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THE NORMALIZED Lp INTERSECTION BODIES

WEI WANG AND NAN ZHANG

(Communicated by H. Martini)

Abstract. In this paper, we define the normalized Lp intersection body and prove that the nor-
malized Lp intersection body operator is GL(n) contravariant of weight 0 . We show that the
polar body operator can be obtained as a limit of the normalized Lp intersection body opera-
tor. And we establish a dual Brunn-Minkowski type inequality for normalized Lp intersection
bodies. Furthermore, the normalized Lp -Busemann-Petty problem is shown.

1. Introduction

The notion of intersection bodies was introduced by Lutwak [21]. The intersection
body, IK , of K is the star body whose radial function in the direction u ∈ Sn−1 is
equal to the (n− 1)-dimensional volume of the section of K by u⊥ , the hyperplane
orthogonal to u , i.e., for all u ∈ Sn−1 ,

ρIK(u) = voln−1(K∩u⊥),

where voln−1 denotes (n−1)-dimensional volume.
Intersection bodies have attracted increased interest during past two decades (see

[2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 28, 29]). In particular,
intersection bodies turned out to be critical for the solution of the Busemann-Petty
problem (see [3, 4, 6, 11, 12, 13, 14, 15, 16, 29]).

Haberl and Ludwig [10] extended the classical intersection bodies to Lp space.
Let K be a star body in R

n , p < 1, p �= 0. The Lp intersection body, IpK , of K is a
centered star body, whose radial function is defined by, for all u ∈ Sn−1 ,

ρ p
IpK(u) =

1
(n− p)

∫
Sn−1

ρn−p
K (ν)|〈ν,u〉|−pdν. (1.1)

Haberl and Ludwig [10] pointed out that the intersection body IK is obtained as a
limit of Lp intersection body IpK , that is for all u ∈ Sn−1 ,

ρIK(u) = lim
p→1−

1− p
2

ρ p
IpK(u).
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Haberl and Ludwig [10] also established a characterization of Lp intersection bod-
ies. Berck [1] proved that the Lp intersection body of a centered convex body is also
convex. Haberl [9] studied the Busemann-Petty type problem for Lp intersection bod-
ies (also see Yuan and Cheung [27]). More results on the Lp intersection body can be
found in [26, 27].

In this paper, we define the normalized Lp intersection body as follows. Let K be
a star body in R

n , p < 1, p �= 0. The normalized Lp intersection body, I pK , of K is
a centered star body, whose radial function is defined by, for all u ∈ Sn−1 ,

ρ p
I pK

(u) =
1

(n− p)V(K)

∫
Sn−1

ρn−p
K (ν)|〈ν,u〉|−pdν. (1.2)

From (1.1) and (1.2), one can obtain that

I pK = V (K)−
1
p IpK.

One purpose of this paper is to establish the dual Brunn-Minkowski type inequality
for normalized Lp intersection bodies.

THEOREM 1.1. Let K and L be two star bodies in R
n , and λ ,μ � 0 (not both

zero). If 0 < p < 1 , then

V ( I p(λ ·K+̂−pμ ·L))
p
n � λV ( I pK)

p
n + μV( I pL)

p
n , (1.3)

with equality holds if K and L are dilates of each other. If p < 0 , then the inequal-
ity (1.3) is reversed. Here +̂−p denotes the L−p harmonic Blaschke radial sum (see
Section 3 for a precise definition).

The other aim of this paper is to study the normalized Lp -Busemann-Petty prob-
lem. Our main results can be stated as follows.

THEOREM 1.2. Let K be a normalized Lp intersection body and L be a centered
star body in R

n , and 0 < p < 1 or p < 0 . If

I pK ⊂ I pL,

then

V (K) � V (L),

with equality holds if and only if K = L.

This paper is organized as follows: In Section 2 we introduce above interrelated
notations and their background materials. Section 3 contains the proofs and some ap-
plications of our main results.
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2. Notation and background material

For general reference for the theory of convex (star) bodies the reader may wish to
consult the books of Gardner [5] and Schneider [24].

