A NOTE ON THE HARDY-LITTLEWOOD INEQUALITIES FOR MULTILINEAR FORMS

Antonio Gomes Nunes

(Communicated by S. Varošanec)

Abstract

The notion of entropy of the Hardy-Littlewood inequalities for multilinear forms was introduced and explored by Pellegrino and Teixeira in [14]. In this note, among other results, we introduce a related notion and obtain some new estimates.

1. Introduction

The Hardy-Littlewood inequalities [10] for m-linear forms (see, for instance, [3, $4,7,8,9,12,15]$) are natural extensions of the Bohnenblust-Hille inequality [6] when the sequence space c_{0} is replaced by the sequence space ℓ_{p}. These inequalities assert that for any integer $m \geqslant 2$ there exist constants $C_{m, p}^{\mathbb{K}} \geqslant 1$ such that

$$
\begin{equation*}
\left(\sum_{j_{1}, \cdots, j_{m}=1}^{\infty}\left|T\left(e_{j_{1}}, \cdots, e_{j_{m}}\right)\right|^{\frac{2 m p}{m p+p-2 m}}\right)^{\frac{m p+p-2 m}{2 m p}} \leqslant C_{m, p}^{\mathbb{K}}\|T\| \tag{1}
\end{equation*}
$$

for all continuous m-linear forms $T: \ell_{p} \times \cdots \times \ell_{p} \rightarrow \mathbb{K}$ (here, and henceforth, $\mathbb{K}=\mathbb{R}$ or \mathbb{C}) and $p \geqslant 2 m$.

A similar is statement is: for any integer $m \geqslant 2$ there exist constants $C_{m, p}^{\mathbb{K}} \geqslant 1$ such that

$$
\begin{equation*}
\left(\sum_{j_{1}, \cdots, j_{m}=1}^{k}\left|T\left(e_{j_{1}}, \cdots, e_{j_{m}}\right)\right|^{\frac{2 m p}{m p+p-2 m}}\right)^{\frac{m p+p-2 m}{2 m p}} \leqslant C_{m, p}^{\mathbb{K}}\|T\| \tag{2}
\end{equation*}
$$

for all m-linear forms $T: \ell_{p}^{k} \times \cdots \times \ell_{p}^{k} \rightarrow \mathbb{K}$, all positive integers k, and $p \geqslant 2 m$.
The investigation of the optimal constants of the Hardy-Littlewood and related inequalities is closely related to the fashionable investigation of the optimal BohnenblustHille inequality constants (see, for instance [11, 12, 13, 14] and the references therein).

The notion of entropy in the context of the Hardy-Littlewood inequalities was introduced by Pellegrino and Teixeira [14] and it essentially estimates the number of monomials needed to achieve the optimal constant $C_{m, p}^{\mathbb{K}}$. There are strong evidences that in general the entropy is finite (see [14]). In this note we introduce a similar notion,

[^0]that we name dimensional-entropy; it estimates the minimum of the k in (2) needed to achieve the optimal constant $C_{m, p}^{\mathbb{K}}$. Our first main result improves an estimate of [14]. More precisely, in [14, Lemma 5.1] it is proved that
\[

$$
\begin{equation*}
\left(\sum_{j_{1}, \cdots, j_{m}=1}^{k}\left|T\left(e_{j_{1}}, \cdots, e_{j_{m}}\right)\right|^{\frac{2 p}{p-2 m+2}}\right)^{\frac{p-2 m+2}{2 p}} \leqslant\|T\| \tag{3}
\end{equation*}
$$

\]

for all m-linear forms $T: \ell_{p}^{k} \times \cdots \times \ell_{p}^{k} \rightarrow \mathbb{K}$, all positive integers k, and $p>2 m$. Using a recent result of Albuquerque and Rezende [1] we improve (3) by showing a sharper inequality in the anisotropic setting. In fact we show that

$$
\left(\sum_{j_{1}=1}^{k}\left(\ldots \ldots\left(\sum_{j_{m}=1}^{k}\left|T\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)\right|^{2}\right)^{\frac{1}{2}} \ldots . .\right)^{\frac{2 p}{p-2 m+2}}\right)^{\frac{p-2 m+2}{2 p}} \leqslant\|T\|
$$

where the precise definition of the intermediary exponents will be clear along this note. We apply this result to explore the notion of entropy introduced in [14], with a different viewpoint. More precisely for each fixed k we define $C_{m, p}^{\mathbb{K}}(k)$ as the sharp constant for the Hardy-Littlewood inequalities when we are restricted to $T: \ell_{p}^{k} \times \cdots \times \ell_{p}^{k} \rightarrow \mathbb{K}$, and

$$
e n t_{H L}(\mathbb{K}):=\inf \left\{k: C_{m, p}^{\mathbb{K}}=C_{m, p}^{\mathbb{K}}(k)\right\}
$$

