A NOTE ON HÖLDER'S INEQUALITY FOR MATRIX-VALUED MEASURES

SAMANTHA LEORATO

(Communicated by I. Perić)

Abstract

Following [1], we prove a version of Holder's inequality for matrix-valued measures. As corollaries, an integral version of moment type inequalities in [3] and Minkowski inequality are derived.

1. Introduction and preliminary notation

We present a useful generalization of Hölder's inequality to matrix-valued probability measures. Compared to the scalar case, the inequality holds only for a very restricted set of couples (p, q), where $q=(1-1 / p)^{-1}$ is the Hölder conjugate, but only if the random objects integrated are matrix-valued.

Before stating the main result, we introduce some notation and concepts. We refer to Farenick and Zhou (2007) for more details.

For $n \in \mathbb{N}$, let H^{n} denote the vector space of $n \times n$ Hermitian matrices over the field \mathbb{C}. The space H^{n} is a partially ordered set, and we say $A \leqslant B$ if and only if $\langle A v, v\rangle \leqslant\langle B v, v\rangle$ for all $v \in \mathbb{C}^{n}$, and $\langle\cdot, \cdot\rangle$ the inner product in \mathbb{C}^{n}.

We denote by $\|v\|=(\langle v, v\rangle)^{1 / 2}$ the (Euclidean) norm in \mathbb{C}^{n} and by $\|A\|$ the operator norm induced on H^{n}, namely:

$$
\|A\|=\max _{\|v\|=1}\{\|A v\|\}, \quad \forall A \in H^{n}
$$

By the spectral theorem, $\|A\|=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}$ where λ_{j} are the eigenvalues of A. We denote by $\lambda(A)$ the spectrum of A, i.e. the set of all (real) eigenvalues of A.

Positive definiteness of A is equivalent to $\min \{\lambda(A)\}>0$. If $\min \{\lambda(A)\} \geqslant 0$ then A is said to be positive semi-definite.

Let $J \subset \mathbb{R}$ be an interval and $\lambda(A) \in J$. Let $\varphi: J \mapsto \mathbb{R}$ be a continuous function. Then the operator $\varphi(A), A \in H^{n}$ is defined and has spectrum $\{\varphi(\lambda), \lambda \in \lambda(A)\}$.

We say that $\varphi: J \mapsto \mathbb{R}$ is an operator-convex function if for all $n, A, B \in H^{n}$ such that $\lambda(A) \cup \lambda(B) \subset J$ and for all $t \in[0,1]$,

$$
\varphi(t A+(1-t) B) \leqslant t \varphi(A)+(1-t) \varphi(B) .
$$

Mathematics subject classification (2010): 46L53, 47LXX.
Keywords and phrases: Matrix-valued probability measures, Jensen's inequality, Hölder's inequality.

DEFINITION 1. Given a measurable space (X, \mathscr{S}), a function $f: X \mapsto H^{n}$ is measurable if and only if for all $v \in \mathbb{C}^{n}$, the function $\langle f v, v\rangle: X \mapsto \mathbb{R}$ is measurable, namely, for all $E \in \mathscr{B}(\mathbb{R}),\{x:\langle f(x) v, v\rangle \in E\} \in \mathscr{S}$.

DEfinition 2. Let (X, \mathscr{S}, μ) be a probability space and $f: X \mapsto H^{n}$. Then f is integrable if for every $v \in \mathbb{C}^{n}$, the function $\langle f v, v\rangle$ is integrable and the integral is denoted by

$$
\int_{X}\langle f(x) v, v\rangle d \mu(x)
$$

There exists a unique matrix $A \in H^{n}$, such that

$$
\langle A v, u\rangle=\int_{X}\langle f(x) v, u\rangle d \mu(x) \quad \text { for all } u, v \in \mathbb{C}^{n}
$$

The matrix A is the Bochner integral and is denoted by $\int f d \mu$. Two important properties of this integral are linearity and monotonicity:

$$
\begin{aligned}
& \int(f+g) d \mu=\int f d \mu+\int g d \mu \\
& \int f d \mu \leqslant \int g d \mu \text { iff } f(x) \leqslant g(x)\left(\text { in } H^{n}\right) \text { for all } x \in X
\end{aligned}
$$

DEFINITION 3. If (X, \mathscr{S}) is a measurable space, a matrix-valued probability measure is a function $v: \mathscr{S} \mapsto H^{n}$ such that $v(\emptyset)=\mathbf{0}, v(E)$ is positive semi-definite, v is countably additive and $v(X)=I_{n}$ (the identity matrix).

