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NEW IMPROVEMENT OF THE CONVERSE JENSEN INEQUALITY

J. PECARIC AND J. PERIC

(Communicated by M. Praljak)

Abstract. We give a new refinement of the converse Jensen inequality for linear functionals as
well as improvements of some related results. Especially, we give two refinements of the con-
verse Holder inequality for functionals and a refinement of the converse Minkowski inequality
for functionals. Application on the quasi-arithmetic and power mean is given.

1. Introduction

Let [ be an interval in R and f: 71— R a convex functionon I.If x = (x1,...,x,)
isany n-tuplein I" and p = (py,...,pn) anonnegative n-tuple such that P, =Y | p; >
0, then the well known Jensen’s inequality

l n n
f szixi < = Y pif (xi) (1)

n =1 n=1
holds (see [6] or for example [12, p. 43]). If f is strictly convex then (1) is strict unless
xi=cforallie {j:p;>0}.

Strongly related to Jensen’s inequality is the so called converse Jensen inequality
(see [10] or for example [1 1, p. 9])

1
P,
1

M—x X—m
M—mf(m)+M—m

M=

pif (x;) < (M), )

Il
—_

which holds when f: 1 — R is a convex functionon I, [m,M] CI, —eco <m <M < +oo,
p,x areasin (1) and X = %ﬂ Y pixi. If f is strictly convex then (2) is strict unless
x; € {m,M} forall i€ {j:p; >0}.

Let E be a nonempty set and L a linear class of functions f : E — R having the
properties:

(L) (Vf,geL)(Va,beR) af+bgcL;
(L2) 1 €L (thatisif (Vr €E)f(r) =1 then f € L).
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In other words L is a subspace of the vector space RF over R containing 1.
In some cases we will also need to equip our linear class L with an aditional
property denoted by (L3):

(L3) (Vf,g€L)(min{f,g} € LAmax{f,g} € L) (lattice property).

Obviously, (RE , <) (with standard ordering) is a lattice. It can also be easily verified
that a subspace X C RE is a lattice if and only if x € X implies |x| € X. This is a
simple concequence of the fact that for every x € X the functions |x|, x~ and x can
be defined by

x| (t) = |x(t)], x"(t)=max{0,x(¢)}, x (t)=—min{0,x(t)}, ¢t€E,

and

xTHxT=x, xt—x =x

. 1 1
min{x,y} = 3 (x+y—|x—y|), max{x,y}= 3 (x+y+x—y]). 3)

We consider positive linear functionals A: L — R, or in other words we assume:
(Al) (Vf,g€L)(Va,beR) A(af+bg)=aA(f)+bA(g) (linearity)
(A2) (VfEL)(f>0—A(f) = 0) (positivity).

If additionally the condition A(1) =1 is satisfied, we say that A is a positive normalized
linear functional.

In [7] (or see for example [12, p. 47]) we can find the following generalization
of Jensen’s inequality for convex functions which involves positive normalized linear
functionals. Inequality (4) is known as Jessen’s inequality for convex functions.

THEOREM 1. Let L satisfy L1, L2 on a nonempty set E and let A be a positive
normalized linear functional. If f is a continuous convex function on an interval I C R
then for all g € L such that f(g) € L we have A(g) € I and

f(A(g)) <A(f(g))- 4)

Accordingly to Theorem | Beesack and Pecari¢ gave in [1] (or see [12, p. 98]) the
following generalization of the converse Jensen inequality.

THEOREM 2. Let L and A be as in Theorem 1. If f: [m,M] — R is convex then
forall g € L such that f(g) € L the inequality

cM-Ag)

A (@) < 28 pm) + S5 )

holds.
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REMARK 1. The right hand side of (5) is an increasing function in M and a
decreasing function in m. This follows by writing it in the form

fM) — f(m)

fm)+(A(g) —m) = — == f(M) — (M~ A(g)) = —

and noting that m < A (g) < M, while both functions m — f(M)i:fn(m) and M — W

M
are increasing by the convexity of ¢.

In the same paper [1] (or see [12, p. 100—101]) the authors also proved the follow-
ing theorem.

THEOREM 3. Let L, A and g be as in Theorem | and let f: [m,M] — R be a
differentiable function.

