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ON THE BEST HARDY CONSTANT FOR QUASI–ARITHMETIC

MEANS AND HOMOGENEOUS DEVIATION MEANS

ZSOLT PÁLES AND PAWEŁ PASTECZKA

(Communicated by C. P. Niculescu)

Abstract. The aim of this paper is to characterize the so-called Hardy means, i.e., those means
M :

⋃∞
n=1 R

n
+ → R+ that satisfy the inequality

∞

∑
n=1

M(x1, . . . ,xn) � C
∞

∑
n=1

xn

for all positive sequences (xn) with some finite positive constant C . The smallest constant C
satisfying this property is called the Hardy constant of the mean M .

In this paper we determine the Hardy constant in the cases when the mean M is either a
concave quasi-arithmetic or a concave and homogeneous deviation mean.

1. Introduction

Hardy’s, Landau’s, Carleman’s and Knopp’s celebrated inequalities in an equiva-
lent and unified form state that

∞

∑
n=1

Pp(x1, . . . ,xn) � C(p)
∞

∑
n=1

xn, (1)

for every sequences (xn)∞
n=1 with positive terms, where Pp denotes the p -th power

mean (extended to the limiting cases p = ±∞) and

C(p) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 p = −∞,

(1− p)−1/p p ∈ (−∞,0)∪ (0,1),
e p = 0,

+∞ p ∈ [1,∞],

and this constant is sharp, i.e., it cannot be diminished. First result of this type with
nonoptimal constant was established by Hardy in the seminal paper [14]. Later it was
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improved and extended by Landau [18], Knopp [15], and Carleman [4] whose results
are summarized in inequality (1). More about the history of the developments related
to Hardy type inequalities is sketched in catching surveys by Pečarić–Stolarsky [37],
Duncan–McGregor [12], and in a recent book of Kufner–Maligranda–Persson [17].

In a more general setting, for a given mean M :
⋃∞

n=1 In → I (where I is a real
interval with infI = 0), let H (M) denote the smallest nonnegative extended real num-
ber, called the Hardy constant of M , such that

∞

∑
n=1

M(x1, . . . ,xn) � H (M)
∞

∑
n=1

xn

for all sequences (xn)∞
n=1 belonging to I . If H (M) is finite, then we say that M

is a Hardy mean. In this setup, a p -th power mean is a Hardy mean if and only if
p ∈ [−∞,1) and H (Pp) = C(p) for all p ∈ [−∞,+∞] .

For investigating the Hardy property of means, we recall several notions that have
been partly introduced and used in the paper [35]. Let I ⊆ R be an interval and let
M :

⋃∞
n=1 In → I be an arbitrary mean.

We say that M is symmetric, (strictly) increasing, and Jensen convex (concave) if,
for all n∈N , the n -variable restriction M|In is a symmetric, (strictly) increasing in each
of its variables, and Jensen convex (concave) on In , respectively. It is worth mentioning
that means are locally bounded functions, therefore, the so-called Bernstein–Doetsch
theorem implies that Jensen convexity (concavity) is equivalent to ordinary convexity
(concavity) (cf. [3]). If I = R+ , we can analogously define the notion of homogene-
ity of M . Finally, the mean M is called repetition invariant if, for all n,m ∈ N and
(x1, . . . ,xn) ∈ In , the following identity is satisfied

M(x1, . . . ,x1︸ ︷︷ ︸
m-times

, . . . ,xn, . . . ,xn︸ ︷︷ ︸
m-times

) = M(x1, . . . ,xn).

Having all these definitions, let us recall the two main theorems of the paper [35].
The first result provides a lower estimation of Hardy constant.

THEOREM 1.1. Let I ⊂ R+ be an interval with inf I = 0 and M :
⋃∞

n=1 In → I be
a mean. Then, for all non-summable sequences (xn)∞

n=1 in I ,

H (M) � liminf
n→∞

x−1
n ·M (x1,x2, . . . ,xn) .

In particular,

H (M) � sup
y∈I

liminf
n→∞

n
y
·M

( y
1
,
y
2
, . . . ,

y
n

)
.