The unit ball and its surface in R
n are denoted by B and Sn−1 , respectively. We

write V (K) for the volume of the compact set K in R
n . The radial function ρK :

Sn−1 → [0,∞) of a compact star-shaped set about the origin, K ∈ R
n , is defined, for

u ∈ Sn−1 , by
ρK(u) = max{λ � 0 : λu ∈ K}. (2.1)

If ρK(·) is positive and continuous, then K is called a star body about the origin.
The set of star bodies about the origin in R

n is denoted by S n . The subset of S n

containing centered star bodies will be denoted by S n
e . From the definition of the

radial function, we have that, for K ∈ S n ,

ρK(−u) = ρ−K(u), ∀ u ∈ Sn−1. (2.2)

And for K,L ∈ S n ,

K ⊆ L ⇔ ρK(u) � ρL(u), ∀ u ∈ Sn−1. (2.3)

If
ρK(u)
ρL(u)

is independent of u ∈ Sn−1 , then we say star bodies K and L are dilates of

each other. If s > 0, we have

ρsK(u) = sρK(u), for all u ∈ Sn−1. (2.4)

If φ ∈ GL(n) , we have

ρφK(u) = ρK(φ−1u), for all u ∈ Sn−1. (2.5)

The radial Hausdorff metric between the star bodies K and L is

δ̃ (K,L) = max
u∈Sn−1

|ρK(u)−ρL(u)|.

A sequence {Ki} of star bodies is said to be convergent to K if

δ̃ (Ki,K) → 0, as i → ∞.

Therefore, a sequence of star bodies Ki converges to K if and only if the sequence of
radial function ρKi(·) converges uniformly to ρK(·) .

Let K and L be two star bodies in R
n and λ ,μ � 0 (not both zero), then the Lp

radial sum, λ ·K+̃pμ ·L (p �= 0) , is defined by

ρ p
λ ·K+̃pμ·L(u) = λ ρ p

K(u)+ μρ p
L (u), ∀u ∈ Sn−1. (2.6)

By using Minkowski’s integral inequality, we have the following Lp dual Brunn-
Minkowski inequality. For K,L ∈ S n , and λ ,μ � 0 (not both zero). If 0 < p < n ,
then

V (λ ·K+̃pμ ·L)
p
n � λV (K)

p
n + μV(L)

p
n , (2.7)
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with equality holds if and only if K and L are dilates of each other. If p < 0 or p > n ,
then the inequality (2.7) is reversed.

The Lp dual mixed volume Ṽp(K,L) is defined by

n
p
Ṽp(K,L) = lim

ε→0+

V (K+̃pε ·L)−V(K)
ε

.

In fact, the Lp dual mixed volume Ṽp(K,L) has the following integral representation:

Ṽp(K,L) =
1
n

∫
Sn−1

ρn−p
K (u)ρ p

L (u)du. (2.8)

In particular, Ṽp(K,K) = V (K) .
From an application of Hölder inequality, one can get the following Lp dual

Minkowski inequality. For K,L ∈ S n . If 0 < p < n , then

Ṽp(K,L) � V (K)
n−p

n V (L)
p
n , (2.9)

with equality holds if and only if K and L are dilates of each other. If p < 0 or p > n ,
then the inequality (2.9) is reversed.

The set of real-valued, continuous functions on Sn−1 will be denoted by C(Sn−1) .
The subset of C(Sn−1) that contains the even functions will be denoted by Ce(Sn−1) .
The subset of Ce(Sn−1) that contains the nonnegative functions shall be denoted by
C+

e (Sn−1) . If f ,g ∈C(Sn−1) , then 〈 f ,g〉 is defined by

〈 f ,g〉 =
1
n

∫
Sn−1

f (u)g(u)du. (2.10)

For f ∈ C(Sn−1) and p < 1, p �= 0, the L−p cosine transform, C−p f , of f is
defined by (see [8])