We prove that

$$
\operatorname{ent}_{H L}(\mathbb{K}) \geqslant\left(C_{m, p}^{\mathbb{K}}\right)^{\frac{m^{2}-3 m+p}{2 p}}
$$

2. Results

Throughout this paper, X, Y shall stand for Banach spaces over the scalar field \mathbb{K} of real or complex numbers. The topological dual of X and its closed unit ball are denoted by X^{*} and $B_{X^{*}}$, respectively. For $r, p \geqslant 1$, a linear operator $T: X \rightarrow Y$ is said $(r ; p)$-summing if there exists a constant $C>0$ such that

$$
\left(\sum_{j=1}^{\infty}\left\|T\left(x_{j}\right)\right\|^{r}\right)^{\frac{1}{r}} \leqslant C\left\|\left(x_{j}\right)_{j=1}^{\infty}\right\|_{w, p}
$$

where

$$
\left\|\left(x_{j}\right)_{j=1}^{\infty}\right\|_{w, p}:=\sup _{\varphi \in B_{X^{*}}}\left(\sum_{j=1}^{\infty}\left|\varphi\left(x_{j}\right)\right|^{p}\right)^{\frac{1}{p}}<\infty .
$$

A natural anisotropic approach to summing operators is the following: for all $\mathbf{r}=$ $\left(r_{1}, \ldots, r_{m}\right), \mathbf{p}=\left(p_{1}, \ldots, p_{m}\right) \in[1,+\infty)^{m}$, a multilinear operator $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$
is said to be multiple (\mathbf{r}, \mathbf{p})-summing if there exists a constant $C>0$ such that for all sequences $x^{k}:=\left(x_{j}^{k}\right)_{j \in \mathbb{N}}, k=1, \ldots, m$, we have

$$
\left(\sum_{j_{1}=1}^{\infty}\left(\cdots \cdots\left(\sum_{j_{m}=1}^{\infty}\left|T\left(x_{\mathbf{j}}\right)\right|^{r_{m}}\right)^{\frac{r_{m-1}}{r_{m}}} \cdots\right)^{\frac{r_{1}}{r_{2}}}\right)^{\frac{1}{r_{1}}} \leqslant C \prod_{k=1}^{m}\left\|\left(x_{j}^{(k)}\right)_{j=1}^{\infty}\right\|_{w, p_{k}}
$$

where $T\left(x_{\mathbf{j}}\right):=T\left(x_{j_{1}}^{1}, \ldots, x_{j_{m}}^{m}\right)$. The class of all multiple (\mathbf{r}, \mathbf{p})-summing operators is a Banach space with the norm defined by the infimum of all previous constants $C>0$. The space of all such operators is denoted by $\prod_{(\mathbf{r} ; \mathbf{p})}^{m}\left(X_{1}, \ldots, X_{m}, Y\right)$. When $r_{1}=\cdots=$ $r_{m}=r$, we simply write $(r ; \mathbf{p})$. For $\mathbf{p} \in[\mathbf{1},+\infty)^{m}$ and each $k \in\{1, . ., m\}$, we define

$$
\left|\frac{1}{\mathbf{p}}\right|_{\geqslant k}:=\frac{1}{p_{k}}+\cdots+\frac{1}{p_{m}} .
$$

Recently Albuquerque and Rezende [1, Theorem 3] have proved the following result, that generalizes recent results of Bayart [5] and Pellegrino-Santos-SerranoTeixeira [13]:

THEOREM 1. (Albuquerque and Rezende) Let m be a positive integer, $r \geqslant 1$, and $\mathbf{s}, \mathbf{p}, \mathbf{q} \in[\mathbf{1},+\infty)^{m}$ be such that $q_{k} \geqslant p_{k}$, for $k=1, \ldots, m$ and

$$
\frac{1}{r}-\left|\frac{1}{\mathbf{p}}\right|+\left|\frac{1}{\mathbf{q}}\right|>0
$$

