscr{S}$ is a scalar-valued measure and is absolutely continuous w.r.t v.

We say that $f: X \mapsto H^n$ is a nonnegative (positive) function if f(x) is nonnegative (positive) definite for all $x \in X$.

2. Hölder's inequality

THEOREM 1. (Hölder's inequality for matrix functions) Let $1 \le p \le 2$, and $q = 1/(1-p^{-1})$ its Hölder conjugate.

(i) (Scalar measures) Let (X, S, μ) be a probability space. Let f : X → Hⁿ, g : X → Hⁿ be two positive μ – measurable functions and let J ⊂ ℝ be a closed subset, such that λ(f(x)) ∪ λ(g(y)) ∈ J for all x, y ∈ X. Let c be the matrix-valued function satisfying g(x) = c(x)c(X)* for all x.

$$\int_{X} cfc^{*}d\mu \leqslant \left(\int_{X} g^{q}d\mu\right)^{1/2q} \left(\int_{X} f^{p}d\mu\right)^{1/p} \left(\int_{X} g^{q}d\mu\right)^{1/2q}.$$
 (1)

(ii) (matrix-valued measures) Let v a matrix-valued probability measure defined on (X, \mathscr{S}) . Let $f: X \mapsto H^n$, $g: X \mapsto H^n$ be two positive v-measurable functions

and let $J \subset \mathbb{R}$ be a closed subset, such that $\lambda(f(x)) \cup \lambda(g(y)) \in J$ for all $x, y \in X$. Let *c* be the matrix-valued function satisfying $g(x) = c(x)c(X)^*$ for all *x*. Then,

$$\int_{X} cfc^{*}d\mathbf{v} \leqslant \left(\int_{X} g^{q}d\mathbf{v}\right)^{1/2q} \left(\int_{X} f^{p}d\mathbf{v}\right)^{1/p} \left(\int_{X} g^{q}d\mathbf{v}\right)^{1/2q}.$$
 (2)

Proof. (i) The function $\varphi_p : \mathbb{R} \mapsto \mathbb{R}$, $\varphi_p(z) = z^p$ is operator convex for all $1 \leq p \leq 2$ or $-1 \leq p \leq 0$.

Let

$$\mathbf{v} = \left(\int g^q d\mu\right)^{-1/2} c^q \mu \left(c^*\right)^q \left(\int g^q d\mu\right)^{-1/2}$$

be a matrix-valued probability measure. Then v is absolutely continuous w.r.t. μ , with Radon-Nicodỳm derivative equal to the p.s.d. matrix $\frac{dv}{du}$ such that

$$\int_{E} \frac{d\nu}{d\mu} d\mu = \int_{E} d\nu, \quad \forall E \in \mathscr{S}.$$

Note that, for any integrable function *h*, the integral $\int_X h dv$ can be written as an integral of the scalar measure μ :

$$\int_X h d\nu = \int_X \left(\frac{d\nu}{d\mu}\right)^{1/2} h\left(\frac{d\nu}{d\mu}\right)^{1/2} d\mu$$
$$= \left(\int g^q d\mu\right)^{-1/2} \int c^q h(c^*)^q d\mu \left(\int g^q d\mu\right)^{-1/2}$$

Since *f* is *v*-measurable, we can apply Theorem 4.2 of Farenick and Zhou (2007) to the operator-convex function φ_p and to the nonnegative function $h = c^{1-q} f(c^*)^{1-q}$:

$$\varphi_p\left(\int hdv\right)\leqslant\int\varphi_p\left(h\right)dv$$

which also implies, since $1/p \in [1/2, 1]$ and $z^{1/p}$ is operator monotone:

$$\int c^{1-q} f(c^*)^{1-q} d\nu \leqslant \left[\int \varphi_p \left(c^{1-q} f(c^*)^{1-q} \right) d\nu \right]^{1/p}$$

Then,

$$\left(\int g^{q} d\mu \right)^{-1/2} \int_{X} cfc^{*} d\mu \left(\int g^{q} d\mu \right)^{-1/2} = \int_{X} c^{1-q} f(c^{*})^{1-q} d\nu$$
$$\leq \left[\int_{X} \left(c^{1-q} f(c^{*})^{1-q} \right)^{p} d\nu \right]^{1/p} = \left(\int_{X} c^{-q} f^{p}(c^{*})^{-q} d\nu \right)^{1/p}$$
$$= \left(\int g^{q} d\mu \right)^{-1/2p} \left(\int_{X} f^{p} d\mu \right)^{1/p} \left(\int g^{q} d\mu \right)^{-1/2p}.$$

By noting that $(\int g^q d\mu)^{(p-1)/2p} = (\int g^q d\mu)^{1/2q}$ the result follows.