(C−p f )(u) =
∫

Sn−1
|〈u,ν〉|−p f (ν)dν, (2.11)

for u ∈ Sn−1 .
It is well known that the linear transformation C−p : C(Sn−1) →C(Sn−1) is self-

adjoint (see [23]), i.e., if f ,g ∈C(Sn−1) , then

〈C−p f ,g〉 = 〈 f ,C−pg〉. (2.12)

Applying (1.2) and (2.11), we have that

ρ p
I pK

=
1

(n− p)V(K)
C−pρn−p

K . (2.13)
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3. Main results

It is well known that the Lp intersection body operator Ip is GL(n) contravariant

of weight
1
p

, i.e., for every φ ∈ GL(n) and every star body K , (see [10])

Ip(φK) = |detφ | 1
p φ−t IpK.

We will show that the normalized Lp intersection body operator I p is GL(n) con-
travariant of weight 0.

THEOREM 3.1. Let K ∈ S n , p < 1 , p �= 0 , and φ ∈ GL(n) . Then

I p(φK) = φ−t I pK.

Proof. By (1.2), (2.4) and (2.5), we obtain that

ρ p
I pφK

(u) =
1

(n− p)V(φK)

∫
Sn−1

ρn−p
φK (ν)|〈ν,u〉|−pdν

=
1

(n− p)|det(φ)|V (K)

∫
Sn−1

ρn−p
K (φ−1ν)|〈ν,u〉)|−pdν

=
1

(n− p)V(K)

∫
Sn−1

ρn−p
K (v)|〈v,φ t u〉|−pdv

= ρ p
I pK

(φ t u)

= ρ p
φ−t I pK

(u). �

REMARK 1. (see [5]) Let K be a convex body which contains the origin in its
interior in R

n and φ ∈ GL(n) . Then

(φK)∗ = φ−tK∗.

Let En denote the identity matrix of size n . If we take φ = cEn in Theorem 3.1,
then we can obtain the following result.

COROLLARY 3.2. Let K ∈ S n , p < 1 , p �= 0 and c �= 0 . Then

I p(cK) =
1
c

I pK.

Lutwak [22] introduced the harmonic Blaschke radial sum. Suppose K,L ∈ S n ,
and λ ,μ � 0 (not both zero), the harmonic Blaschke radial sum, λ ·K+̂μ ·L , is defined
by, for ∀u ∈ Sn−1 ,

ρn+1
λ ·K+̂μ·L(u)

V (λ ·K+̂μ ·L)
=

λ ρn+1
K (u)

V (K)
+

μρn+1
L (u)
V (L)

.
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Similarly, we can define the Lp harmonic Blaschke radial sum. Suppose K,L ∈
S n , p �= −n , and λ ,μ � 0 (not both zero), the Lp harmonic Blaschke radial sum,
λ ·K+̂pμ ·L , is defined by, for ∀u ∈ Sn−1 ,

ρn+p
λ ·K+̂pμ·L(u)

V (λ ·K+̂pμ ·L)
=

λ ρn+p
K (u)

V (K)
+

μρn+p
L (u)
V (L)

. (3.1)

In particular, λ ·K+̂1μ ·L is just the harmonic Blaschke radial sum λ ·K+̂μ ·L .

For K ∈S n and 0 � i � n , we write W̃i(K) for the dual mixed volume Ṽ (K, . . . ,K,
B, . . . ,B) , where K appears n− i times and B appears i times, and is called the dual
quermassintegral. It has the following integral representation (see [21]):

W̃i(K) =
1
n

∫
Sn−1

ρn−i
K (u)du. (3.2)

If i = 0, then W̃0(K) = V (K) .

In fact, we will prove the following Lp dual Brunn-Minkowski inequality which
is more general than Theorem 1.1.

THEOREM 3.3. Let K,L ∈ S n , 0 � i � n−1 , and λ ,μ � 0 . If 0 < p < 1 , then

W̃i( I p(λ ·K+̂−pμ ·L))
p

n−i � λW̃i( I pK)
p

n−i + μW̃( I pL)
p

n−i , (3.3)

with equality holds if K and L are dilates of each other. If p < 0 , then the inequality
(3.3) is reversed.