Under stronger assumptions for the mean M , the latter lower estimate obtained
above becomes equality by the following result.

THEOREM 1.2. Let M :
⋃∞

n=1 R
n
+ → R+ be an increasing, symmetric, repetition

invariant, and Jensen concave mean. Then

H (M) = sup
y>0

liminf
n→∞

n
y
·M

( y
1
,
y
2
, . . . ,

y
n

)
. (2)
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If, in addition, M is also homogeneous, then

H (M) = lim
n→∞

n ·M(
1, 1

2 , . . . , 1
n

)
,

in particular this limit exists.

Upon taking M to be a power mean in the above theorem, the Hardy–Landau–
Knopp–Carleman inequality (1) can easily be deduced. For the details, see [35].

The purpose of our paper is to find explicit formulas for the constant on the right
hand side of equation (2) in two important classes of means: quasi-arithmeticmeans and
homogeneous deviation means. On the other hand we will present some iff conditions
for these means to satisfy assumptions of theorem above.

2. Families of means

From now on our consideration will go twofold. First, we will introduce and recall
the most important results concerning quasi-arithmetic means. Later, in Section 2.2, we
will do the same with the family of deviation means. This splitting will appear in the
next section too.

2.1. Quasi-arithmetic means

Idea of quasi-arithmetic means first only glimpsed in a pioneering paper by Knopp
[15]. Their theory was somewhat later axiomatized in a series of three independent but
nearly simultaneous papers by De Finetti [11], Kolmogorov [16], and Nagumo [27] at
the beginning of 1930s.

Let I be an interval and f : I → R be a continuous, strictly monotone function.
For n ∈ N and for a given vector x = (x1, . . . ,xn) ∈ In , set

A f (x) := f−1
(

f (x1)+ · · ·+ f (xn)
n

)
.

The mean A f :
⋃∞

n=1 In → I defined this way is called the quasi-arithmetic mean gen-
erated by the function f . Quasi-arithmetic means are a natural generalization of power
means. Indeed, whenever I = R+ and f = πp , where πp(x) := xp if p �= 0 and
π0(x) := lnx , then mean A f coincides with p -th power mean (this is what was no-
ticed by Knopp [15]). These means share most of the properties of power means. In
particular, it is easy to verify that they are symmetric, strictly increasing, and repetition
invariant. In fact, they admit even more properties of power means (cf. [16], [1]).

Immediately after the formal definition, Mulholland [26] characterized the Hardy
property in the class of quasi-arithmetic means. Namely, he proved that

A f is a Hardy mean ⇐⇒
(

there exist parameters q < 1 and C > 0

such that A f (x) � C ·Pq(x) for all x

)
. (3)
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Later, in 1948, Mikusiński [25] proved that the comparability problem within this
family can be (under natural smoothness assumptions) boiled down to pointwise com-
parability of the mapping f 
→ f ′′

f ′ (negative of this operator is called the Arrow–Pratt
index of absolute risk aversion; cf. [2, 38] ). More precisely, he proved

PROPOSITION 2.1. Let I ⊂ R be an interval, f , g : I → R be twice differentiable
functions having nowhere vanishing first derivative. Then the following two conditions
are equivalent

(i) A f (x1, . . . ,xn) � Ag(x1, . . . ,xn) for all n ∈ N and vector (x1, . . . ,xn) ∈ In ;

(ii) f ′′(x)
f ′(x) � g′′(x)

g′(x) for all x ∈ I .

Obviously, if I ⊆ R+ , then condition (ii) can be equivalently written as

κ f (x) :=
x f ′′(x)
f ′(x)

+1 � xg′′(x)
g′(x)

+1 =: κg(x) (x ∈ I).

It is easy to verify (with the notation πp introduced above), that the equality κπp ≡ p
holds for all p ∈ R . Therefore, in view of Proposition 2.1, we have

Pq = Aπq � A f � Aπp = Pp,

where q := infI κ f and p := supI κ f , moreover these parameters are sharp. In other
words, the operator κ(·) could be applied to embed quasi-arithmetic means into the
scale of power means (cf. [36]). As a trivial consequence we obtain a natural estima-
tions of Hardy constants

C(q) � H (A f ) � C(p). (4)

In the next result we characterize Jensen concave quasi-arithmetic means. Some
results in this direction have recently been obtained in the paper [5].