(i) If f" is strictly increasing on [m,M] then

A(f(g)) <A+ f(A(g)) (6)

for some A satisfying 0 < A < (M —m) (1 — f' (m)), where

£ (M) = f ()

H= M—m

More precisely, A may be determined as follows: Let X be the (unique) solution
of the equation f'(x) = u. Then

A=fim)+u(x—m)—f(F)
satisfies (6).
(ii) If f' is strictly decreasing on [m, M) then
F(A(g)) S A+A(f(3)) @)

for some A satisfying 0 <A < (M —m)(f' (m)— ), where W is defined as in
(i). More precisely, for X defined as in (i) we have that

A=f(x)—f(m)—p(x—m)
satisfies (7).
In [2] (or see [12, p. 101]) Beesack and Pecari¢ gave a generalization of Theorem

3 which at the same time presents a generalization of Knopp’s inequality for convex
functions [9].
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THEOREM 4. Let L and A be as in Theorem 1. Let f: [m,M] — R be a convex
Sfunction and J an interval in R such that f ([m,M]) CJ. If F: JxJ — R is increasing
in the first variable then for all g € L such that f(g) € L the following inequality holds

—m

X€E[m,M) M—m f(M) ’f(x)) (8)

zegl[ax]F(Of( m)+(1—=0)f(M),f(6m+(1—0)M)).

FOAU@)-S @) < max F (g + 3

—m

Furthermore, the right-hand side of (8) is an increasing function of M and a decreas-
ing function of m.

In article [8] the following improvement of Theorem 2 was given.

THEOREM 5. Let L satisfy L1, L2, L3 on a nonempty set E and let A be a positive

normalized linear functional. If f is a convex function on [m, M| then for all g € L such
that f(g) € L we have A(g) € [m,M] and

A () < A8 iy ATy 4y, ©)
where "
g= a1 B = o -2 (5.

2. New improvements

Throughout this section without further noticing when using [m,M] we assume
that —co <m <M < 0.
Let r,(v) be defined recursively by

ro(v) = min{v,1 —v}
rn(v) = min{2r,_1(v),1 = 2r,_1(v)}

for O < v < 1. It has been shown in [3] that

( {2"1}—]{—1—17162—,,1<v<22]§—+117
V) =

2%—1 k
k—2" y St <V g,

for k=1,2,...,2".
It has been shown (see [3]) that if N is a nonnegative integer and f is convex on
[0,1], then

(1—=v)f(0) +vf(1) +Zrn ZAfnk Xt () (10)



NEW IMPROVEMENT OF THE CONVERSE JENSEN INEQUALITY 221

st =1 () 11 (5) -2 (Bt )

and y represents the characteristic function of the corresponding interval. If N =0
then sum is zero, that is we have convexity.

In the paper [4] previous relation is extended to hold for an arbitrary interval.
Following result is given.

where

LEMMA 1. Let N be a nonnegative integer and let f be convex on |a,b]. Then

N—1 2"
(1=v)f(a)+vf(b) =2 f(1—v)a+vb)+ 26 ra(v) 2 Arlabm kgt 1) (V)
n= k=1

where

A(ab,nk) = f <(2n_"+ 1§j+(’<— 1)b) +f<(2" —l;cH—kb)

(21— 2k+1)a+ (2k—1)b
_2f< on+1 ) ’

and ) represents the characteristic function of the corresponding interval.

Next theorem is our main result.

THEOREM 6. Let L satisfy L1, L2, L3 on a nonempty set E and let A be a positive
normalized linear functional. If f is a convex function on [m,M| then for all g € L such
that f(g) € L we have A(g) € [m,M] and

M—A(g) Ag) —m

)+ == (M)
N—1 2" —m
>A(f(g))+nzz)k§iAf(m,M,n,k)A<<rn-)((k2nl72/;)> (h)) (12)

where

Ap(m,M,n.k) = f ((2“ — 1);+(k_ 1)M> o (m_k;—"nH_kM)

Y ( (2! — 2k + 1) m+ (2k — 1)M> |

on+l
and ) represents the characteristic function of the corresponding interval

Proof. First observe that f(g) € L also means that the composition f (g) is well
defined, hence g (E) C [m,M]. Now we have m < g <M and

m=A(m) <A(g) <A (M) =M.



