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Abstract. The main purpose of this paper is to englobe some new and known types of positive

semi definite matrices M =
(

A X
X∗ B

)
satisfying or not the inequality ‖M‖ � ‖A + B‖ for all

symmetric norms.

1. Introduction and preliminaries

The first section presents some known results related to the inequality together
with some preliminaries we used in the second section to derive some new and gener-
alization results. Let M

+
n denote the set of positive and semi definite part of the space

of n×n complex matrices. For positive semi definite block-matrix M, we say that M

is P.S.D. and we write M =
(

A X
X∗ B

)
∈ M

+
n+m , with A ∈ M

+
n , B ∈ M

+
m .

The modulus of a matrix X stands for (X∗X)
1
2 and is denoted by |X |. A norm

‖.‖ over the space of matrices is a symmetric norm if ‖UAV‖ = ‖A‖ for all A and all
unitaries U and V. Let A be an n×n matrix and F an m×m matrix, (m > n) written
by blocks such that A is a diagonal block and all entries other than those of A are zeros,
then the two matrices have the same singular values and ‖A‖ = ‖F‖ = ‖A⊕0‖ for all
symmetric norms, we say then that the symmetric norm on Mm induces a symmetric
norm on Mn , so for square matrices we may assume that our norms are defined on all
spaces Mn, n � 1. The spectral norm is denoted by ‖.‖s, the Frobenius norm by ‖.‖(2),

and the Ky Fan k−norm by ‖.‖k.
A positive partial transpose matrix denoted by P.P.T. is a P.S.D. block matrix

M such that both M =
(

A X
X∗ B

)
and M′ =

(
A X∗
X B

)
are positive semi definite. Let

Im(X) :=
X −X∗

2i
respectively Re(X) :=

X +X∗

2
be the imaginary part respectively

the real part of a matrix X , if W (X) denotes the field of values of X then W (Re(X)) =
ℜ(W (X)) and W (Im(X)) = ℑ(W (X)) see [1].
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LEMMA 1.1. [2] For every matrix in M
+
2n written in blocks of the same size, we

have the decomposition:

(
A X
X∗ B

)
= U

(
A+B

2 + Im(X) 0
0 0

)
U∗ +V

(
0 0
0 A+B

2 − Im(X)

)
V ∗

for some unitaries U,V ∈ M2n.

LEMMA 1.2. [2] For every matrix in M
+
2n written in blocks of the same size, we

have the decomposition:

(
A X
X∗ B

)
= U

(
A+B

2 +Re(X) 0
0 0

)
U∗ +V

(
0 0
0 A+B

2 −Re(X)

)
V ∗

for some unitaries U,V ∈ M2n.

REMARK 1.3. The proofs of Lemma 1.1 respectively Lemma 1.2 suggests that

we have A+B �− (X −X∗)
i

and A+B � (X −X∗)
i

, respectively A+B �−(X +X∗)

and A+B � (X +X∗) since if we let hereafter M1 :=
A+B

2
+ Im(X), M2 :=

A+B
2

−
Im(X), N1 :=

A+B
2

+Re(X) and N2 :=
A+B

2
−Re(X) then N1,N2,M1,M2 are P.S.D

as diagonal blocks of the P.S.D matrix JMJ∗ for some unitary matrix J ( [2]).

2. Main results

2.1. Symmetric norm inequality

It is well known that if M ∈ M
+
n+m with M =

(
A X
X∗ B

)
then

‖M‖ � ‖A‖+‖B‖ (2.1)

for all symmetric norms (see [3]). Hereafter our block matrices are such their diagonal
blocks are of equal size.

LEMMA 2.1. [2] Let M =
[

A X
X∗ B

]
∈ M

+
2n , if X is Hermitian or Skew-Hermitian

then

‖M‖ � ‖A+B‖ (2.2)

for all symmetric norms.

See [5] for another proof of Lemma 2.1 (the case X is Hermitian).
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LEMMA 2.2. [4] Let M =
[

A X
X∗ B

]
∈ M

+
2n be a positive partial transpose matrix

then
‖M‖ � ‖A+B‖ (2.3)

for all symmetric norms.

PROPOSITION 2.3. Let M =
[

A X
X∗ B

]
∈ M

+
2n be a given positive semi definite ma-

trix. If X∗ commute with A or B, then M is unitarily congruent to a P.P.T. matrix
and

‖M‖ � ‖A+B‖
for all symmetric norms. In addition if X is normal then M is a positive partial trans-
pose matrix.

Proof. We will assume without loss of generality that X∗ commute with A (up to
a permutation congruence) and that X is invertible (by a continuity argument). Take the
polar decomposition of X so X = U |X | and X∗ = |X |U∗. Since U∗ is unitary and X∗
commute with A, X and |X | commute with A thus AU∗ = U∗A. If In is the identity
matrix of order n , a direct computation shows that[

U∗ 0
0 In

][
A X
X∗ B

][
U 0
0 In

]
=

[
A |X |
|X | B

]
,

consequently we have ‖M‖ � ‖A+B‖ for all symmetric norms and that completes the
proof. If X is normal then |X | = |X∗|. The polar decomposition discussed above and
the following known decomposition: X = U |X | = |X∗|U, let us write[

U∗ 0
0 In

][
A |X |
|X | B

][
U 0
0 In

]
=

[
A X∗
X B

]
,

which implies that M is a P.P.T. matrix. �

REMARK 2.4. It is easily seen that if X commute with the Hermitian matrix A so
is X∗ and conversely.