THEOREM 2.2. Let f : I →R be a twice continuously differentiable function with
a nonvanishing first derivative. Then the quasi-arithmetic mean A f is Jensen concave
if and only if either f ′′ is identically zero or f ′′ is nowhere zero and the ratio function
f ′
f ′′ is a convex and negative function on I .

Proof. Without loss of generality, we may assume that f is strictly increasing,
then f ′ > 0 holds on I . The Jensen concavity of the mean A f is equivalent to its
concavity, that is, for all n ∈ N and for all x = (x1, . . . ,xn),y = (y1, . . . ,yn) ∈ In , t ∈
[0,1] , we have

A f (tx+(1− t)y) � tA f (x)+ (1− t)A f (y),

in more detailed form,

f−1
(

f (tx1 +(1− t)y1)+ · · ·+ f (txn +(1− t)yn)
n

)

� t f−1
(

f (x1)+ · · ·+ f (xn)
n

)
+(1− t) f−1

(
f (y1)+ · · ·+ f (yn)

n

)
.



ON THE BEST HARDY CONSTANT FOR MEANS 589

Applying f to this inequality side by side and introducing the new variables ui := f (xi)
and vi := f (yi) , we get that the above inequality is equivalent to

f (t f−1(u1)+ (1− t) f−1(v1))+ · · ·+ f (t f−1(un)+ (1− t) f−1(vn))
n

� f

(
t f−1

(
u1 + · · ·+un

n

)
+(1− t) f−1

(
v1 + · · ·+ vn

n

))

for all u1, . . . ,un,v1, . . . ,vn ∈ f (I) =: J . The meaning of this inequality is exactly the
Jensen convexity of the function

Ft(u,v) := f (t f−1(u)+ (1− t) f−1(v))

on J2 . By the continuity of Ft , this property is equivalent to the convexity of Ft . In
view of the regularity assumptions of the theorem, this property is satisfied if and only
if the second derivative matrix F ′′

t (u,v) is positive semidefinite for all u,v ∈ J and
t ∈ (0,1) . This is equivalent to the positive semidefiniteness of F ′′

t ( f (x), f (y)) for all
x,y ∈ I and t ∈ (0,1) . By the Sylvester determinant test, this 2× 2 matrix is positive
semidefinite if and only if

∂ 2
1 Ft( f (x), f (y)) � 0, ∂ 2

2 Ft( f (x), f (y)) � 0 (5)

and
∂ 2

1 Ft( f (x), f (y))∂ 2
2 Ft( f (x), f (y))− ∂1∂2Ft( f (x), f (y))2 � 0. (6)

We can easily obtain that

∂ 2
1 Ft( f (x), f (y)) =

t2 f ′′(tx+(1− t)y)
f ′(x)2 − t f ′(tx+(1− t)y) f ′′(x)

f ′(x)3 ,

∂ 2
2 Ft( f (x), f (y)) =

(1− t)2 f ′′(tx+(1− t)y)
f ′(y)2 − (1− t) f ′(tx+(1− t)y) f ′′(y)

f ′(y)3 ,

∂1∂2Ft( f (x), f (y)) =
t(1− t) f ′′(tx+(1− t)y)

f ′(x) f ′(y)
.

Therefore, the first inequality in (5), is equivalent to

t f ′′(tx+(1− t)y)
f ′(tx+(1− t)y)

� f ′′(x)
f ′(x)

.

Putting x = y , it follows that f ′′(x) � 0 for all x ∈ I . If, for some x ∈ I , f ′′(x) were
zero, then this inequality and the nonpositivity of f ′′ implies that f ′′(tx+(1− t)y)= 0
for all y ∈ I and t ∈ (0,1) . Letting t tend to zero, we get that f ′′(y) = 0 for all y ∈ I .
Therefore, from now on, we may assume that f ′′ is strictly negative on I .

