A NOTE ON THE HARDY—LITTLEWOOD INEQUALITIES FOR MULTILINEAR FORMS

ANTONIO GOMES NUNES

(Communicated by S. Varošanec)

Abstract. The notion of entropy of the Hardy–Littlewood inequalities for multilinear forms was introduced and explored by Pellegrino and Teixeira in [14]. In this note, among other results, we introduce a related notion and obtain some new estimates.

1. Introduction

The Hardy–Littlewood inequalities [10] for *m*–linear forms (see, for instance, [3, 4, 7, 8, 9, 12, 15]) are natural extensions of the Bohnenblust–Hille inequality [6] when the sequence space c_0 is replaced by the sequence space ℓ_p . These inequalities assert that for any integer $m \ge 2$ there exist constants $C_{m,p}^{\mathbb{K}} \ge 1$ such that

$$\left(\sum_{j_1,\cdots,j_m=1}^{\infty} \left| T(e_{j_1},\cdots,e_{j_m}) \right|^{\frac{2mp}{mp+p-2m}} \right)^{\frac{mp+p-2m}{2mp}} \leqslant C_{m,p}^{\mathbb{K}} \left\| T \right\|,$$
(1)

for all continuous *m*-linear forms $T : \ell_p \times \cdots \times \ell_p \to \mathbb{K}$ (here, and henceforth, $\mathbb{K} = \mathbb{R}$ or \mathbb{C}) and $p \ge 2m$.

A similar is statement is: for any integer $m \ge 2$ there exist constants $C_{m,p}^{\mathbb{K}} \ge 1$ such that

$$\left(\sum_{j_1,\cdots,j_m=1}^k \left| T(e_{j_1},\cdots,e_{j_m}) \right|^{\frac{2mp}{mp+p-2m}} \right)^{\frac{mp+p-2m}{2mp}} \leqslant C_{m,p}^{\mathbb{K}} \left\| T \right\|,$$
(2)

for all *m*-linear forms $T: \ell_p^k \times \cdots \times \ell_p^k \to \mathbb{K}$, all positive integers *k*, and $p \ge 2m$.

The investigation of the optimal constants of the Hardy–Littlewood and related inequalities is closely related to the fashionable investigation of the optimal Bohnenblust– Hille inequality constants (see, for instance [11, 12, 13, 14] and the references therein).

The notion of entropy in the context of the Hardy–Littlewood inequalities was introduced by Pellegrino and Teixeira [14] and it essentially estimates the number of monomials needed to achieve the optimal constant $C_{m,p}^{\mathbb{K}}$. There are strong evidences that in general the entropy is finite (see [14]). In this note we introduce a similar notion,

Partially supported by Capes and CNPq.

Mathematics subject classification (2010): 46G25.

Keywords and phrases: Optimal constants, Hardy-Littlewood inequality.

that we name dimensional-entropy; it estimates the minimum of the k in (2) needed to achieve the optimal constant $C_{m,p}^{\mathbb{K}}$. Our first main result improves an estimate of [14]. More precisely, in [14, Lemma 5.1] it is proved that

$$\left(\sum_{j_1,\dots,j_m=1}^{k} \left| T(e_{j_1},\dots,e_{j_m}) \right|^{\frac{2p}{p-2m+2}} \right)^{\frac{p-2m+2}{2p}} \leqslant \|T\|$$
(3)

for all *m*-linear forms $T: \ell_p^k \times \cdots \times \ell_p^k \to \mathbb{K}$, all positive integers *k*, and p > 2m. Using a recent result of Albuquerque and Rezende [1] we improve (3) by showing a sharper inequality in the anisotropic setting. In fact we show that

$$\left(\sum_{j_{1}=1}^{k}\left(\ldots\left(\sum_{j_{m}=1}^{k}\left|T\left(e_{j_{1}},\ldots,e_{j_{m}}\right)\right|^{2}\right)^{\frac{1}{2}}\ldots\right)^{\frac{2p}{p-2m+2}}\right)^{\frac{p-2m+2}{2p}} \leqslant \|T\|,$$

where the precise definition of the intermediary exponents will be clear along this note. We apply this result to explore the notion of entropy introduced in [14], with a different viewpoint. More precisely for each fixed k we define $C_{m,p}^{\mathbb{K}}(k)$ as the sharp constant for the Hardy–Littlewood inequalities when we are restricted to $T : \ell_p^k \times \cdots \times \ell_p^k \to \mathbb{K}$, and

$$ent_{HL}(\mathbb{K}) := \inf\left\{k : C_{m,p}^{\mathbb{K}} = C_{m,p}^{\mathbb{K}}(k)\right\}.$$