J. PECARIC AND J. PERIC
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If weputa=m, b=M, x=(1—v)a+vb in Lemma | using
xX—m M —x
V= , 1—v=
M—m M—m
we get
M—x xX—m
—_— M
)+ = £ (M)
N xX—m
) M—m

1 X—m n
> _
= f(x)+ = I'n (M—m) kglAf(vavnvk)X(kz_nl%

Let g € L be such that f(g) € L. Applying A to the above inequality with x < g(x)

we obtain
M—A(g) Alg)—m
= T Ty T
N—1 2"
> A Ar(m,M,n,k)A | r, s§TM. k=1 k s
>atrte)+ 3 S astmannin (n (520) 20 (375))

which is inequality (12) [J
REMARK 2. Under conditions of the Theorem 6 from positivity of A follows

(s (2)

and from Jensen’s inequality follows
A¢(m,M,n,k) >0,

so Theorem 6 is an improvement of Theorem 2.

REMARK 3. If we write equation (12) in the following form

M—A(g) Alg)—m
Wm0+ (M)
>atte) om0t A (o (G20) 2.0 (575
N—1 2" g_m)>
+ Ar(m M A (re- s oy ) (=2
r;]{g‘l f(m n,k) ((” x(z,”zn)) (M—m
and notice
Af(maM’O’l)=f(m)+f(M)—2f<¢>
(g—m) 1 |g— M|
ro _ ——_r* 22 1
M—m 2 M—m
() (%) =01 (ﬁ) =1

we have that Theorem 6 is an improvement of Theorem 5.
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We use Theorem 6 to obtain refinements of other inequalities mentioned previ-
ously. First we give an improvement of Theorem 4 in the special case F (x,y) =x—y.

THEOREM 7. Under the assumptions of Theorem 6 the following inequality holds
A(f ()~ F(A(9)) 0
M—x xX—m
< + M) —
o D )00
N-12"

-y EAf m,M,n,k)A ((r (ks in)) (igd rZz>)

n=0 k=

~ {0 (n)+(1- )£ (M) — £ B+ (1 - 0)3)}

0¢[0,1]
N—-1 2"

-3 EAf m,M,n,k)A ((r (5t %)> (fd r:;))

n=0 k=

Proof. This is an immediate consequence of Theorem 6. The identity follows from
the change of variable 8 = (M —x) / (M — m) so that for x € [m,M] we have 6 € [0, 1]
and x=0m+(1-0)M. O

Next we give an improvement of Theorem 3. We will consider only the case
when f” is strictly increasing (and therefore f convex) since an analogous result for f’
strictly decreasing can be obtained in a similar way.

THEOREM 8. Let L and A be as in Theorem 6. If f: [m,M] — R is a differen-
tiable function such that ' is strictly increasing on [m,M| then for all g € L such that
f(g) € L the inequality

(f(g)) <A+ f(Alg) szi k)A << )(_g )) (14
A <A+ f(A Ap(m,M k=1 k
fig f =S /( o g \v—m
holds for some A satisfying 0 < A < (M —m)(u— f'(m)), where
(M) — f(m)

More precisely, . may be determined as follows: Let ¥ be the (unique) solution of the
equation ' (x)= . Then

A=f(m)+p(X—m)—f(%)
satisfies (14).

Proof. By Theorem 7 we have
A(f(8))—f(A(g))
N-12"

< o ¢ (e M. f) = 2, 2, Arlm M. kA (( gt 4) (%))7“5’7

x€[m,M]| =0 k=
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where ¢: [m,M] — R is defined by

(M —x) f(m)+ (x—m) f(M)
M—m

(P()C) ::(P(X;vavf): _f(x)'

Observe that ¢ (m) = ¢ (M) =0 and

M) —
o)=L T .
Since f is strictly convex ¢ is strictly decreasing on [m, M] and the equation ¢’ (x) =0
(that is, f’(x) = ) holds for a unique x = ¥ € (m,M). It follows that ¢ (x) > 0 for
all x € [m,M] with equality for x € {m,M}. Consequently, the maximum value on the

right hand side of (15) is attained at x = ¥ and for

ot - DI E )

= f(m)+p(x—m)—f(%)

we have that

A(f(8)) <A+ f(A(g)) —Nf 22 Ay(m,M,n,k)A (( A5 4)) (%)) -

n=0 k=1

REMARK 4. Analogously as in Remark 3 we see that previous two results are
improvements of Theorem 13 and Theorem 14 from [8] .

We present two more applications of our main result.