Proof. By (1.2) and (3.1), we have that, for ∀u ∈ Sn−1 ,

ρ p
I p(λ ·K+̂−pμ·L)

(u) =
1

(n− p)

∫
Sn−1

ρn−p
λ ·K+̂−pμ·L(ν)

V (λ ·K+̂−pμ ·L)
|〈ν,u〉|−pdν

=
1

(n− p)

∫
Sn−1

(λ
ρn−p

K (ν)
V (K)

+ μ
ρn−p

L (ν)
V (L)

)|〈ν,u〉|−pdν

= λ ρ p
I pK

(u)+ μρ p
I pL

(u).

(3.4)

If 0 < p < 1, since
n− i

p
> 1, applying (3.2), (3.4) and Minkowski’s integral
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inequality, we have that

W̃i( I p(λ ·K+̂−pμ ·L))
p

n−i

=
[1
n

∫
Sn−1

ρn−i
I p(λ ·K+̂−pμ·L)

(u)
] p

n−i

=
[1
n

∫
Sn−1

(λ ρ p
I pK

(u)+ μρ p
I pL

(u))
n−i
p du

] p
n−i

� λ
[1
n

∫
Sn−1

ρn−i
I pK

(u)du
] p

n−i + μ
[1
n

∫
Sn−1

ρn−i
I pL

(u)du
] p

n−i

= λW̃i( I pK)
p

n−i + μW̃i( I pL)
p

n−i .

(3.5)

If K and L are dilates of each other, then there exists a constant c , such that
K = cL . Using Corollary 3.2, we have that, for ∀u ∈ Sn−1 ,

ρI pK
(u) = ρI pcL

(u) = ρ 1
c I pL

(u).

This means that I pK and I pL are dilates of each other. From the equality condition of
Minkowski’s integral inequality, equality in (3.5) holds.

If p < 0, we have that
n− i

p
< 0, then the inequality in (3.3) is reversed. This

completes the proof. �

REMARK 2. The case i = 0 of Theorem 3.3 is Theorem 1.1.

We denote 1
2 ·K+̂−p

1
2 · (−K) by ∇̂−pK .

LEMMA 3.4. Let K ∈ S n . If 0 < p < 1 or p < 0 , then

V (∇̂−pK) � V (K), (3.6)

with equality if and only if K is centered.

Proof. From (3.1), one can obtain

ρn−p

∇̂−pK
(u)

V (∇̂−pK)
=

1
2

ρn−p
K (u)
V (K)

+
1
2

ρn−p
−K (u)

V (−K)
, (3.7)

equivalently,

ρ∇̂−pK
(u) =

[V (∇̂−pK)
V (K)

(1
2

ρn−p
K (u)+

1
2

ρn−p
−K (u)

)] 1
n−p

.
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Since 0 < p < 1, applying (3.7) and Minkowski’s integral inequality, we have that

V
(

∇̂−pK
) n−p

n =
(1

n

∫
Sn−1

ρn
∇̂−pK

(u)du
) n−p

n

=
{1

n

∫
Sn−1

[V (∇̂−pK)
V (K)

(1
2

ρn−p
K (u)+

1
2

ρn−p
−K (u)

)] n
n−p

du
} n−p

n

� 1
2

V (∇̂−pK)
V (K)

[(1
n

∫
Sn−1

ρn
K(u)du

) n−p
n

+
(1

n

∫
Sn−1

ρn
−K(u)du

) n−p
n

]

= V (∇̂−pK)V (K)−
p
n .

Note that 0 < p < 1, we obtain that

V (∇̂−pK) � V (K).

By the equality condition of Minkowski’s integral inequality, equality holds in (3.6) if
and only if K and −K are dilates of each other. This means that K is centered.

Similarly, we can get the same result for p < 0. �

LEMMA 3.5. Let K ∈ S n , p < 1 , p �= 0 . Then,

I p(∇̂−pK) = I pK.

