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A NOTE ON THE HARDY––LITTLEWOOD

INEQUALITIES FOR MULTILINEAR FORMS

ANTONIO GOMES NUNES

(Communicated by S. Varošanec)

Abstract. The notion of entropy of the Hardy–Littlewood inequalities for multilinear forms was
introduced and explored by Pellegrino and Teixeira in [14]. In this note, among other results, we
introduce a related notion and obtain some new estimates.

1. Introduction

The Hardy–Littlewood inequalities [10] for m–linear forms (see, for instance, [3,
4, 7, 8, 9, 12, 15]) are natural extensions of the Bohnenblust–Hille inequality [6] when
the sequence space c0 is replaced by the sequence space �p . These inequalities assert
that for any integer m � 2 there exist constants CK

m,p � 1 such that

(
∞

∑
j1,···, jm=1

∣∣T (e j1 , · · · ,e jm)
∣∣ 2mp

mp+p−2m

)mp+p−2m
2mp

� CK
m,p ‖T‖ , (1)

for all continuous m–linear forms T : �p×·· ·× �p → K (here, and henceforth, K = R

or C) and p � 2m.
A similar is statement is: for any integer m � 2 there exist constants CK

m,p � 1
such that (

k

∑
j1,···, jm=1

∣∣T (e j1 , · · · ,e jm)
∣∣ 2mp

mp+p−2m

)mp+p−2m
2mp

� CK
m,p ‖T‖ , (2)

for all m–linear forms T : �k
p×·· ·× �k

p → K , all positive integers k , and p � 2m.
The investigation of the optimal constants of the Hardy–Littlewood and related in-

equalities is closely related to the fashionable investigation of the optimal Bohnenblust–
Hille inequality constants (see, for instance [11, 12, 13, 14] and the references therein).

The notion of entropy in the context of the Hardy–Littlewood inequalities was
introduced by Pellegrino and Teixeira [14] and it essentially estimates the number of
monomials needed to achieve the optimal constant CK

m,p. There are strong evidences
that in general the entropy is finite (see [14]). In this note we introduce a similar notion,
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that we name dimensional-entropy; it estimates the minimum of the k in (2) needed to
achieve the optimal constant CK

m,p . Our first main result improves an estimate of [14].
More precisely, in [14, Lemma 5.1] it is proved that

(
k

∑
j1,···, jm=1

∣∣T (e j1 , · · · ,e jm)
∣∣ 2p

p−2m+2

) p−2m+2
2p

� ‖T‖ (3)

for all m-linear forms T : �k
p×·· ·×�k

p →K , all positive integers k , and p > 2m. Using
a recent result of Albuquerque and Rezende [1] we improve (3) by showing a sharper
inequality in the anisotropic setting. In fact we show that

⎛
⎜⎜⎝ k

∑
j1=1

⎛
⎝. . . ..

(
k

∑
jm=1

∣∣T (e j1 , . . . ,e jm)
∣∣2)

1
2

. . . ..

⎞
⎠

2p
p−2m+2

⎞
⎟⎟⎠

p−2m+2
2p

� ‖T‖ ,

where the precise definition of the intermediary exponents will be clear along this note.
We apply this result to explore the notion of entropy introduced in [14], with a different
viewpoint. More precisely for each fixed k we define CK

m,p(k) as the sharp constant for
the Hardy–Littlewood inequalities when we are restricted to T : �k

p×·· ·×�k
p → K , and

entHL(K) := inf
{

k : CK
m,p = CK

m,p(k)
}

.

We prove that

entHL(K) �
(
CK

m,p

)m2−3m+p
2p

.

2. Results

Throughout this paper, X ,Y shall stand for Banach spaces over the scalar field
K of real or complex numbers. The topological dual of X and its closed unit ball are
denoted by X∗ and BX∗ , respectively. For r, p � 1, a linear operator T : X → Y is said
(r; p)-summing if there exists a constant C > 0 such that

(
∞

∑
j=1

∥∥T (x j)
∥∥r

) 1
r

� C
∥∥(x j)∞

j=1

∥∥
w,p

,

where ∥∥(x j)∞
j=1

∥∥
w,p

:= sup
ϕ∈BX∗

(
∞

∑
j=1

∣∣ϕ (x j)
∣∣p)

1
p

< ∞.

A natural anisotropic approach to summing operators is the following: for all r =
(r1, . . . ,rm),p = (p1, . . . , pm) ∈ [1,+∞)m, a multilinear operator T : X1×·· ·×Xm → Y



ON THE HARDY–LITTLEWOOD INEQUALITIES FOR MULTILINEAR FORMS 571

is said to be multiple (r,p)-summing if there exists a constant C > 0 such that for all

sequences xk :=
(
xk

j

)
j∈N

,k = 1, . . . ,m, we have

⎛
⎜⎜⎝ ∞

∑
j1=1

⎛
⎝. . . ..

(
∞

∑
jm=1

∣∣T (xj
)∣∣rm)

rm−1
rm

. . . ..