The inequality in (6) can now be rewritten in the following form:

t
f ′(x)
f ′′(x)

+ (1− t)
f ′(y)
f ′′(y)

� f ′(tx+(1− t)y)
f ′′(tx+(1− t)y)

(x,y ∈ I, t ∈ (0,1)). (7)
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Thus, we have proved that the ratio function f ′/ f ′′ is convex and negative.
For the reversed implication, assume that either f ′′ = 0, or f ′′ is nowhere zero and

f ′/ f ′′ is convex and negative. If f ′′ = 0, then f (x) = ax+ b for some real constants
a,b , hence A f equals the arithmetic mean, which is trivially Jensen concave (and also
Jensen convex).

Without loss of generality, we again may assume that f ′ is positive. Suppose now
that f ′′ is negative and f ′/ f ′′ is convex. As we have seen above, the negativity of the
function f ′′ and the convexity of f ′/ f ′′ , which is expressed by inequality (7) imply
that (6) is satisfied. Using that f ′′ is negative (recall that f ′ is positive), inequality (7)
yields that, for all x,y ∈ I, t ∈ (0,1) ,

t
f ′(x)
f ′′(x)

� f ′(tx+(1− t)y)
f ′′(tx+(1− t)y)

and (1− t)
f ′(y)
f ′′(y)

� f ′(tx+(1− t)y)
f ′′(tx+(1− t)y)

.

A simple computation now shows that the two inequalities in (5) are also fulfilled.
Therefore, the second derivative matrix of Ft is positive semidefinite on J2 , which
implies the convexity of Ft for all t ∈ (0,1) . However, this property is equivalent to
the concavity of the quasi-arithmetic mean A f . �

2.2. Deviation means

Given a function E : I × I → R vanishing on the diagonal of I × I , continuous
and strictly decreasing with respect to the second variable, we can define a mean
DE :

⋃∞
n=1 In → I in the following manner (cf. Daróczy [6]). For every n ∈ N and

for every vector x = (x1, . . . ,xn) ∈ In , the deviation mean (or Daróczy mean) DE(x) is
the unique solution y of the equation

E(x1,y)+ . . .+E(xn,y) = 0.

By [28] deviation means are symmetric and repetition invariant. The increasingness
of a deviation mean DE is equivalent to the increasingness of the deviation E in its
first variable. All these properties and characterizations are consequences of the gen-
eral results obtained in a series of papers by Losonczi [19, 20, 22, 21, 23, 24] (for
Bajraktarević means and Gini means) and by Daróczy [6, 7], Daróczy–Losonczi [8],
Daróczy–Páles [9, 10] (for deviation means) and by Páles [28, 29, 30, 31, 32, 33, 34]
(for deviation and quasi-deviation means).

Observe that if E(x,y) = f (x)− f (y) for some continuous, strictly monotone func-
tion f : I → R , then the deviation mean DE reduces to the quasi-arithmetic mean A f .
Therefore, deviation means include quasi-arithmetic means. One can also notice that
Bajraktarević means and Gini means also form subclasses of deviation means.

It is known [34] that a deviation mean generated by a continuous deviation function
E : R

2
+ → R is homogeneous if and only if E is of the form E(x,y) = g(y) f ( x

y ) for
some continuous functions f ,g : R+ → R such that f vanishes at 1 and g is positive.
Clearly, the deviation mean generated by E is determined only by the function f ,
therefore, as we are going to deal with homogeneous deviation means only, let E f

denote the corresponding deviation mean. In the next section, we will determine the
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Hardy constant for the homogeneous deviation mean E f under general circumstances
for f . The following result will be instrumental for our considerations.

THEOREM 2.3. Let f : R+ → R be a strictly increasing concave function with
f (1) = 0 . Then the function E : R

2
+ → R defined by E(x,y) := f

(
x
y

)
is a deviation and

the corresponding deviation mean E f := DE is homogeneous, continuous, increasing
and concave.