Proof. By (1.2), (3.7) and (2.2), it follows immediately that, for ∀u ∈ Sn−1 ,

ρ p

I p(∇̂−pK)
(u) =

1

(n− p)V(∇̂−pK)

∫
Sn−1

ρn−p

∇̂−pK
(ν)|u ·ν|−pdν

=
1

2(n− p)V(K)

∫
Sn−1

ρn−p
K (ν)|u ·ν|−pdν

+
1

2(n− p)V(−K)

∫
Sn−1

ρn−p
−K (ν)|u ·ν|−pdν

=
1

(n− p)V(K)

∫
Sn−1

ρn−p
K (ν)|u ·ν|−pdν

= ρ p
I pK

(u).

Thus,

I p(∇̂−pK) = I pK. �
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LEMMA 3.6. Let K ∈ S n , p < 1 , p �= 0 . Then, for ∀M ∈ S n
e ,

Ṽp(∇̂−pK,M)

V (∇̂−pK)
=

Ṽp(K,M)
V (K)

.

Proof. By (2.8), (3.7) and (2.2), it follows that

Ṽp(∇̂−pK,M)

V (∇̂−pK)
=

1

nV(∇̂−pK)

∫
Sn−1

ρn−p

∇̂−pK
(u)ρ p

M(u)du

=
1
n

∫
Sn−1

1
2

ρn−p
K (u)
V (K)

ρ p
M(u)du+

1
n

∫
Sn−1

1
2

ρn−p
−K (u)

V (−K)
ρ p

M(u)du

=
1
n

∫
Sn−1

1
2

ρn−p
K (u)
V (K)

ρ p
M(u)du+

1
n

∫
Sn−1

1
2

ρn−p
K (u)
V (K)

ρ p
M(−u)du

=
1
n

∫
Sn−1

ρn−p
K (u)
V (K)

ρ p
M(u)du

=
Ṽp(K,M)

V (K)
. �

In order to prove Theorem 1.2, the following theorem is required.

THEOREM 3.7. Let K,L ∈ S n , p < 1 , p �= 0 . Then

Ṽp(K, I pL)
V (K)

=
Ṽp(L, I pK)

V (L)
.

Proof. By (2.8), (1.2) and Fubini’s theorem, it follows that

Ṽp(K, I pL)
V (K)

=
1

nV(K)

∫
Sn−1

ρn−p
K (u)ρ p

I pL
(u)du

=
1

nV(K)

∫
Sn−1

ρn
K(u)

( 1
(n− p)V(L)

∫
Sn−1

ρn−p
L (ν)|u ·ν|−pdν

)
du

=
1

nV(L)

∫
Sn−1

ρn
L(ν)

( 1
(n− p)V(K)

∫
Sn−1

ρn−p
K (u)|u ·ν|−pdu

)
dν

=
1

nV(L)

∫
Sn−1

ρn−p
L (ν)ρ p

I pK
(ν)dν

=
Ṽp(L, I pK)

V (L)
. �
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In this paper, we consider the following the normalized Lp -Busemann-Petty prob-
lem. Let K,L ∈ S n , p < 1, p �= 0. If

I pK ⊆ I pL,

does it follow that
V (K) � V (L)?

Just as the classical Busemann-Petty problem, we will show that the normalized
Lp -Busemann-Petty problem has an affirmative answer if K is a normalized Lp inter-
section body.

Proof of Theorem 1.2. For 0 < p < 1, from the definition of the Lp dual mixed
volume, if L1 ⊆ L2 , then

Ṽp(K,L1) � Ṽp(K,L2).

Since K is a normalized Lp intersection body, there exists a star body M such that
K = I pM . Using Theorem 3.7, we can conclude that

Ṽp(L,K)
V (L)

=
Ṽp(L, I pM)

V (L)

=
Ṽp(M, I pL)

V (M)

� Ṽp(M, I pK)
V (M)

=
Ṽp(K, I pM)

V (K)
= 1.