Then

$$
\Pi_{(r ; \mathbf{p})}^{m}\left(X_{1}, \ldots, X_{m}, Y\right) \subset \Pi_{(\mathbf{s} ; \mathbf{q})}^{m}\left(X_{1}, \ldots, X_{m}, Y\right)
$$

for any Banach spaces X_{1}, \ldots, X_{m}, with

$$
\frac{1}{s_{k}}-\left|\frac{1}{\mathbf{q}}\right|_{\geqslant k}=\frac{1}{r}-\left|\frac{1}{\mathbf{p}}\right|_{\geqslant k}
$$

for each $k \in\{1, \ldots, m\}$, and the inclusion operator has norm 1 .
Using that all m-linear forms from $X_{1} \times \cdots \times X_{m}$ to \mathbb{K} are multiple $\left(2 ; 1, \ldots, 1, p^{*}\right)$ summing for $p>2 m$ and, from Theorem 1 with

$$
\begin{aligned}
& r=2 \\
& \mathbf{p}=\left(1, \ldots, 1, p^{*}\right) \\
& \mathbf{q}=\left(p^{*}, \ldots, p^{*}\right),
\end{aligned}
$$

we have

$$
\Pi_{\left(2 ; 1, \ldots, 1, p^{*}\right)}^{m}\left(E_{1}, \ldots, E_{m} ; \mathbb{K}\right) \subset \prod_{(\mathbf{s} ; \mathbf{q})}^{m}\left(E_{1}, \ldots, E_{m} ; \mathbb{K}\right)
$$

with

$$
\left\{\begin{array}{c}
\frac{1}{s_{1}}-\left(\frac{m}{p^{*}}\right)=\frac{1}{2}-\left(\frac{1}{1}+\cdots+\frac{1}{1}+\frac{1}{p^{*}}\right) \\
\vdots \\
\frac{1}{s_{m}}-\frac{1}{p^{*}}=\frac{1}{2}-\left(\frac{1}{p^{*}}\right)
\end{array}\right.
$$

So, we have the following improvement of [14, Lemma 5.1]:

THEOREM 2. For all $m \geqslant 2$ we have

$$
\left(\sum_{j_{1}=1}^{k}\left(\ldots . .\left(\sum_{j_{m}=1}^{k}\left|T\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)\right|^{s_{m}}\right)^{\frac{1}{s_{m}}} \ldots . .\right)^{\frac{1}{s_{2}} s_{1}}\right)^{\frac{1}{s_{1}}} \leqslant\|T\|
$$

for all m-linear forms $T: \ell_{p}^{k} \times \cdots \times \ell_{p}^{k} \rightarrow \mathbb{K}$ and all positive integers k and $p>2 m$, with

$$
s_{j}=\frac{2 p}{p-2 m+2 j}
$$

for all $j=1, \ldots, m$.

The above result is sharp at least when $p=\infty$ because in this case $s_{j}=2$ for every j and the estimate

$$
\left(\sum_{j_{1}, \ldots, j_{m}}^{k}\left|T\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)\right|^{2}\right)^{\frac{1}{2}} \leqslant\|T\|,
$$

for all m-linear forms $T: \ell_{\infty}^{k} \times \cdots \times \ell_{\infty}^{k} \rightarrow \mathbb{K}$, and all positive integers k, is optimal.
Now we state and prove our second main result:

THEOREM 3. For all $m \geqslant 2$ we have

$$
e n t_{H L}(\mathbb{K}) \geqslant\left(C_{m, p}^{\mathbb{K}}\right)^{\frac{m^{2}-3 m+p}{2 p}}
$$

Proof. Following the notation of Theorem 2, by the Hölder inequality for mixed norms (see [2]) and Theorem 2, we have

$$
\begin{aligned}
& \left(\sum_{j_{1}, \cdots, j_{m}=1}^{k}\left|T\left(e_{j_{1}}, \cdots, e_{j_{m}}\right)\right|^{\frac{2 m p}{m p+p-2 m}}\right)^{\frac{m p+p-2 m}{2 m p}} \\
& \leqslant\left(\sum_{j_{1}=1}^{k}\left(\ldots \cdots\left(\sum_{j_{m}=1}^{k}\left|T\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)\right|^{s_{m}}\right)^{\frac{1}{s_{m}}} \cdots \cdot\right)^{s_{1}}\right)^{\frac{1}{s_{1}}} \\
& \quad \times\left(\sum_{j_{1}=1}^{k}\left(\cdots \cdots\left(\sum_{j_{m}=1}^{k}|1|^{t_{m}}\right)^{\frac{1}{t_{m}}} \cdots \cdots\right)^{t_{1}}\right)^{\frac{1}{t_{1}}} \\
& \leqslant k^{\frac{1}{t_{1}}+\cdots+\frac{1}{t_{m}}}\|T\|
\end{aligned}
$$

with

$$
\left\{\begin{aligned}
& \frac{1}{\frac{2 m p}{m p+p-2 m}}=\frac{1}{s_{m}}+\frac{1}{t_{m}}, \\
& \vdots \\
& \frac{1}{\frac{2 m p}{m p+p-2 m}}=\frac{1}{s_{1}}+\frac{1}{t_{1}} .
\end{aligned}\right.
$$