Note that the function $\mu_{X}(E)=\frac{1}{k} \operatorname{trace}(v(E)), E \in \mathscr{S}$ is a scalar-valued measure and is absolutely continuous w.r.t v.

We say that $f: X \mapsto H^{n}$ is a nonnegative (positive) function if $f(x)$ is nonnegative (positive) definite for all $x \in X$.

2. Hölder's inequality

THEOREM 1. (Hölder's inequality for matrix functions) Let $1 \leqslant p \leqslant 2$, and $q=$ $1 /\left(1-p^{-1}\right)$ its Hölder conjugate.
(i) (Scalar measures) Let (X, \mathscr{S}, μ) be a probability space. Let $f: X \mapsto H^{n}, g: X \mapsto$ H^{n} be two positive μ-measurable functions and let $J \subset \mathbb{R}$ be a closed subset, such that $\lambda(f(x)) \cup \lambda(g(y)) \in J$ for all $x, y \in X$. Let c be the matrix-valued function satisfying $g(x)=c(x) c(X)^{*}$ for all x.

$$
\begin{equation*}
\int_{X} c f c^{*} d \mu \leqslant\left(\int_{X} g^{q} d \mu\right)^{1 / 2 q}\left(\int_{X} f^{p} d \mu\right)^{1 / p}\left(\int_{X} g^{q} d \mu\right)^{1 / 2 q} \tag{1}
\end{equation*}
$$

(ii) (matrix-valued measures) Let v a matrix-valued probability measure defined on (X, \mathscr{S}). Let $f: X \mapsto H^{n}, g: X \mapsto H^{n}$ be two positive v-measurable functions
and let $J \subset \mathbb{R}$ be a closed subset, such that $\lambda(f(x)) \cup \lambda(g(y)) \in J$ for all $x, y \in X$. Let c be the matrix-valued function satisfying $g(x)=c(x) c(X)^{*}$ for all x. Then,

$$
\begin{equation*}
\int_{X} c f c^{*} d v \leqslant\left(\int_{X} g^{q} d v\right)^{1 / 2 q}\left(\int_{X} f^{p} d v\right)^{1 / p}\left(\int_{X} g^{q} d v\right)^{1 / 2 q} \tag{2}
\end{equation*}
$$

Proof. (i) The function $\varphi_{p}: \mathbb{R} \mapsto \mathbb{R}, \varphi_{p}(z)=z^{p}$ is operator convex for all $1 \leqslant$ $p \leqslant 2$ or $-1 \leqslant p \leqslant 0$.

Let

$$
v=\left(\int g^{q} d \mu\right)^{-1 / 2} c^{q} \mu\left(c^{*}\right)^{q}\left(\int g^{q} d \mu\right)^{-1 / 2}
$$

be a matrix-valued probability measure. Then v is absolutely continuous w.r.t. μ, with Radon-Nicodỳm derivative equal to the p.s.d. matrix $\frac{d v}{d \mu}$ such that

$$
\int_{E} \frac{d v}{d \mu} d \mu=\int_{E} d v, \quad \forall E \in \mathscr{S}
$$

Note that, for any integrable function h, the integral $\int_{X} h d \nu$ can be written as an integral of the scalar measure μ :

$$
\begin{aligned}
\int_{X} h d v & =\int_{X}\left(\frac{d v}{d \mu}\right)^{1 / 2} h\left(\frac{d v}{d \mu}\right)^{1 / 2} d \mu \\
& =\left(\int g^{q} d \mu\right)^{-1 / 2} \int c^{q} h\left(c^{*}\right)^{q} d \mu\left(\int g^{q} d \mu\right)^{-1 / 2}
\end{aligned}
$$