COROLLARY 1. Let L and A be as in Theorem 6. If g € L is such that logg
belongs to L and g(E) C [m,M] C Ry then

expS (4)

A(g) <exp(A(logg)) ;
N1 12" (@M1 —2k+1)m+(2k—1)M)
IT=o ITi= 2(Q"—k+D)m+(k—1)M)((2"—1)m+kM)

)A<Rn<m,M,n,k,g>> ’

(16)
where S (-) is Specht ratio and

—m
Ram Mo ko) = (w2150, 4,) (Mg——m) '

Proof. This is a special case of Theorem 8 for f = —log. In this case (14) be-
comes
N—12" ) g—m
)) \M—m

—A(logg) <A —logA(g) — D > A 1og(m,M,n,k)A ((rn Kk
n=0 k=1

P
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that is,

N—1 2"
explogA(g) < exp (A(logg) +A= 3 D Al ioe(m,M,n,k)A (Rn(m,M,n,k,g))>
n=0 k=1

expA
exp (N0 St A tog(m,M,n,k)A (Ry(m,M,n,k,g)))’

= exp(A(logg))

where

(2" —k+)m+ (k—1)M
2}’!

—~log (w) 2log ( (21 —2k41) m+ (2k—1)M>

A_1og(m,M,n,k) = —log(

on on+l

. (21 =2k + 1)m + (2k— 1)M)’
= (2 —k+ Um+ (k— )M) (2" — Dm + kM)

_ logm—logM 1 M—m
- M-m T

u - logM —logm’

=

hence

A = —logm+ u (X —m)+logx

M M—m
=10g7(’”) 7 =S<ﬂ),
elog (M) m=m m

where S(-) is Specht ratio (see for example [5, p. 71]) defined by

L
hn—1

S(h) = ——, he R, \{1}.

eloghi=T

Considering all this we obtain (16). O

COROLLARY 2. Let L and A be as in Theorem 6. If p € L is such that log(p)
belongsto L and p(E) C [m,M] C Ry then

M—m M
A(p) < expA(logp) +—7S (—)
log m

N-1 2" 1 1 1
_ 2 2 [(m2”—k+1Mk—l> Zn (m2”—kMk> S (m2"+1—2k+1M2k—1> zn+l}
n=0k=1

%A (R,(logm,logM,n,k,log p)) (17

where S (-) is Specht ratio and Ry, is defined as in Corollary 1.
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Proof. This is a special case of Theorem 8 for f =exp, g =logp, m =logm and

M =logM . In this case (14) becomes

A(explogp) < A +expA(logp)
N—1 2"

logp —logm
=3 ¥ acoltogmiogMn)a ( (2 1) (emm et

n=0 k=1 "2

= A +expA(logp)
N—1 2"

- 2 2 Aexp(logmalogM7n7k)A (R,,(logm,logM,n,k,logp))

n=0k=1
where

Aexp(logm,logM ,n, k)

n__ _
- ((2 k+ l)log;—l— (k 1)10gM>

+ €xXp ( on on+l

L
T

1 1
n_ _ n n_ o7 n+l_ _ +1
= (m2 Lk 1) +(m2 kM") +2(m2 et py2k 1)2”

M—m M—m

N:l :1 _—
H *=logp =log logM —logm’

- logM —logm’
hence

A = explogm+ u (¥ —logm) — expx
M—m

M—m
= 1 —1 -1 = S
me logM —logm ( o8 logM —logm ogm ) log%

Considering all this we obtain (17). O

(2”—k)logm+klogM) ve p<(2"+1—2k+1)logm+(2k— 1)logM
—2ex

))

)

REMARK 5. Analogously as in Remark 3 we see that previous two results are

improvements of Corollary 2 and Corollary 3 from [&] .

2.1. Quasi-arthmetic means

Now we shall use previous results for refinement of inequalities order among

quasi-arithmetic means and inequalities among power means.

Let I = (m,M), —oo <m <M < + and let y,y: I — R be continuous and
strictly monotonic. Suppose that L satisfy conditions L1, L2, A be a positive normal-
ized linear functional and y(g),x(g) € L for some g € L. We define quasi-arithmetic

mean with respect to the operator A and y by

My(g,4) =y (A(y(g))), ge€L.

(18)
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As a special case of the quasi-arithmetic mean we study power mean, defined for r € R
by
1
A(g")r , 0
M (g.4) = {( (s) r (19
exp(A(logg)) , r=0.