Since

$$
\begin{aligned}
\frac{1}{s_{1}}+\cdots+\frac{1}{s_{m}} & =\left(\frac{m}{2}\right)-\left(\frac{m(m-1)}{2}+m\left(1-\frac{1}{p}\right)\right)+\left(1-\frac{1}{p}\right)\left(\frac{m(m+1)}{2}\right) \\
& =\frac{m(p-m+1)}{2 p}
\end{aligned}
$$

we have

$$
\frac{1}{t_{1}}+\cdots+\frac{1}{t_{m}}=\frac{m p+p-2 m}{2 p}-\frac{m(p-m+1)}{2 p}=\frac{1}{2 p}\left(m^{2}-3 m+p\right)
$$

and, by (4), we conclude that

$$
\left(\sum_{j_{1}, \cdots, j_{m}=1}^{k}\left|T\left(e_{j_{1}}, \cdots, e_{j_{m}}\right)\right|^{\frac{2 m p}{m p+p-2 m}}\right)^{\frac{m p+p-2 m}{2 m p}} \leqslant\|T\| k^{\frac{1}{2 p}\left(m^{2}-3 m+p\right)}
$$

Thus

$$
k^{\frac{1}{2 p}\left(m^{2}-3 m+p\right)} \geqslant C_{m, p}^{\mathbb{K}}
$$

and

$$
k \geqslant\left(C_{m, p}^{\mathbb{K}}\right)^{\frac{m^{2}-3 m+p}{2 p}}
$$

REFERENCES

[1] N. Albuquerque, L. Rezende, Anisotropic Regularity Principle in sequence spaces and applications, to appear in Comm. Contemp. Math.
[2] N. Albuquerque, T. Nogueira, D. Núñez-Alarcón, D. Pellegrino, P. Rueda, Some applications of the Hölder inequality for mixed sums, Positivity 21 (2017), 1575-1592.
[3] G. Araújo, D. Pellegrino, Lower bounds for the constants of the Hardy-Littlewood inequalities, Linear Algebra Appl. 463 (2014), 10-15.
[4] G. Araújo, D. Pellegrino, D. D. P. Silva E Silva, On the upper bounds for the constants of the Hardy-Littlewood inequality, J. Funct. Anal. 267, 6 (2014), 1878-1888.
[5] F. Bayart, Multiple summing maps: Coordinatewise summability, inclusion theorems and p-Sidon sets, to appear in J. Funct. Anal, doi.org/10.1016/j.jfa.2017.08.013.
[6] H. F. Bohnenblust, E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. 32 (1931), 600-622.
[7] J. R. Campos, W. Cavalcante, V. V. Favaro, D. Pellegrino, D. Serrano-Rodriguez, Polynomial and multilinear Hardy-Littlewood inequalities: analytical and numerical approaches, Math. Ineq. Appl. 21 (2018), 329-344.
[8] W. Cavalcante, Some applications of the regularity principle in sequence spaces, Positivity, 22 (2018), 191-198. https://doi.org/10.1007/s11117-017-0506-9.
[9] W. Cavalcante and D. NÚÑEZ-Alarcón, Remarks on an inequality of Hardy and Littlewood, Quaest. Math. 39 (2016), 1101-1113.
[10] G. Hardy, J. E. Littlewood, Bilinear forms bounded in space [p,q], Quart. J. Math. 5 (1934), 241-254.
[11] M. Maia, T. Nogueira, D. Pellegrino, The Bohnenblust-Hille inequality for polynomials whose monomials have a uniformly bounded number of variables, Integral Equations Operator Theory 88, 1 (2017), 143-149.
[12] T. Nogueira, P. Rueda, Summability of multilinear forms on classical sequence spaces, Quaest. Math. 40 (2017), 803-809.
[13] D. Pellegrino, J. Santos, D. Serrano-Rodríguez, E. V. Teixeira, A regularity principle in sequence spaces and applications, Bull. Sci. Math. 141, 8 (2017), 802-837.
[14] D. Pellegrino, E. V. Teixeira, Towards sharp Bohnenblust-Hille constants, Comm. Contemp. Math. 20, 3 (2018), 1750029, 33 pp. doi.org/10.1142/S0219199717500298.
[15] T. Praciano-Pereira, On bounded multilinear forms on a class of l_{p} spaces, J. Math. Anal. Appl. 81, 2 (1981), 561-568.
(Received October 7, 2017)
Antonio Gomes Nunes Department of Mathematics

CCEN - UFERSA
Mossoró, RN, Brazil
e-mail: nunesag@gmail.com;
nunesag@ufersa.edu.br

[^0]: Mathematics subject classification (2010): 46G25.
 Keywords and phrases: Optimal constants, Hardy-Littlewood inequality.
 Partially supported by Capes and CNPq.