Proof. It is easy to check, using the continuity (which is a consequence of con-
cavity) and strict increasingness of f that the function E is a deviation function. The
homogeneity of the mean E f is obvious. We have that E is strictly increasing in its first
variable, hence, one can show, that the mean E f is also strictly increasing. The conti-
nuity of f implies the continuity of the mean directly. We only prove its concavity.

Let x = (x1, . . . ,xn) ∈ R
n
+ and u = (u1, . . . ,un) ∈ R

n
+ and denote E f (x) and E f (u)

by y and v , respectively. Then we have that

f
(x1

y

)
+ · · ·+ f

(xn

y

)
= 0 and f

(u1

v

)
+ · · ·+ f

(un

v

)
= 0.

These equations and the convexity of f follow that

0 =
y

y+ v

(
f
(x1

y

)
+ · · ·+ f

(xn

y

))
+

v
y+ v

(
f
(u1

v

)
+ · · ·+ f

(un

v

))

=
(

y
y+ v

f
(x1

y

)
+

v
y+ v

f
(u1

v

))
+ · · ·+

(
y

y+ v
f
(xn

y

)
+

v
y+ v

f
(un

v

))
� f

( y
y+ v

x1

y
+

v
y+ v

u1

v

)
+ · · ·+ f

( y
y+ v

xn

y
+

v
y+ v

un

v

)
= f

(x1 +u1

y+ v

)
+ · · ·+ f

(xn +un

y+ v

)
.

Therefore,
E f (x)+E f (u)

2
=

y+ v
2

� E f

(x+u
2

)
,

which proves that E f is Jensen concave. Being also continuous, this property implies
the concavity of E f . �

In fact one could strengthen the result of the above theorem, by showing that the
concavity of f is not only sufficient but also necessary in order that the mean E f be
concave.

3. Main results

We will apply results contained in [35] to both quasi-arithmetic and homogeneous
deviation means. Let us notice that the intersection of these families are power means,
which are usually treated as a trivial case in a consideration of Hardy property. (See
inequality (1).)
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3.1. Quasi-arithmetic means

Let us begin this section with our main result, which allows us to compute the
Hardy constant for a large class of quasi-arithmetic means.

THEOREM 3.1. Let I be a real interval with inf I = 0 and let f : I →R be a twice
continuously differentiable function with nowhere vanishing first derivative. Define

q := liminf
x→0+

κ f (x) � limsup
x→0+

κ f (x) =: p. (8)

Then, for all x ∈ I ,

C(q) � liminf
n→∞

n
x
A f ( x

1 , x
2 , . . . , x

n ) � limsup
n→∞

n
x
A f ( x

1 , x
2 , . . . , x

n ) � C(p) (9)

and, consequently,
C(q) � H (A f ). (10)

Observe that inequality (9) is the strengthening of (4).

Proof. We prove the right hand side inequality of (9) only, the proof of the left
hand side inequality is completely analogous, therefore, its detailed proof is left to the
reader.

If p ∈ [1,+∞] , then C(p) = +∞ , therefore there is nothing to prove. Assume that
p ∈ [−∞,1) . Consider any real number r ∈ (p,1)\ {0} . Then there exists δ > 0 such
that

κ f (x) � r for all x ∈ (0,δ ). (11)

Let ϕ : I → R be a C2 function with a non-vanishing first derivative such that, for all
x ∈ I ,

κϕ(x) = max
(
r,κ f (x)

)
. (12)

(This equation for ϕ is a second-order differential equation, which has such solutions,
see e.g. [36].) By (11), we have:

κϕ(x) = r for all x ∈ (0,δ ). (13)

Therefore, there exists constants α,β such that ϕ(x) = αxr + β for all x ∈ (0,δ ) .
Define ϕ0 := 1

α ϕ −β . Then κϕ = κϕ0 , hence equality (12) holds with ϕ0 , too,
furthermore Aϕ = Aϕ0 . Therefore, with no loss of generality, we may assume that ϕ
and ϕ0 coincide, i.e.