THEOREM 9. Let I = (m,M), —co <m <M < +o0 andlet W, x: I — R be con-
tinuous and strictly monotonic. Suppose that L satisfy conditions L1, L2, L3 A be a
positive normalized linear functional. Then for every g € L such that w(g),x(g) € L
we have

(w(M) —y(m))A(x(g)) = (x (M) = x(m))A(w(g))

N—1 2"
< y(M)x(m)— x(M)y(m)— (y(M) — y(m)) ZO N Ar(w(m), y(M),n,k)
n=0 k=1
v(g) —y(m)
(e 0) (S—vtor)) &

provided ¢ = y oy~ is convex. The inequality in (20) is reversed when ¢ is concave.

Proof. If y is increasing on I, we have

y(m) < w(g(t)) < y(M), forevery s € E.

Now from Theorem 6 we have (with m and M replaced by y(m), y(M), f replaced
by y oy~ !, and g replaced by y(g))

—~ Af(w(m),w(M),mk)A((rn'%(“ L)) (M»

n=0 k=1

which gives inequality (20). Proof when v is decreasing and when ¢ is concave goes
similarly. [

In the case of power mean (19) result (20) (for w(x) = x", x(x) = x*) gives
improvement of Goldman’s inequality for positive linear functionals:
N r
(M7 =) (MV(g,4)) = (1 —m*) (M7 (g,4))
N—1 2"
SM'm' —M*m" — (M —m") Y, Y Ap(m",M" n,k)
n=0 k=1

al(mree.0) (575 @b
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for 0 <r <s or r <0 < s and the inequality is reversed for r < s < 0. For r =0 we
obtain (result (20) for y(x) =logx, x(x) =x*):

N

tog 71 (M9(g,4)) "~ (° — ) tog (MY (g, )

N—1 2"
< m*logM — M*logm — (logM —logm) > 2 Ag(log(m),log(M),n,k)

n=0 k=1
log £
XA<( "(@—‘J‘))(Sﬁ%))'

Following theorem is an improvement of Theorem 3.9 from [12].

THEOREM 10. a) Let L satisfy L1, L2, L3 on a nonempty set E and let A be a
positive normalized linear functional. Assume that f is convex on I = [m,M] such that
Sf"(x) = 0 with equality for at most isolated points of I (so that f is strictly convex on
I). Assume further that either (i) f(x) >0 forall xe I, or (i’) f(x) >0 form<x<M
with either f(m) =0, f'(m) #0, or f(M) =0, f'(M)#0, or (i) f(x) <0 forall
x€l, or(ii’) f(x) <0 for m < x <M with precisely one of f(m) =0, f(M)=0
Then for all g € L such that f(g) € L (sothat m < g(t) <M forall t €E),

A(f(8) < ;;:E"Af (m, M., )A (( Hihs)) (%)) 22

holds for some A > 1 in cases (i), (i’) or A € (0,1) in cases (ii), (ii’). More precisely, a
value of A (depending only on m, M, f ) for (22) may be determined as follows: Define

u= % If w=20, let x =X be the unique solution of the equation f'(x) =0

(m<X<M) Then A = 'g satisfies (22). If u #£0, let x = X be the unique solution

wfx) = f' ) (f(M)+p(x—m)) =0.

Then A = — = satisfies (22). Moreover, we have m < X < M in the cases (i), (ii).

b) Let all the assumptions of a) hold except that f is concave on I with f"(x) <0
with equality for at most isolated points in 1. Then the reverse inequality in (22) holds,
where A is determined as in a). Furthermore, . > 1 holds if f(x) <0 on (m,M) and
0<A<Llif f(x)>0on (mM).

Proof. We omit the proof as it is the same as in [12] except instead of Theorem 2
we use Theorem 6. [J

2.2. Refinements of the converse Holder inequality

Using Lemma 1 now we give refinement of the converse Holder inequality for
functionals. In article [13] following refinement of the known converse Holder inequal-
ity was given.
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THEOREM 11. Let A be a positive linear functional on a linear class L. Let
PeER, g= and w,f,g >0 on E with wfP wgl,wfg € L.