⎞
⎠

r1
r2

⎞
⎟⎟⎠

1
r1

� C
m

∏
k=1

∥∥∥(x(k)
j )∞

j=1

∥∥∥
w,pk

,

where T
(
xj
)
:= T

(
x1

j1
, . . . ,xm

jm

)
. The class of all multiple (r,p) -summing operators is

a Banach space with the norm defined by the infimum of all previous constants C > 0.
The space of all such operators is denoted by Πm

(r;p)(X1, . . . ,Xm,Y ). When r1 = · · · =
rm = r, we simply write (r;p) . For p ∈ [1,+∞)m and each k ∈ {1, ..,m}, we define∣∣∣∣1p

∣∣∣∣
�k

:=
1
pk

+ · · ·+ 1
pm

.

Recently Albuquerque and Rezende [1, Theorem 3] have proved the following
result, that generalizes recent results of Bayart [5] and Pellegrino–Santos–Serrano–
Teixeira [13]:

THEOREM 1. (Albuquerque and Rezende) Let m be a positive integer, r � 1, and
s,p,q ∈ [1,+∞)m be such that qk � pk, for k = 1, . . . ,m and

1
r
−
∣∣∣∣1p
∣∣∣∣+
∣∣∣∣1q
∣∣∣∣> 0.

Then
Πm

(r;p)(X1, . . . ,Xm,Y ) ⊂ Πm
(s;q)(X1, . . . ,Xm,Y ),

for any Banach spaces X1, . . . ,Xm , with

1
sk

−
∣∣∣∣1q
∣∣∣∣
�k

=
1
r
−
∣∣∣∣1p
∣∣∣∣
�k

for each k ∈ {1, . . . ,m}, and the inclusion operator has norm 1 .

Using that all m-linear forms from X1×·· ·×Xm to K are multiple (2;1, . . . .,1, p∗) -
summing for p > 2m and, from Theorem 1 with

r = 2

p = (1, . . . ,1, p∗)
q = (p∗, . . . , p∗) ,

we have
Πm

(2;1,....,1, p∗)(E1, . . . ,Em;K) ⊂ Πm
(s;q)(E1, . . . ,Em;K)



572 A. GOMES NUNES

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
s1
−
(

m
p∗
)

= 1
2 −
(

1
1 + · · ·+ 1

1 + 1
p∗
)

...
1
sm

− 1
p∗ = 1

2 −
(

1
p∗
)

.

So, we have the following improvement of [14, Lemma 5.1]:

THEOREM 2. For all m � 2 we have

⎛
⎜⎝ k

∑
j1=1

⎛
⎝. . . ..

(
k

∑
jm=1

∣∣T (e j1 , . . . ,e jm)
∣∣sm)

1
sm

. . . ..

⎞
⎠

1
s2

s1
⎞
⎟⎠

1
s1

� ‖T‖

for all m-linear forms T : �k
p × ·· ·× �k

p → K and all positive integers k and p > 2m,
with

s j =
2p

p−2m+2 j

for all j = 1, . . . .,m.

The above result is sharp at least when p = ∞ because in this case s j = 2 for every
j and the estimate (

k

∑
j1,..., jm

∣∣T (e j1 , . . . ,e jm)
∣∣2)

1
2

� ‖T‖ ,

for all m-linear forms T : �k
∞ ×·· ·× �k

∞ → K , and all positive integers k , is optimal.

Now we state and prove our second main result:

THEOREM 3. For all m � 2 we have

entHL(K) �
(
CK

m,p

)m2−3m+p
2p

.

Proof. Following the notation of Theorem 2, by the Hölder inequality for mixed
norms (see [2]) and Theorem 2, we have
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(
k

∑
j1,···, jm=1

∣∣T (e j1 , · · · ,e jm)
∣∣ 2mp

mp+p−2m

)mp+p−2m
2mp

(4)

�

⎛
⎝ k

∑
j1=1

⎛
⎝. . . ..

(
k

∑
jm=1

∣∣T (e j1 , . . . ,e jm)
∣∣sm)

1
sm

. . . ..

⎞
⎠

s1⎞
⎠

1
s1

×

⎛
⎜⎝ k

∑
j1=1

⎛
⎝. . . ..

(
k

∑
jm=1

|1|tm
) 1

tm

. . . ..

⎞
⎠

t1
⎞
⎟⎠

1
t1

� k
1
t1

+···+ 1
tm ‖T‖

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2mp

mp+p−2m

= 1
sm

+ 1
tm

,

...
1

2mp
mp+p−2m

= 1
s1

+ 1
t1

.

Since

1
s1

+ · · ·+ 1
sm

=
(m

2

)
−
(

m(m−1)
2

+m

(
1− 1

p

))
+
(

1− 1
p

)(
m(m+1)

2

)

=
m(p−m+1)

2p
,

we have

1
t1

+ · · ·+ 1
tm

=
mp+ p−2m

2p
− m(p−m+1)

2p
=

1
2p

(
m2−3m+ p

)
and, by (4), we conclude that

(
k

∑
j1,···, jm=1

∣∣T (e j1 , · · · ,e jm)
∣∣ 2mp

mp+p−2m

)mp+p−2m
2mp

� ‖T‖k
1
2p (m2−3m+p).

Thus

k
1
2p(m2−3m+p) � CK

m,p

and

k �
(
CK

m,p

)m2−3m+p
2p

. �
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