The following is a generalization result:

LEMMA 2.5. Let M =
[

A X
X∗ B

]
be a positive semi definite matrix, if Im(X) = rIn

or Re(X) = rIn for some r, then ‖M‖ � ‖A+B‖ for all symmetric norms.

Proof. Let σi(H) denote the singular values of a matrix H ordered in decreasing

order, by Remark 1.3 the matrices M1 =
A+B

2
+ Im(X) and M2 =

A+B
2

− Im(X) are

positive semi definite since Im(X) = rIn we have:

k

∑
i=1

σi

(
A+B

2
+ Im(X)

)
+

k

∑
i=1

σi

(
A+B

2
− Im(X)

)
=

k

∑
i=1

σi(A+B).
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In other words by Lemma 1.1 ‖M‖k � ‖M1‖k +‖M2‖k = ‖A+B‖k for all Ky-Fan
k−norms which from the Ky-Fan dominance theorem (see [1] -Sec 10.7-) completes
the proof. Using Lemma 1.2 the other case is similarly proven. �

THEOREM 2.6. Let M =
[

A X
X∗ B

]
be a positive semi definite matrix. If W(X) is

a line segment in the complex plane then ‖M‖ � ‖A+B‖ for all symmetric norms.

Proof. Mθ =
[

A eiθ X
e−iθ X∗ B

]
is unitarily congruent to M by the unitary matrix

U =
[
I 0
0 e−iθ I

]
, we may choose θ in such a way that W (eiθ X) is a line segment

parallel to the imaginary axis, that is ℜ(W (eiθ X)) = W (Re(eiθ X)) = r for some real
scalar r which implies that Re(eiθ X) = rIn . Applying Lemma 2.5 to Mθ completes
the proof. �

REMARK 2.7. From Theorem 2.6 if A,B,X are 2× 2 complex matrices with X
normal then ‖M‖ � ‖A+B‖ for all symmetric norms.

The next example shows that (2.3) is a sharp inequality for P.S.D. block-matrices.

EXAMPLE 2.8. Let

M =

⎡
⎢⎢⎣

2 0 0 1
0 1 1 0
0 1 1 0
1 0 0 2

⎤
⎥⎥⎦ =

[
A X
X∗ B

]
,

where A =
[
2 0
0 1

]
and B =

[
1 0
0 2

]
. Then we have

‖A+B‖s = 3 = ‖M‖s < ‖A‖s +‖B‖s = 4.

Matrices verifying the condition of Theorem 2.6 are not necessarily positive partial

transpose considering the matrix M =
( 6 i i 1

−i 1 1 i
−i 1 1 i
1 −i −i 6

)
.

THEOREM 2.9. Let M =
[

A X
X∗ B

]
� 0 and let r1, r2 be two nonnegative numbers,

if M1 � r1In and M2 � r2In or N1 � r1In and N2 � r2In then

‖M‖ � ‖2(A+B)− (r1 + r2)In‖ (2.4)

for all symmetric norms. In particular if M � rIn for some r � 0 then

‖M‖ � 2‖(A+B)− rIn‖ (2.5)

for all symmetric norms.
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Proof. If we have the case

A+B
2

+ Im(X) � r1In (2.6)

A+B
2

− Im(X) � r2In (2.7)

or the case

A+B
2

+Re(X) � r1In (2.8)

A+B
2

−Re(X) � r2In (2.9)

then summing both equations in each case gives A + B � (r1 + r2)In so first ‖A +
B‖ � ‖2(A+B)− (r1 + r2)In‖ . Since A+B

2 − r2In � Im(X) respectively A+B
2 − r1In �

−Im(X) ; ‖M1‖k � ‖A+B−r2In‖k respectively ‖M2‖k � ‖A+B−r1In‖k for all k � n,
in consequence we derive the following inequality:

‖M‖k � ‖M1‖k +‖M2‖k = ‖2(A+B)− (r1 + r2)In‖k

for all Ky-Fan k−norms. By replacing Mi by Ni for i = 1,2 Lemma 1.2 gives the same
inequality. The particular case can be easily concluded since by the decompositions in
Lemma 1.1 and Lemma 1.2, if M � rIn then all of M1 − rIn, N1 − rIn , M2 − rIn and
N2− rIn are positive semi definite matrices. �

Inequality (2.4) can be sharper than (2.1) as these examples show:

EXAMPLE 2.10. Let

M =

⎡
⎢⎢⎣

4 0 0 −3
0 2 2 0
0 2 2 0
−3 0 0 4

⎤
⎥⎥⎦ =

[
A X
X∗ B

]
,

where A =
[
4 0
0 2

]
and B =

[
2 0
0 4

]
. M is positive semi definite, r1 = r2 = 2.5 with

8 = ‖A‖s +‖B‖s > ‖2(A+B)− (r1 + r2)In‖s = 7 = ‖M‖s > ‖A+B‖s = 6.

EXAMPLE 2.11. Let

M =

⎡
⎢⎢⎣

1 0 0 0.25
0 0 0 0
0 0 0 0

0.25 0 0 1

⎤
⎥⎥⎦ =

[
A X
X∗ B

]
,

where A =
[
1 0
0 0

]
and B =

[
0 0
0 1

]
. It can be verified that M is positive semi definite,

r1 = r2 = 0.375 and we have ‖M‖(2) =
√

2.125 > ‖A+B‖(2) =
√

2 with

2 = ‖A‖(2) +‖B‖(2) > ‖2(A+B)− (r1 + r2)In‖(2) =
√

3.125 > ‖M‖(2) > ‖A+B‖(2).
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