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QUASIDEVIATION MEANS IN ACTUARIAL MATHEMATICS
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(Communicated by M. Praljak)

Abstract. Applying the results of Zs. Páles, concerning the inequalities for quasideviation means,
we characterize some natural properties of implicitly defined functional stemming from actuarial
mathematics.

1. Quasideviation means

A notion of quasideviation mean has been introduced in [11]. It is a generalization
of a deviation mean, investigated in [3, 4, 5]. A related concept is that of implicit mean,
studied in [10]. A series of properties of quasideviation means have been proved in [12].
In order to recall this notion, assume that I ⊆R is an open interval. A function D : I2 →
R is said to be a quasideviation, provided it satisfies the following three conditions:

(D1) for every x,y ∈ I , D(x,y) is of the same sign as x− y ;
(D2) for every x ∈ I , the function I � t → D(x,t) is continuous;
(D3) for every x,y ∈ I with x < y , the function

(x,y) � t → D(y,t)/D(x, t)

is strictly increasing.
For every n ∈ N , let

Δn := {λ = (λ1, . . . ,λn) : λ1, . . . ,λn ∈ [0,∞) :
n

∑
i=1

λi > 0}.

According to [12, Theorem 1], if D : I2 → R is a quasideviation, then for every n ∈ N ,
x = (x1, . . . ,xn) ∈ In and λ = (λ1, . . . ,λn) ∈ Δn , the equation

n

∑
i=1

λiD(xi,t) = 0 (1)

has a unique solution t0 . Furthermore, we have

min{xi : i ∈ {1, ..,n}} � t0 � max{xi : i ∈ {1, ..,n}}.
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Hence, equation (1) defines a mean. Following [11], we call it a D-quasideviation
mean of x weighted by λ and we denote it by M̃D(x;λ ) . If λ = (1, . . . ,1) then the
mean is called a D-quasideviation mean of x and it is denoted by MD(x) .

In [12] several properties of quasideviation means have been proved. The follow-
ing two results, concerning the comparison and subadditivity of the means, respectively,
will play an important role in our considerations.

THEOREM 1. ([12, Theorem 7]) Assume that I ⊂ R is an open interval and
D1,D2 : I2 → R are quasideviations. Then the following statements are equivalent:

(i) MD1(x) � MD2(x) for x ∈ In , n ∈ N;

(ii) M̃D1(x;λ ) � M̃D2(x;λ ) for x ∈ In , λ ∈ Δn , n ∈ N;

(iii) M̃D1((x1,x2);(λ ,1−λ )) � M̃D2((x1,x2);(λ ,1−λ )) for x1,x2 ∈ I , λ ∈ [0,1];

(iv) there exists a function A : I → (0,∞) such that

D1(x,t) � A(t)D2(x,t) for x,t ∈ I;

(v) D1(x, t)D2(y, t) � D1(y,t)D2(x,t) for x,y,t ∈ I , x � t � y.

THEOREM 2. ([12, Theorem 11]) Assume that D1,D2,D3 : (0,∞)→R are quaside-
viations. Then the following statements are equivalent:

(i) MD1(x+ y) � MD2(x)+MD3(y) for x,y ∈ (0,∞)n , n ∈ N;

(ii) there exist functions A,B : (0,∞)2 → R such that

D1(x+ y,s+ t) � A(s,t)D2(x,s)+B(s,t)D3(y,t) for x,y,s, t ∈ (0,∞).

We conclude this section with one more result, which is a particular case of [12,
Theorem 4].

THEOREM 3. Assume that D : (0,∞)→R is a quasideviation. Then the following
statements are equivalent:

(i) MD

(
x+y
2

)
� MD(x)+MD(y)

2 for x,y ∈ (0,∞)n , n ∈ N;

(ii) there exist functions A,B : (0,∞)2 → R such that

D

(
x+ y

2
,
s+ t
2

)
� A(s,t)D(x,s)+B(s,t)D(y, t) for x,y,s,t ∈ (0,∞).
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2. Zero utility principle

Assume that X+ is a family of all non-negative bounded random variables on a
given probability space. Consider an insurance company, covering the risks represented
by the elements of X+ . If w ∈ R is an initial wealth of the insurance company and v :
R → R is its continuous and strictly increasing utility function, then for every X ∈ X+
there exists a unique real number Hv,w(X) such that