Iﬁ’
Let m,M be such that 0 < m < f(x)g~9/?(x) <M for x€ E.
If p>1, then
1 1
A(wfg) = K(p,m,M)Ar (wf?)Aq(wg?) +A(g?, fg)N(p,m,M) (23)
> K(p,m, M)A? (wf?)AT (wg) (24)
where

1 1
11 (M—m)? |mMP — MmP|a

K M) = |p|7|ql|4

(p,m,M) = |p|”q] P — ]

0 22y
MP —mpP

N(p,m,M) =

A(g?.fg) =4 (w (M 'f ))

If0<p<1 and A(wg?) >0, or p <0 and A(wfp) > 0, then the reversed
inequalities in (23) and (24) hold.

and
m+M

Using Lemma 1 we give improvement of previous theorem using the same idea as
in Theorem 3 in [13], only with Lemma 1.
We will also use the AG inequality in the following form:

PROPOSITION 1. Let a,b be positive real numbers. If o, B are positive real
numbers such that oo+ B = 1, then

oa+ b > a®bP. (25)
If a <0 or o > 1, then the reversed inequality in (25) holds.

THEOREM 12. Let L satisfy LI, L2, L3 on a nonempty set E and let A be a
positive normalized linear functional. Let p € R, g = and w,f,g >0 on E with
wfP wgl wfge L.

Let m,M be such that 0 < m < f(x)g~9/?(x) <M for x€ E.

171’

If p>1, then
AQwfg) > K(p.m M)A? (wf7)A7 (wg?) 26)
M—m N=12" fo —m
MP—mp %%A"p(m’M’n’k)A ((wgq)~ (r Xk b ) ( M—m ))
> K(p,m,M)A? (wfP)A7 (wg?) @27
where

1 1
11 (M—m)? |mMP — MmP|a

K M) = |p|r|q|e

(p,m,M) = [p|7q| M — ]
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If0<p<1 and A(wg?) >0, or p <0 and A(wfP) > 0, then the reversed
inequalities in (26) and (27) hold.

Proof. Putting in Lemma | 1 —v= o, v= [ where o and 8 are positive real
numbers such that a+ =1, f(x) =x”, p > 1 we have following ineqality:

N—-1 2"
(ot B)? < o By = 2 ralB) 2 A (ko iy ) (B)- - 28)
n=0 =

Let /1 be a function from L such that 0 < m < h(x) < M for x € E, m # M, and
define o and B as following:

o(x) =

M — h(x)
M

Obviously, a(x)+ B(x) =1, h(x) = a(x)m+ B(x)M. Putting in (28): x =m
y =M, and above-defined ¢(x) and (x) we have

N h(x)—m
‘%%A”(’"’M’”’” <’"'%<s;nhz%>) ()

Multiplying that inequality with k(x) > 0 and using linear functional A we obtain:

A(kh?) < m_pm(MA(k)—A(kh))—i—MM—_in(A(kh)—mA(k))
N—1 2" h—m
— Axp m7M,n,kA k- Ip - k=1 k —_—
I ) ( (m2(50.4)) (M m>)

Putting h = fg_% , k=wg?, where }—) + é = 1 after multiplying with M —m we get

(M —m)A(wfP) 4+ (mMP — MmP)A(wg?)

N=1 2" fa P —m
M—m A (m, M, K)A [ (wg?) - (1 X/ie1 & —_
-’53 avtoitnin () (e 20.0) (S5
< (MP —mP)A(wfo). 29)

Using inequality (25) with o0 = >0, B =7 >0, a=p(M —m)A(wf?) > 0 and
b= g(mMP — MmP)A(wg?) > 0 we obtain:

(M —m)A(wf?) + (mM” MmP)A(wg?)

= L0t )+ L n? — b))

>p%q%(M_m)%(mMp—Mmp)% %(Wfp) %( ) 30)
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Combining (29) and (30) we finally have

pPqi (M —m)? (mMP — MmP) 1 A7 (wfP)A (wg?)

N-12" fg_%—m
M—m A (m,M,n, K)A | (wg?) - (- Xri-1 «
+H=m) 3, 38 ( ) (( ¢") (me WJ)( — ))

< (M? — mP)A(wfg).
If p> 1, then M? —m? > 0, and after dividing with M? —m? we get

1 1
K(p,m,M)A? (wfP)Ad(wg?)
M—m N=12"

+m > > Aw(m,M,nk)A ((wgq). (Vn %(%7%» (fg_F —m))

n=0 k=1 M—m
SA(wfg).