We prove that

$$ent_{HL}(\mathbb{K}) \geqslant \left(C_{m,p}^{\mathbb{K}}\right)^{\frac{m^2-3m+p}{2p}}$$

2. Results

Throughout this paper, X, Y shall stand for Banach spaces over the scalar field \mathbb{K} of real or complex numbers. The topological dual of X and its closed unit ball are denoted by X^* and B_{X^*} , respectively. For $r, p \ge 1$, a linear operator $T: X \to Y$ is said (r; p)-summing if there exists a constant C > 0 such that

$$\left(\sum_{j=1}^{\infty} \left\| T\left(x_{j}\right) \right\|^{r}\right)^{\frac{1}{r}} \leq C \left\| (x_{j})_{j=1}^{\infty} \right\|_{w,p},$$

where

$$\left\|(x_j)_{j=1}^{\infty}\right\|_{w,p} := \sup_{\varphi \in B_{X^*}} \left(\sum_{j=1}^{\infty} \left|\varphi(x_j)\right|^p\right)^{\frac{1}{p}} < \infty.$$

1

A natural anisotropic approach to summing operators is the following: for all $\mathbf{r} = (r_1, \ldots, r_m), \mathbf{p} = (p_1, \ldots, p_m) \in [1, +\infty)^m$, a multilinear operator $T: X_1 \times \cdots \times X_m \to Y$

is said to be multiple (\mathbf{r}, \mathbf{p}) -summing if there exists a constant C > 0 such that for all sequences $x^k := \left(x_j^k\right)_{j \in \mathbb{N}}, k = 1, \dots, m$, we have

$$\left(\sum_{j_1=1}^{\infty}\left(\ldots\left(\sum_{j_m=1}^{\infty}\left|T\left(x_{\mathbf{j}}\right)\right|^{r_m}\right)^{\frac{r_m-1}{r_m}}\ldots\right)^{\frac{r_1}{r_2}}\right)^{\frac{1}{r_1}} \leqslant C\prod_{k=1}^{m}\left\|(x_j^{(k)})_{j=1}^{\infty}\right\|_{w,p_k}$$

where $T(x_j) := T(x_{j_1}^1, ..., x_{j_m}^m)$. The class of all multiple (\mathbf{r}, \mathbf{p}) -summing operators is a Banach space with the norm defined by the infimum of all previous constants C > 0. The space of all such operators is denoted by $\Pi_{(\mathbf{r};\mathbf{p})}^m(X_1, ..., X_m, Y)$. When $r_1 = \cdots = r_m = r$, we simply write $(r; \mathbf{p})$. For $\mathbf{p} \in [\mathbf{1}, +\infty)^m$ and each $k \in \{1, ..., m\}$, we define

$$\left.\frac{1}{\mathbf{p}}\right|_{\geq k} := \frac{1}{p_k} + \dots + \frac{1}{p_m}$$

Recently Albuquerque and Rezende [1, Theorem 3] have proved the following result, that generalizes recent results of Bayart [5] and Pellegrino–Santos–Serrano–Teixeira [13]:

THEOREM 1. (Albuquerque and Rezende) Let *m* be a positive integer, $r \ge 1$, and $\mathbf{s}, \mathbf{p}, \mathbf{q} \in [\mathbf{1}, +\infty)^m$ be such that $q_k \ge p_k$, for k = 1, ..., m and

$$\frac{1}{r} - \left|\frac{1}{\mathbf{p}}\right| + \left|\frac{1}{\mathbf{q}}\right| > 0.$$

Then

$$\Pi_{(r;\mathbf{p})}^m(X_1,\ldots,X_m,Y)\subset \Pi_{(\mathbf{s};\mathbf{q})}^m(X_1,\ldots,X_m,Y),$$

for any Banach spaces X_1, \ldots, X_m , with

$$\frac{1}{s_k} - \left| \frac{1}{\mathbf{q}} \right|_{\geq k} = \frac{1}{r} - \left| \frac{1}{\mathbf{p}} \right|_{\geq k}$$

for each $k \in \{1, ..., m\}$, and the inclusion operator has norm 1.