E[v(w+Hv,w(X)−X)] = v(w). (2)

In this way, equation (2) determines a functional Hv,w on X+ , called the principle
of equivalent utility (cf. [1, 2, 6]). It belongs to the so-called economic methods of
insurance contracts pricing. The principle, proposed by Bühlmann [2], involves the
notion of a utility function and is defined in such a way that the insurance company is
indifferent between rejecting the contract and entering into it. Let u : R → R be given
by u(x) = v(x + w)− v(w) for x ∈ R . Then u is strictly increasing, continuous and
u(0) = 0. Moreover, setting Hu := Hv,w , from (2) we derive that

E[u(Hu(X)−X)] = 0 for X ∈ X+. (3)

A functional Hu on X+ , defined by equation (3), is called the zero utility principle (cf.
[2, 14]). In general, (3) has no explicit solution. The most prominent exceptions are the
cases where u(x) = cx for x ∈ R with a c > 0 and u(x) = a(1− e−cx) for x ∈ R with
some a,c > 0. In the first case, we get the net premium principle Hu(X) = E[X ] for
X ∈ X+ and in the second one we obtain the exponential premium principle Hu(X) =
1
c lnE[ecX ] for X ∈ X+ . Several results concerning the properties of the principle
of equivalent utility and the zero utility principle can be found e.g. in [1, 2, 6, 14].
Recently, the properties of the principle of equivalent utility under various theories of
choice have been investigated in [7] and [8].

The aim of this paper is to show that the zero utility principle is a particular case of
the quasideviation mean. In this way we establish a tool for dealing with the properties
of the principle. Furthermore, we show how this tool can be effectively applied to the
characterization of such properties of the principle as: comparison, equality, positive
homogeneity, risk loading, subadditivity and convexity.

3. Results

In what follows we assume that (Ω,Σ,P) is a probability space with a non-atomic
P . This implies that for any probability distribution μ on R there is a random variable
X : Ω→ R with the distribution μ (cf. e.g. [13, Lemma 2.7.1]). Let X+ ⊂ L∞(Ω,Σ,P)
be a family of all non-negative bounded random variables and, for every n ∈ N , let

Γn := {x = (x1, . . . ,xn) ∈ [0,∞)n : x1 < x2 < .. . < xn}
and

Pn := {p = (p1, . . . , pn) : p1, . . . , pn ∈ (0,1] :
n

∑
i=1

pi = 1}.
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Furthermore, for every n ∈ N , x = (x1, . . . ,xn) ∈ Γn and p = (p1, . . . , pn) ∈ Pn , let
〈x; p〉 denote the randomvariable taking the values x1, . . . ,xn with probabilities p1, . . . , pn ,
respectively. Put

X
(n)

+ := {〈x; p〉 : x ∈ Γn, p ∈ Pn} for n ∈ N

and
X f in

+ :=
⋃
n∈N

X
(n)

+ .

We begin with the result showing that the zero utility principle is a particular case
of a quasideviation mean.

THEOREM 4. Assume that u : R → R is a continuous and strictly increasing util-
ity function with u(0) = 0 . Then a function Du : (0,∞)2 → R , defined by

Du(x,y) = −u(y− x) for (x,y) ∈ (0,∞)2, (4)

is a quasideviation. Furthermore,

Hu(〈x; p〉) = M̃Du(x; p) for x ∈ Γn, p ∈ Pn, n ∈ N. (5)

Proof. The properties (D1)–(D3) of Du follow directly from the fact that u is
strictly increasing, continuous and u(0) = 0. Moreover, in view of (3) and (4), for
every n ∈ N , x ∈ Γn and p ∈ Pn , we obtain

n

∑
i=1

piDu(xi,Hu(〈x; p〉)) = −
n

∑
i=1

piu(Hu(〈x; p〉)− xi) = −E[u(Hu(〈x; p〉)−〈x; p〉] = 0,

which implies (5). �
Now, we are going to present a result concerning a comparison of the zero utility

principles.