Applying the Lp dual Minkowski inequality (2.9), we obtain that

V (K) � V (L),

with equality if and only if K and L are dilates of each other. Obviously, if V (K) =
V (L) , then we must have K = L .

Similarly, we can obtain the same result for p < 0. �

Next, we will characterizes the equality of normalized Lp intersection bodies in
terms of normalized Lp dual mixed volumes.

THEOREM 3.8. Let K,L ∈ S n , p < 1 , p �= 0 . Then

I pK = I pL

if and only if
Ṽp(K,M)

V (K)
=

Ṽp(L,M)
V (L)

(3.8)

for each centered star body M ∈ S n
e .
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Proof. From Lemma 3.5 and Lemma 3.6, we may assume that K,L ∈ S n
e .

We first assume that (3.8) holds for all M ∈ S n
e . Let f ∈ C+

e (Sn−1) and define
M ∈ S n

e by
ρ p

M = C−p f . (3.9)

From (2.8), (2.10), (3.9), (2.12) and (2.13), one can obtain that

Ṽp(K,M)
V (K)

=
〈 ρn−p

K

V (K)
,ρ p

M

〉

=
〈 ρn−p

K

V (K)
,C−p f

〉

=
〈
C−p

ρn−p
K

V (K)
, f

〉

= 〈(n− p)ρ p
I pK

, f 〉.

(3.10)

Similarly,
Ṽp(L,M)

V (L)
= 〈(n− p)ρ p

I pL
, f 〉. (3.11)

Thus, for all f ∈C+
e (Sn−1) ,

〈ρ p
I pK

−ρ p
I pL

, f 〉 = 0.

But this must hold for all f ∈ Ce(Sn−1) , since we can write an arbitrary function in
Ce(Sn−1) as the difference of two functions in C+

e (Sn−1) . If we take ρ p
I pK

−ρ p
I pL

for

f , we obtain

〈ρ p

I pK
−ρ p

I pL
,ρ p

I pK
−ρ p

I pL
〉 =

1
n

∫
Sn−1

(ρ p

I pK
−ρ p

I pL
)2du = 0.

Hence I pK = I pL .
On the other hand, let I pK= I pL . Suppose M∈S n

e is such that ρM∈C−p(Ce(Sn−1))
and hence there exists f ∈Ce(Sn−1) , such that

ρ p
M = C−p f .

From (3.10), (3.11) and note the fact I pK = I pL , we have

Ṽp(K,M)
V (K)

=
Ṽp(L,M)

V (L)
(3.12)

for all M ∈ S n
e such that ρM ∈ C−p(Ce(Sn−1)) . Since C−p(Ce(Sn−1)) is dense in

Ce(Sn−1) , and Lp dual mixed volumes are continuous, it follows that (3.12) must hold
for all M ∈ S n

e . �
Next, we will show that if we restrict to centered star bodies, then the operator

I p : S n
e → S n

e is injective.
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THEOREM 3.9. Let K ∈ S n
e and L ∈ S n , and 0 < p < 1 or p < 0 . If

I pK = I pL,

then
V (K) � V (L),

with equality holds if and only if K = L.

Proof. Setting M = K in Theorem 3.8, we obtain that

1 =
Ṽp(K,K)

V (K)
=

Ṽp(L,K)
V (L)

.

Since 0 < p < 1, applying the Lp dual Minkowski inequality (2.9), one can obtain
that

V (K) � V (L),

with equality holds if and only if K = L .
Similarly, we can obtain the same result when p < 0. �
If K and L are two star bodies in R

n , by the definition of the radial function, then,

ρK∩L(u) = min{ρK(u),ρL(u)}. (3.13)

If K is a convex body in R
n , let hK denote the support function of K , then, for

∀u ∈ Sn−1,hK(u) = max{x · u, x ∈ K} . By the definition of the support function, we
have that

hK(−u) = h−K(u), (3.14)

where −K = {−x : x ∈ K} . If K is a centered convex body in R
n , then −K = K .