Since f is v-measurable, we can apply Theorem 4.2 of Farenick and Zhou (2007) to the operator-convex function φ_{p} and to the nonnegative function $h=c^{1-q} f\left(c^{*}\right)^{1-q}$:

$$
\varphi_{p}\left(\int h d v\right) \leqslant \int \varphi_{p}(h) d v
$$

which also implies, since $1 / p \in[1 / 2,1]$ and $z^{1 / p}$ is operator monotone:

$$
\int c^{1-q} f\left(c^{*}\right)^{1-q} d v \leqslant\left[\int \varphi_{p}\left(c^{1-q} f\left(c^{*}\right)^{1-q}\right) d v\right]^{1 / p}
$$

Then,

$$
\begin{aligned}
& \left(\int g^{q} d \mu\right)^{-1 / 2} \int_{X} c f c^{*} d \mu\left(\int g^{q} d \mu\right)^{-1 / 2}=\int_{X} c^{1-q} f\left(c^{*}\right)^{1-q} d v \\
& \leqslant\left[\int_{X}\left(c^{1-q} f\left(c^{*}\right)^{1-q}\right)^{p} d v\right]^{1 / p}=\left(\int_{X} c^{-q} f^{p}\left(c^{*}\right)^{-q} d v\right)^{1 / p} \\
& =\left(\int g^{q} d \mu\right)^{-1 / 2 p}\left(\int_{X} f^{p} d \mu\right)^{1 / p}\left(\int g^{q} d \mu\right)^{-1 / 2 p}
\end{aligned}
$$

By noting that $\left(\int g^{q} d \mu\right)^{(p-1) / 2 p}=\left(\int g^{q} d \mu\right)^{1 / 2 q}$ the result follows.
(ii) Let the scalar measure μ be defined as $\mu(E)=\frac{1}{k} \operatorname{trace}(v(E))$. Then v is absolutely continuous w.r. to μ, with Radon-Nicodỳm derivative $h=d v / d \mu$ and f, g and c are μ-measurable and μ-integrable. Equation (2) then writes:

$$
\begin{aligned}
\int_{X} h^{1 / 2} c f c^{*} h^{1 / 2} d \mu \leqslant & \left(\int_{X} h^{1 / 2} g^{q} h^{1 / 2} d \mu\right)^{1 / 2 q}\left(\int_{X} h^{1 / 2} f^{p} h^{1 / 2} d \mu\right)^{1 / p} \\
& \times\left(\int_{X} h^{1 / 2} g^{q} h^{1 / 2} d \mu\right)^{1 / 2 q}
\end{aligned}
$$

Since μ is a scalar probability measure, (1) holds:

$$
\int_{X} c f c^{*} d \mu \leqslant\left(\int_{X} g^{q} d \mu\right)^{1 / 2 q}\left(\int_{X} f^{p} d \mu\right)^{1 / p}\left(\int_{X} g^{q} d \mu\right)^{1 / 2 q}
$$

Define the matrix-valued measure \tilde{v} by

$$
\int_{E} d \tilde{v}=\left(\int h^{1 / 2} g^{q} h^{1 / 2} d \mu\right)^{-1 / 2} \int_{E} h^{1 / 2} c^{q} d \mu\left(c^{*}\right)^{q} h^{1 / 2}\left(\int h^{1 / 2} g^{q} h^{1 / 2} d \mu\right)^{-1 / 2}
$$

such that

$$
\begin{aligned}
\left(\int h^{1 / 2} g^{q} h^{1 / 2} d \mu\right)^{-1 / 2} & \int_{E} h^{1 / 2} c f c^{*} h^{1 / 2} d \mu\left(\int h^{1 / 2} g^{q} h^{1 / 2} d \mu\right)^{-1 / 2} \\
& =\int c^{1-q} f\left(c^{*}\right)^{1-q} d \tilde{v}
\end{aligned}
$$

Then, by repeating the same steps as in (i), we get (2).