Using that all *m*-linear forms from $X_1 \times \cdots \times X_m$ to \mathbb{K} are multiple $(2; 1, \ldots, 1, p^*)$ -summing for p > 2m and, from Theorem 1 with

$$r = 2$$

 $\mathbf{p} = (1, \dots, 1, p^*)$
 $\mathbf{q} = (p^*, \dots, p^*),$

we have

$$\Pi^m_{(2;1,\ldots,1,\ p^*)}(E_1,\ldots,E_m;\mathbb{K})\subset\Pi^m_{(\mathbf{s};\mathbf{q})}(E_1,\ldots,E_m;\mathbb{K})$$

with

$$\begin{cases} \frac{1}{s_1} - \left(\frac{m}{p^*}\right) = \frac{1}{2} - \left(\frac{1}{1} + \dots + \frac{1}{1} + \frac{1}{p^*}\right) \\ \vdots \\ \frac{1}{s_m} - \frac{1}{p^*} = \frac{1}{2} - \left(\frac{1}{p^*}\right). \end{cases}$$

So, we have the following improvement of [14, Lemma 5.1]:

THEOREM 2. For all $m \ge 2$ we have

$$\left(\sum_{j_{1}=1}^{k} \left(\dots \left(\sum_{j_{m}=1}^{k} \left| T\left(e_{j_{1}},\dots,e_{j_{m}}\right) \right|^{s_{m}} \right)^{\frac{1}{s_{m}}} \dots \right)^{\frac{1}{s_{2}}s_{1}} \right)^{\frac{1}{s_{1}}} \leqslant \|T\|$$

for all *m*-linear forms $T : \ell_p^k \times \cdots \times \ell_p^k \to \mathbb{K}$ and all positive integers *k* and *p* > 2*m*, with

$$s_j = \frac{2p}{p - 2m + 2j}$$

for all j = 1, ..., m.

The above result is sharp at least when $p = \infty$ because in this case $s_j = 2$ for every *j* and the estimate

$$\left(\sum_{j_1,\ldots,j_m}^k \left|T\left(e_{j_1},\ldots,e_{j_m}\right)\right|^2\right)^{\frac{1}{2}} \leqslant \|T\|$$

for all *m*-linear forms $T: \ell_{\infty}^k \times \cdots \times \ell_{\infty}^k \to \mathbb{K}$, and all positive integers *k*, is optimal.

Now we state and prove our second main result:

THEOREM 3. For all $m \ge 2$ we have

$$ent_{HL}(\mathbb{K}) \geqslant \left(C_{m,p}^{\mathbb{K}}\right)^{\frac{m^2-3m+p}{2p}}.$$

Proof. Following the notation of Theorem 2, by the Hölder inequality for mixed norms (see [2]) and Theorem 2, we have

572

$$\left(\sum_{j_{1},\dots,j_{m}=1}^{k} \left| T(e_{j_{1}},\dots,e_{j_{m}}) \right|^{\frac{2mp}{mp+p-2m}} \right)^{\frac{mp+p-2m}{2mp}} \tag{4}$$

$$\leq \left(\sum_{j_{1}=1}^{k} \left(\dots \left(\sum_{j_{m}=1}^{k} \left| T(e_{j_{1}},\dots,e_{j_{m}}) \right|^{s_{m}} \right)^{\frac{1}{s_{m}}}\dots \right)^{s_{1}} \right)^{\frac{1}{s_{1}}} \times \left(\sum_{j_{1}=1}^{k} \left(\dots \left(\sum_{j_{m}=1}^{k} |1|^{t_{m}} \right)^{\frac{1}{t_{m}}}\dots \right)^{t_{1}} \right)^{\frac{1}{t_{1}}} \\
\leq k^{\frac{1}{t_{1}}+\dots+\frac{1}{t_{m}}} \|T\|$$

with

$$\begin{pmatrix}
\frac{1}{\frac{2mp}{mp+p-2m}} = \frac{1}{s_m} + \frac{1}{t_m}, \\
\vdots \\
\frac{1}{\frac{2mp}{mp+p-2m}} = \frac{1}{s_1} + \frac{1}{t_1}.$$