Let K be a convex body which contains the origin in its interior in R
n . The polar

K∗ of K is defined by

K∗ = {x ∈ R
n | x · y � 1,∀y ∈ K}.

It is easy to check that, for ∀u ∈ Sn−1 , (see [5, 24])

ρK∗(u) =
1

hK(u)
. (3.15)

Let K be a convex body which contains the origin in its interior in R
n . Note that:

for ∀ν ∈ Sn−1 , the point ρK(ν)ν lies to the boundary of K . Then, ρK(ν)ν ·u � hK(u)
for ∀ν ∈ Sn−1 , and there exists a point ρK(ν0)ν0 ∈ ∂K , such that hK(u) = ρK(ν0)ν0 ·u .
Thus,

max
ν∈Sn−1

{|ρK(ν)ν ·u|} = max{hK(u),hK(−u)}. (3.16)

Since
1

nV (K)

∫
Sn−1

ρn
K(ν)dν = 1, we write the dual cone-volume probability mea-

sure of K on Sn−1 by

dṽK(ν) =
ρn

K(ν)
nV (K)

dν. (3.17)
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By (1.2), (3.17), Jessen’s inequality, (3.16), (3.14), (3.16) and (3.13), we have that

lim
p→−∞

ρI pK
(u) = lim

p→−∞

[ 1
(n− p)V(K)

∫
Sn−1

ρn−p
K (ν)|〈ν,u〉|−pdν

] 1
p

= lim
p→−∞

[ n
n− p

1
nV (K)

∫
Sn−1

ρn
K(ν)

( 1
|ρK(ν)ν ·u|

)p
dν

] 1
p

= lim
p→−∞

[ n
n− p

∫
Sn−1

( 1
|ρK(ν)ν ·u|

)p
dṽK(ν)

] 1
p

= lim
p→−∞

( n
n− p

) 1
p

= min
ν∈Sn−1

1
|ρK(ν)ν ·u|

=
1

max{hK(u),hK(−u)} = min
{ 1

hK(u)
,

1
h−K(u)

}

= min{ρK∗(u),ρ(−K)∗(u)}ρK∗∩(−K)∗(u).

(3.18)

Let K be a convex body which contains the origin in its interior in R
n . For ∀u ∈

Sn−1 , we define I−∞K by

ρI−∞K(u) = lim
p→−∞

ρI pK
(u). (3.19)

From (3.18) and (3.19), we know that if K is a convex body which contains the
origin in its interior in R

n , then

I−∞K = K∗ ∩ (−K)∗.

In particular, if K is a centered convex body in R
n , then I−∞K = K∗ .

REMARK 3. Let K and L be two convex bodies which contain the origin in its
interior in R

n . If
K∗ ⊂ L∗,

then
V (K) � V (L),

with equality if and only if K = L .

If K is not centered, then the answer to the normalized Lp -Busemann-Petty prob-
lem is negative.

THEOREM 3.10. Let K ∈ S n be a star body which is not centered. If 0 < p < 1
or p < 0 , then there exists a centered star body L, such that

I pK ⊆ I pL,
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but
V (K) < V (L).

Proof. Since K is not centered, we know from Lemma 3.4 that

V (∇̂−pK) > V (K). (3.20)

Now set
L = ε∇̂−pK, (3.21)

where

2εn = 1+
V (K)

V (∇̂−pK)
. (3.22)

By (3.20) and (3.22), it follows that

0 < ε < 1. (3.23)

Then, from (3.21), Corollary 3.2, Lemma 3.5 and (3.22), we have that

I pL = I p(ε∇̂−pK) =
1
ε

I p(∇̂−pK) =
1
ε

I pK ⊃ I pK.

But, from (3.21), (3.22) and (3.20), we have that

V (L) = V (ε∇̂−pK) = εnV (∇̂−pK) =
V (∇̂−pK)

2

(
1+

V (K)

V (∇̂−pK)

)

=
1
2
[V (∇̂−pK)+V(K)] > V (K). �
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