ϕ(x) = xr, x ∈ (0,δ ]. (14)

As a consequence, for the inverse function of ϕ , we have the formula

ϕ−1(y) = y1/r for y ∈
{

(0,δ r] if r > 0,

[δ r,+∞) if r < 0.
(15)

Due to (12), we have κ f � κϕ so, by Mikusiński’s theorem, we get A f � Aϕ .
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Fix now x ∈ I . We have

limsup
n→∞

n
x
A f ( x

1 , x
2 , . . . , x

n ) � limsup
n→∞

n
x
Aϕ( x

1 , x
2 , . . . , x

n ) = limsup
n→∞

n
x

ϕ−1
(

1
n

n

∑
i=1

ϕ
(x

i

))
.

Now our argument splits into two similar cases depending on the sign of r .
Consider first the case r > 0. By the increasingness of ϕ , the sequence

(
ϕ( x

n )
)

converges to zero, therefore there exists n0 ∈ N such that, for all n > n0 ,

1
n

n

∑
i=1

ϕ
(x

i

)
< δ r.

It also implies, for all n > n0 , that x
n < δ , therefore, applying the construction of n0

with (14) and (15), we get

n
x

ϕ−1
(

1
n

n

∑
i=1

ϕ
(x

i

))
=

n
x

(
1
n

n

∑
i=1

ϕ
(x

i

))1/r

=
(

nr−1

xr

n

∑
i=1

ϕ
(x

i

))1/r

=
(

nr−1

xr

n0

∑
k=1

(
ϕ

(x
k

)
−

(x
k

)r)
+

nr−1

xr

n

∑
k=1

(x
k

)r
)1/r

.

As r−1 < 0 we obtain that the first term tends to 0 as n→ ∞ . The second term equals

nr−1

xr

n

∑
k=1

(x
k

)r
=

1
n

n

∑
k=1

(
k
n

)−r

−→
∫ 1

0
t−rdt =

1
1− r

.

Thus

limsup
n→∞

n
x
A f ( x

1 , x
2 , . . . , x

n) � limsup
n→∞

n
x
Aϕ( x

1 , x
2 , . . . , x

n) = (1− r)−1/r = C(r).

With appropriate changes in the above argument, we can obtain that the same inequality
holds also in the case r < 0. Finally, upon passing the limit r → p , we obtain

limsup
n→∞

n
x
A f ( x

1 , x
2 , . . . , x

n) � C(p).

Completely analogous considerations lead to the inequality

liminf
n→∞

n
x
A f ( x

1 , x
2 , . . . , x

n ) � C(q).

Finally, using this inequality and the second inequality of Theorem 1.1, it follows that
(10) is also valid. Thus the proof is complete. �

Combining Proposition 2.1 with Theorem 3.1 we immediately obtain

THEOREM 3.2. Let f : R+ → R be a twice continuously differentiable function
with nowhere vanishing first derivative. If the limit p := limx→0+ κ f (x) exists and
κ f (x) � p for every x > 0 , then H (A f ) = C(p) . In particular, this mean is Hardy if
and only if p < 1 .
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Proof. By (4) we get H (A f ) �C(supκ f (x)) =C(p) . The converse inequality is
implied by Theorem 3.1 – more precisely by inequality (10). �

The following result strengthens Mulholland’s theorem [26] in the class of concave
quasi-arithmetic means (compare (3) and the implication (i) ⇒ (ii) below).

THEOREM 3.3. Let f : R+ → R be a twice continuously differentiable function
with nowhere vanishing first and second derivatives such that f ′/ f ′′ is convex and
negative. Then κ f is a decreasing function. Furthermore, the following assertions are
equivalent:

(i) A f is a Hardy mean;

(ii) There exists a parameter q < 1 such that A f � Pq ;

(iii) p := limx→0+ κ f (x) < 1 .

And, in each of the above cases, A f � Pp , and H (A f ) =C(p) .

Proof. By the convexity and negativity of the function f ′/ f ′′ , the mapping x 
→
f ′(x)/(x · f ′′(x)) is negative and increasing. Therefore, κ f is decreasing, whence the
right limit p of κ f at zero exists and κ f � p . Then, by Proposition 2.1, it follows that
A f � Pp .