Since

$$\frac{1}{s_1} + \dots + \frac{1}{s_m} = \left(\frac{m}{2}\right) - \left(\frac{m(m-1)}{2} + m\left(1 - \frac{1}{p}\right)\right) + \left(1 - \frac{1}{p}\right)\left(\frac{m(m+1)}{2}\right) \\ = \frac{m(p-m+1)}{2p},$$

we have

$$\frac{1}{t_1} + \dots + \frac{1}{t_m} = \frac{mp + p - 2m}{2p} - \frac{m(p - m + 1)}{2p} = \frac{1}{2p} \left(m^2 - 3m + p \right)$$

and, by (4), we conclude that

$$\left(\sum_{j_1,\cdots,j_m=1}^k |T(e_{j_1},\cdots,e_{j_m})|^{\frac{2mp}{mp+p-2m}}\right)^{\frac{mp+p-2m}{2mp}} \leqslant ||T|| k^{\frac{1}{2p}(m^2-3m+p)}.$$

Thus

$$k^{\frac{1}{2p}\left(m^2-3m+p\right)} \geqslant C_{m,p}^{\mathbb{K}}$$

and

$$k \geqslant \left(C_{m,p}^{\mathbb{K}}\right)^{\frac{m^2-3m+p}{2p}}.$$

REFERENCES

- N. ALBUQUERQUE, L. REZENDE, Anisotropic Regularity Principle in sequence spaces and applications, to appear in Comm. Contemp. Math.
- [2] N. ALBUQUERQUE, T. NOGUEIRA, D. NÚÑEZ-ALARCÓN, D. PELLEGRINO, P. RUEDA, Some applications of the Hölder inequality for mixed sums, Positivity 21 (2017), 1575–1592.
- [3] G. ARAÚJO, D. PELLEGRINO, Lower bounds for the constants of the Hardy-Littlewood inequalities, Linear Algebra Appl. 463 (2014), 10–15.
- [4] G. ARAÚJO, D. PELLEGRINO, D. D. P. SILVA E SILVA, On the upper bounds for the constants of the Hardy–Littlewood inequality, J. Funct. Anal. 267, 6 (2014), 1878–1888.
- [5] F. BAYART, Multiple summing maps: Coordinatewise summability, inclusion theorems and p-Sidon sets, to appear in J. Funct. Anal, doi.org/10.1016/j.jfa.2017.08.013.
- [6] H. F. BOHNENBLUST, E. HILLE, On the absolute convergence of Dirichlet series, Ann. of Math. 32 (1931), 600–622.
- [7] J. R. CAMPOS, W. CAVALCANTE, V. V. FAVARO, D. PELLEGRINO, D. SERRANO-RODRIGUEZ, Polynomial and multilinear Hardy–Littlewood inequalities: analytical and numerical approaches, Math. Ineq. Appl. 21 (2018), 329–344.
- [8] W. CAVALCANTE, Some applications of the regularity principle in sequence spaces, Positivity, 22 (2018), 191–198. https://doi.org/10.1007/s11117-017-0506-9.
- W. CAVALCANTE AND D. NÚÑEZ-ALARCÓN, Remarks on an inequality of Hardy and Littlewood, Quaest. Math. 39 (2016), 1101–1113.
- [10] G. HARDY, J. E. LITTLEWOOD, Bilinear forms bounded in space [p,q], Quart. J. Math. 5 (1934), 241–254.
- [11] M. MAIA, T. NOGUEIRA, D. PELLEGRINO, *The Bohnenblust-Hille inequality for polynomials whose monomials have a uniformly bounded number of variables*, Integral Equations Operator Theory 88, 1 (2017), 143–149.
- [12] T. NOGUEIRA, P. RUEDA, Summability of multilinear forms on classical sequence spaces, Quaest. Math. 40 (2017), 803–809.
- [13] D. PELLEGRINO, J. SANTOS, D. SERRANO-RODRÍGUEZ, E. V. TEIXEIRA, A regularity principle in sequence spaces and applications, Bull. Sci. Math. 141, 8 (2017), 802–837.
- [14] D. PELLEGRINO, E. V. TEIXEIRA, Towards sharp Bohnenblust-Hille constants, Comm. Contemp. Math. 20, 3 (2018), 1750029, 33 pp. doi.org/10.1142/S0219199717500298.
- [15] T. PRACIANO-PEREIRA, On bounded multilinear forms on a class of l_p spaces, J. Math. Anal. Appl. 81, 2 (1981), 561–568.

(Received October 7, 2017)

Antonio Gomes Nunes Department of Mathematics CCEN – UFERSA Mossoró, RN, Brazil e-mail: nunesag@gmail.com; nunesag@ufersa.edu.br