REMARK 1. If f and g are commuting functions, inequalities (1) and (2) simplify to:

$$
\int_{X} f g d \mu \leqslant\left(\int_{X} f^{p} d \mu\right)^{1 / p}\left(\int_{X} g^{q} d \mu\right)^{1 / q}
$$

that is equivalent to the scalar Hölder's inequality, if μ is a probability measure and

$$
\int_{X} f g d v \leqslant\left(\int_{X} g^{q} d v\right)^{1 / 2 q}\left(\int_{X} f^{p} d v\right)^{1 / p}\left(\int_{X} g^{q} d v\right)^{1 / 2 q}
$$

if v is a matrix-valued probability.
By taking alternatively $g=I, f=f^{r}$ and $p=s / r$, or $f=f^{s}$ and $p=r / s$ one obtains an integral version of Theorem 2.3 in [3], as a corollary of Hölder's inequality and (for negative values of p) of Jensen's inequality.

Corollary 1. Let $v\{f>0\}=I$. If $s \geqslant r$ and $(s, r) \notin(-1,1)^{2}$, or $1 / 2 \leqslant r \leqslant$ $1 \leqslant s$ or $-1 / 2 \geqslant s \geqslant-1 \geqslant r$ then

$$
\left(\int f^{r} d v\right)^{1 / r} \leqslant\left(\int f^{s} d v\right)^{1 / s}
$$

Theorem 1 can be used to prove a Minkowski inequality for matrix-valued measures and random elements.

THEOREM 2. Let $1 \leqslant p \leqslant 2$ and (X, \mathscr{S}, μ) be a probability space. If $f: X \mapsto H^{n}$, $g: X \mapsto H^{n}$ are two real positive μ-measurable functions and $J \subset \mathbb{R}$ be a closed subset, such that $\lambda(f(x)) \cup \lambda(g(y)) \in J$ for all $x, y \in X$, then,

$$
\begin{equation*}
\left(\int_{X}(f+g)^{p} d \mu\right)^{1 / p} \leqslant\left(\int_{X} f^{p} d \mu\right)^{1 / p}+\left(\int_{X} g^{p} d \mu\right)^{1 / p} \tag{3}
\end{equation*}
$$

Let v a matrix-valued probability measure defined on (X, \mathscr{S}). If f, g are v-measurable,

$$
\begin{equation*}
\left(\int_{X}(f+g)^{p} d v\right)^{1 / p} \leqslant\left(\int_{X} f^{p} d v\right)^{1 / p}+\left(\int_{X} g^{p} d v\right)^{1 / p} \tag{4}
\end{equation*}
$$

Proof. We consider the more general case (4). Since f and g are Hermitian and nonnegative, we can write $(f+g)^{p-1}=h h^{*}$. Thus, from Theorem 1:

$$
\begin{align*}
\int(f+g)^{p} d v \leqslant & \int h(f+g) h^{*} d v \\
\leqslant & \left(\int(f+g)^{q(p-1)} d v\right)^{1 / 2 q} \int(f+g) d v\left(\int(f+g)^{q(p-1)} d v\right)^{1 / 2 q} \\
\leqslant & \left(\int(f+g)^{p} d v\right)^{1 / 2 q}\left(\left(\int f^{p} d v\right)^{1 / p}+\left(\int g^{p} d v\right)^{1 / p}\right) \\
& \times\left(\int(f+g)^{p} d v\right)^{1 / 2 q} \tag{5}
\end{align*}
$$

where we have exploited the linearity of the Bochner integral and applied (1) to f and to g in the particular case $r=1, s=2$.

Now by pre and post-multiplying both terms of (5) by $\left(\int(f+g)^{p}\right)^{-1 / 2 q}$, we get:

$$
\left(\int(f+g)^{p}\right)^{1-1 / q} \leqslant\left(\int f^{p} d \nu\right)^{1 / p}+\left(\int g^{p} d \nu\right)^{1 / p}
$$

which completes the proof once noting that $1-1 / q=1 / p$.

REFERENCES

[1] D. R. Farenick and F. Zhou, Jensen's inequality relative to matrix-valued measures, J. Math. Anal. Appl. 327 (2007) 919-929.
[2] F. Hiai, Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization Interdisciplinary Information Sciences 16, no. 2 (2010) 139-248.
[3] J. PEČARIĆ, Power matrix means and related inequalities, Mathematical Communications 1 (2) (1996) 91-110.
(Received December 28, 2016)
Samantha Leorato
Department of Economics and Finance
University of Rome Tor Vergata
via Columbia, 2, 00133 Rome, Italy
e-mail: samantha.leorato@uniroma2.it