To prove (i) ⇒ (ii) , assume that A f is a Hardy mean. Then Theorem 3.2 implies
that p < 1, hence (ii) holds with q = p . The implication (ii) ⇒ (iii) is obvious.

Finally, we prove (iii) ⇒ (i) . In view of Theorem 2.2, the convexity and neg-
ativity of f ′/ f ′′ implies that A f is a concave quasi-arithmetic mean. Therefore, by
Theorems 1.2 and 3.1,

H (A f ) = sup
y>0

liminf
n→∞

n
y
·A f

( y
1
,
y
2
, . . . ,

y
n

)
� sup

y>0
limsup

n→∞

n
y
·A f

( y
1
,
y
2
, . . . ,

y
n

)
� C(p),

where p < 1, hence A f is a Hardy mean.
To complete the proof, observe that, by the convexity and negativity of f ′/ f ′′ , the

mean A f is concave, therefore Theorem 3.2 implies the equality H (A f ) =C(p) . �

3.2. Homogeneous deviation means

THEOREM 3.4. Let f : R+ → R be a strictly increasing concave function with
f (1) = 0 . Then the homogeneous deviation mean E f is a Hardy mean if and only if∫ 1

0
f
(1

t

)
dt < +∞ (16)

and, if the above inequality holds, then its Hardy constant is the unique positive solution
c of the equation ∫ c

0
f
(1

t

)
dt = 0.
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Proof. By Theorem 2.3, the deviation mean E f is homogeneous, continuous, in-
creasing and concave. Therefore, applying the second assertion of Theorem 1.2, we
have that

H (E f ) = lim
n→∞

E f

(n
1
,
n
2
, . . . ,

n
n

)
.

Assume first that E f possesses the Hardy property. Then H (E f ) is finite, and hence
the sequence

(
E f

(
n
1 , n

2 , . . . , n
n

))
is bounded. Thus, there exists K > 0 such that, for all

n ∈ N ,
E f

(n
1
,
n
2
, . . . ,

n
n

)
� K, (17)

which is equivalent to

f
( n

K

)
+ f

( n
2K

)
+ · · ·+ f

( n
nK

)
� 0.

For the sake of brevity define the function f ∗ : R+ → R by f ∗(t) := f
(

1
t

)
. Then f ∗ is

a continuous strictly decreasing function with f ∗(1) = 0. Hence, the above inequality
is equivalent to

K
n

(
f ∗

(K
n

)
+ f ∗

(2K
n

)
+ · · ·+ f ∗

(nK
n

))
� 0. (18)

By the decreasingness of f ∗ , for all i ∈ {1,2, . . . ,n} , we have that

∫ (i+1)K
n

iK
n

f ∗(t)dt � K
n

f ∗
( iK

n

)
.

After adding up these inequalities side by side and using (18), we get

∫ (n+1)K
n

K
n

f ∗(t)dt � 0. (19)

Hence, for all n � K , ∫ 1

K
n

f ∗(t)dt � −
∫ (n+1)K

n

1
f ∗(t)dt.

Upon taking the limit n → ∞ , we arrive at the inequality

(0 �)
∫ 1

0
f ∗(t)dt � −

∫ K

1
f ∗(t)dt,

which proves that condition (16) must be valid.
Now assume that (16) holds. Define the function F : R+ → R by

F(x) :=
∫ x

0
f
(1

t

)
dt =

∫ x

0
f ∗(t)dt.

Obviously, F is continuous, strictly increasing on (0,1) , and strictly decreasing on
(1,∞) . To show that it has a zero on (1,∞) , it suffices to prove that F(x) tends to −∞
as x → +∞ .
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By the concavity of f , there exists a positive constant a ∈ R such that, for all
x ∈ R+ ,

f (x) = f (x)− f (1) � a(x−1).

Therefore, for x � 1, we get

F(x) =
∫ x

0
f
(1

t

)
dt �

∫ 1

0
f
(1

t

)
dt +a

∫ x

1

(1
t
−1

)
dt

�
∫ 1

0
f
(1

t

)
dt +a(ln(x)− x+1).

The right hand side estimate tends to −∞ as x → +∞ , therefore F also has this prop-
erty. This ensures that F has a unique zero, denoted by c , in the interval (1,∞) .