(ii) Let the scalar measure μ be defined as $\mu(E) = \frac{1}{k} trace(\nu(E))$. Then ν is absolutely continuous w.r. to μ , with Radon-Nicodỳm derivative $h = d\nu/d\mu$ and f, g and c are μ -measurable and μ -integrable. Equation (2) then writes:

$$\begin{split} \int_{X} h^{1/2} cf c^{*} h^{1/2} d\mu &\leqslant \left(\int_{X} h^{1/2} g^{q} h^{1/2} d\mu \right)^{1/2q} \left(\int_{X} h^{1/2} f^{p} h^{1/2} d\mu \right)^{1/p} \\ &\times \left(\int_{X} h^{1/2} g^{q} h^{1/2} d\mu \right)^{1/2q}. \end{split}$$

Since μ is a scalar probability measure, (1) holds:

$$\int_X cfc^* d\mu \leqslant \left(\int_X g^q d\mu\right)^{1/2q} \left(\int_X f^p d\mu\right)^{1/p} \left(\int_X g^q d\mu\right)^{1/2q}.$$

Define the matrix-valued measure \tilde{v} by

$$\int_{E} d\tilde{\mathbf{v}} = \left(\int h^{1/2} g^{q} h^{1/2} d\mu\right)^{-1/2} \int_{E} h^{1/2} c^{q} d\mu (c^{*})^{q} h^{1/2} \left(\int h^{1/2} g^{q} h^{1/2} d\mu\right)^{-1/2},$$

such that

$$\left(\int h^{1/2} g^q h^{1/2} d\mu \right)^{-1/2} \int_E h^{1/2} c f c^* h^{1/2} d\mu \left(\int h^{1/2} g^q h^{1/2} d\mu \right)^{-1/2}$$
$$= \int c^{1-q} f(c^*)^{1-q} d\tilde{v}.$$

Then, by repeating the same steps as in (i), we get (2). \Box

REMARK 1. If f and g are commuting functions, inequalities (1) and (2) simplify to:

$$\int_{X} fgd\mu \leqslant \left(\int_{X} f^{p} d\mu\right)^{1/p} \left(\int_{X} g^{q} d\mu\right)^{1/q}$$

that is equivalent to the scalar Hölder's inequality, if μ is a probability measure and

$$\int_{X} fgd\nu \leqslant \left(\int_{X} g^{q} d\nu\right)^{1/2q} \left(\int_{X} f^{p} d\nu\right)^{1/p} \left(\int_{X} g^{q} d\nu\right)^{1/2q}$$

if v is a matrix-valued probability.

By taking alternatively g = I, $f = f^r$ and p = s/r, or $f = f^s$ and p = r/s one obtains an integral version of Theorem 2.3 in [3], as a corollary of Hölder's inequality and (for negative values of p) of Jensen's inequality.

COROLLARY 1. Let $v\{f > 0\} = I$. If $s \ge r$ and $(s,r) \notin (-1,1)^2$, or $1/2 \le r \le 1 \le s$ or $-1/2 \ge s \ge -1 \ge r$ then

$$\left(\int f^r dv\right)^{1/r} \leqslant \left(\int f^s dv\right)^{1/s}.$$

Theorem 1 can be used to prove a Minkowski inequality for matrix-valued measures and random elements.

THEOREM 2. Let $1 \leq p \leq 2$ and (X, \mathcal{S}, μ) be a probability space. If $f: X \mapsto H^n$, $g: X \mapsto H^n$ are two real positive μ -measurable functions and $J \subset \mathbb{R}$ be a closed subset, such that $\lambda(f(x)) \cup \lambda(g(y)) \in J$ for all $x, y \in X$, then,

$$\left(\int_{X} (f+g)^{p} d\mu\right)^{1/p} \leq \left(\int_{X} f^{p} d\mu\right)^{1/p} + \left(\int_{X} g^{p} d\mu\right)^{1/p}.$$
(3)

Let v a matrix-valued probability measure defined on (X, \mathscr{S}) . If f, g are v – measurable,

$$\left(\int_{X} (f+g)^{p} dv\right)^{1/p} \leqslant \left(\int_{X} f^{p} dv\right)^{1/p} + \left(\int_{X} g^{p} dv\right)^{1/p}.$$
(4)

Proof. We consider the more general case (4). Since f and g are Hermitian and nonnegative, we can write $(f+g)^{p-1} = hh^*$. Thus, from Theorem 1:

$$\int (f+g)^{p} d\nu \leq \int h(f+g)h^{*} d\nu
\leq \left(\int (f+g)^{q(p-1)} d\nu\right)^{1/2q} \int (f+g) d\nu \left(\int (f+g)^{q(p-1)} d\nu\right)^{1/2q}
\leq \left(\int (f+g)^{p} d\nu\right)^{1/2q} \left(\left(\int f^{p} d\nu\right)^{1/p} + \left(\int g^{p} d\nu\right)^{1/p}\right)
\times \left(\int (f+g)^{p} d\nu\right)^{1/2q}$$
(5)

where we have exploited the linearity of the Bochner integral and applied (1) to f and to g in the particular case r = 1, s = 2.

Now by pre and post-multiplying both terms of (5) by $(\int (f+g)^p)^{-1/2q}$, we get:

$$\left(\int (f+g)^p\right)^{1-1/q} \leqslant \left(\int f^p d\nu\right)^{1/p} + \left(\int g^p d\nu\right)^{1/p}$$

which completes the proof once noting that 1 - 1/q = 1/p. \Box

S. LEORATO

REFERENCES

- D. R. FARENICK AND F. ZHOU, Jensen's inequality relative to matrix-valued measures, J. Math. Anal. Appl. 327 (2007) 919–929.
- [2] F. HIAI, Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization Interdisciplinary Information Sciences 16, no. 2 (2010) 139–248.
- [3] J. PEČARIĆ, Power matrix means and related inequalities, Mathematical Communications 1 (2) (1996) 91–110.

(Received December 28, 2016)

Samantha Leorato Department of Economics and Finance University of Rome Tor Vergata via Columbia, 2, 00133 Rome, Italy e-mail: samantha.leorato@uniroma2.it