)

Other cases of exponent p follow as in article [13] and we omit proof for them. [J

Closely related to the converse Holder inequality is the converse Minkowski in-

equality. Following result considering the converse Minkowski inequality for function-
als is attained in article [13].

THEOREM 13. Suppose that the assumptions of Theorem 11 are satisfied. Then
for p>1

AP (o(f +8)7) = K(p,m, M) (A7 (wf?) + A7 (wg")
+N(p’m’M)A((f+g)f’,f(f+gl>"1*1) +A(f+e)"8(f+8)" )
AT (w(f+g)P)
and for p <1 (p #0) the reversed inequality holds.

)

Using the improvement of the converse Holder inequality we can prove the fol-
lowing improvement of the previous result.

THEOREM 14. Suppose that the assumptions of Theorem 12 are satisfied. Then
for p>1
1
A7 (w(f+g)")
M—m N=12

1 1
> K(p,m,M) (AP (wfP)+ AP (ng)> + UP P };)];Axp(m,M,n,k)

- i -
A ((W(f+g)”)' ((rn'%(kz;72/;)) ("}E”'_m )) + ((rn~x(k2,g7zel)> (fz}"'_m )))
X 1
AT (w(f +8)P)
and for p < 1 (p #0) the reversed inequality holds.

)
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Proof. Let p > 1. Writing A(w(f+g)?) as

AWw(f+8)(f+8)" ) =Awf(f+8)" " +we(f+g)" ")

and using inequality (26) we obtain

A(w(f+g)")
=A(Wf(f+g)”‘l)+A(wg(f+g)”‘1)
1 1 12
> K(p,m,M)A? (wfP)A7 (w(f +g)P) 2 EAXP m,M,n, k)
n=0 k=
f%( -0 _
XA <<w(f_|_g)f1(pl)> . (rn '%(kjllvz%)> <f(f+gn)4_; ))
) X —1 27
+K(p,m,M)A? (wgP)A4 (w(f +g)") 2 ZAxp
n=0 k=

Mp—m =0 k=1 I 72Ln

M—m N1 £y
Aw (m, M, n, k)A » ( . ) I

Mr—mp = w (m, M n K)A | (W +8)7) (- X(ist 4y (M—m

1
Dividing by A7 (w(f + g)”) we get desired result.
Similar proof holds for p < 1, (p#£0). O

REMARK 6. Analogously as in Remark 3 we see that Theorems 12 and 14 are
improvements of Theorems 11 and 13, respectively.

We can give another version of converse Holder inequality using Theorem 7 and
substitutions as in Theorem 4.12 from [12].
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THEOREM 15. Let L satisfy LI, L2, L3 on a nonempty set E and let A be a
positive normalized linear functional. Let p > 1, g = and w,f,g > 0 on E with
wfP wgd, wfg € L and A(wg?) > 0.

Let m,M be such that 0 < m < f(x)g~9/?(x) <M for x€ E.

If p>1, then

AP~ (wg?)A(wfP) — AP (wfg)
< max {M_xmp+ x_mMp—xp}Ap(wgq) 31)

pl’

xemM] | M —m M—m
| N-—1 2" fgfg —m
— AP~ q q(y . : Jo
A (Wg )r;()kEAXp(m7M7n7k>A wg (r" X(";Tl7zin)> M—m
= Jnax {Gmp—l— (1—0)MP — (6m+ (1 —0)M)"} AP (wg?) (32)

LIS
- & fo b —m
A" (g 22 x”m“"’“( ¢ (e 2(s50.4)) (W))

Proof. We set A(f) = i‘%’;) and get

AGwf(g) . (Alwg)
aw) 7 ( A(w) )

< max {22 )+ 2 o) 0

xemM] (M —m M—m

N—1 2" Alw(r X &y ) (57
S S st (o <kzlz)kn>)<M )
n=0 k=

Putting f(x) =xP, p>1, g:fg_%, w=wg? we get

M —x X—m
< max P MP —xP
h {M—mm +M—m x}

xe[m,M]|
_q
12 A <Wg‘1 (rn ~%(q72%)> (f”}ufmm>)
— Z ZAXp m,M,n,k)
n=0 k= A(wg?)

Finally multiplying by AP (wg?) we get inequality (31). Inequality (32) follows as in
Theorem 7. [
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