In the rest of the proof, we show that c = H (E f ) . Let K > H (E f ) be an arbitrary
number. Then there exists n0 such that, for all n � n0 , we have the inequality (17).
Repeating the same argument as above, this inequality implies (19) for all n � n0 .
Upon taking the limit n → ∞ , we obtain that

F(K) =
∫ K

0
f ∗(t)dt � 0.

Consequently, c � K . Taking now the limit K → H (E f ) , we get that c � H (E f ) .
The proof of the reversed inequality c � H (E f ) is completely analogous, there-

fore the equality c = H (E f ) holds as desired. �
In order to formulate a corollary of this theorem for Gini means (cf. [13]), we

introduce the following notation: Given two real numbers p,q ∈ R , define the function
χp,q : R+ → R by

χp,q(x) :=

⎧⎪⎨
⎪⎩

xp− xq

p−q
if p �= q,

xp ln(x) if p = q.

In this case, the function Ep,q : R
2
+ → R defined by

Ep,q(x,y) := ypχp,q

(x
y

)
is a deviation function on R+ . The deviation mean generated by Ep,q will be denoted
by Gp,q and called the Gini mean of parameter p,q (cf. [13]). One can easily see that
Gp,q has the following explicit form:

Gp,q(x1, . . . ,xn) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
xp
1 + · · ·+ xp

n

xq
1 + · · ·+ xq

n

) 1
p−q

if p �= q,

exp

(
xp
1 ln(x1)+ · · ·+ xp

n ln(xn)
xp
1 + · · ·+ xp

n

)
if p = q.

(20)

Clearly, in the particular case q = 0, the mean Gp,q reduces to the p th Hölder mean
Pp . It is also obvious that Gp,q = Gq,p .
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COROLLARY 3.5. Gini means Gp,q is increasing and concave if and only if

min(p,q) � 0 � max(p,q) � 1. (21)

In this case, Gp,q is a Hardy mean if and only if max(p,q) < 1 and then

H (Gp,q) =

⎧⎪⎨
⎪⎩

(
1− p
1−q

) 1
q−p

p �= q,

e p = q = 0.

Proof. By the results of Losonczi [20], [22], Gp,q is concave if and only if (21)
holds. On the other hand, Gp,q is increasing if and only if the first two inequalities in
(21) are satisfied, that is, if 0 is between p and q .

Now, for p �= q , in view of Theorem 3.4, with f = χp,q , we get that Gp,q is a
Hardy mean if and only if ∫ 1

0
χp,q

(1
t

)
dt < +∞.

For p �= q , we have

∫ 1

0
χp,q

(1
t

)
dt =

1
p−q

∫ 1

0
(t−p− t−q)dt,

which is finite if and only if max(p,q) < 1. In that case, the Hardy constant c of the
mean Gp,q satisfies

0 =
∫ c

0
χp,q

(1
t

)
dt =

1
p−q

∫ c

0
(t−p− t−q)dt =

1
p−q

(
1

1− p
c1−p− 1

1−q
c1−q

)
.

Solving this equation with respect to c , we obtain that

c =
(

1− p
1−q

) 1
q−p

.

In the case p = q = 0, we get

∫ 1

0
χ0,0

(1
t

)
dt = −

∫ 1

0
ln t dt = 1 < +∞,

proving that G0,0 is a Hardy mean. For its Hardy constant c it remains to find the
positive solution of the equation

0 =
∫ c

0
χ0,0

(1
t

)
dt = −

∫ c

0
ln t dt = c(1− lnc),

which results the solution c = e . �
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[19] L. LOSONCZI, Über den Vergleich von Mittelwerten die mit Gewichtsfunktionen gebildet sind, Publ.

Math. Debrecen 17 (1970), 203–208.
[20] L. LOSONCZI, Subadditive Mittelwerte, Arch. Math. (Basel) 22 (1971), 168–174.
[21] L. LOSONCZI, Subhomogene Mittelwerte, Acta Math. Acad. Sci. Hungar. 22 (1971), 187–195.
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