THEOREM 5. Let u,v : R → R be continuous and strictly increasing utility func-
tions with u(0) = v(0) = 0 . Then the following statements are equivalent:

(i) Hv(X) � Hu(X) for X ∈ X
(2)

+ ;

(ii) Hv(X) � Hu(X) for X ∈ X+ ;

(iii) there exists M ∈ (0,∞) such that

u(x) � Mv(x) for x ∈ R. (6)

Proof. Assume that (i) holds. We claim that

M̃Dv((x1,x2);(p,1− p)) � M̃Du((x1,x2);(p,1− p)) for x1,x2 ∈ (0,∞), p ∈ (0,1).
(7)
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To this end, fix x1,x2 ∈ (0,∞) and p ∈ (0,1) . If x1 = x2 then both sides of (7) are
equal. Suppose that x1 	= x2 , say x1 < x2 . Then (x1,x2) ∈ Γ2 and so, making use of
(5), in view of (i) , we get

M̃Dv((x1,x2);(p,1− p)) = Hv(〈(x1,x2);(p,1− p)〉)

� Hu(〈(x1,x2);(p,1− p)〉) = M̃Du((x1,x2);(p,1− p)).

Thus, (7) is proved. Therefore, applying Theorem 1, we conclude that there exists a
function A : (0,∞) → (0,∞) such that Dv(x,y) � A(y)Du(x,y) for x,y ∈ (0,∞) . Since
u and v are strictly increasing and u(0) = v(0) = 0, replacing in the last inequality x
by y− x , in view of (4), we obtain

u(x)
v(x)

� 1
A(y)

for x ∈ (0,∞), y > x (8)

and
u(x)
v(x)

� 1
A(y)

for x ∈ (−∞,0], y ∈ (0,∞). (9)

From (9) it follows that M := sup{1/A(y) : y ∈ (0,∞)} < ∞ . Furthermore, taking into
account (8) and (9), we obtain (6). This proves that (i) ⇒ (iii) .

Now, assume that (iii) holds. Then, in view of (3) and (6), we get

E[u(Hv(X)−X)] � ME[v(Hv(X)−X)] = 0 for X ∈ X+. (10)

Since, for every X ∈ X+ , the function R � t → E[u(t − X)] is nondecreasing and
Hu(X) is its unique zero, from (10) we derive that Hv(X) � Hu(X) for X ∈ X+ . In
this way we have proved that (iii) ⇒ (ii) .

The implication (ii) ⇒ (i) is obvious. �

The following result is a direct consequence of Theorem 5.

THEOREM 6. Let u,v : R → R be continuous and strictly increasing utility func-
tions with u(0) = v(0) = 0 . The following statements are equivalent:

(i) Hv(X) = Hu(X) for X ∈ X
(2)

+ ;

(ii) Hv(X) = Hu(X) for X ∈ X+ ;

(iii) there exists M ∈ (0,∞) such that u(x) = Mv(x) for x ∈ R .

From Theorem 5 we also derive two results, establishing characterizations of the
risk loading property and positive homogeneity of the zero utility principle. Let us
recall that a premium principle H has the risk loading property on a family of risks
X ⊆ X+ , provided H(X) � E[X ] for X ∈ X . Furthermore, if X ⊆ X+ is such
that aX ⊂ X for a ∈ (0,∞) , then a premium principle H is said to be positively
homogeneous on X , provided H(aX) = aH(X) for X ∈ X , a ∈ (0,∞) .
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THEOREM 7. Let u : R → R be a continuous and strictly increasing utility func-
tion with u(0) = 0 . The following statements are equivalent:

(i) Hu(X) � E[X ] for X ∈ X
(2)

+ ;

(ii) Hu(X) � E[X ] for X ∈ X+ ;

(iii) there exists M ∈ (0,∞) such that u(x) � Mx for x ∈ R .

Proof. Let v be the identity on R . Then, in view of (3), we have Hv(X) = E[X ]
for X ∈ X+ . Hence, applying Theorem 5, we get the assertion. �

REMARK 1. If u : R→R is a strictly increasing continuous concave functionwith
u(0) = 0 then the right-sided derivation of u at 0 exists and it is positive. Moreover, we
have u(x) � u′+(0)x for x ∈ R . Therefore, according to Theorem 7, the concavity of u
implies the risk loading property of Hu on X+ (see e.g. [14, Theorem 3.2.7]).

THEOREM 8. Let u : R → R be a continuous and strictly increasing utility func-
tion with u(0) = 0 . The following statements are equivalent:

(i) Hu is positively homogeneous on X
(2)

+ ;

(ii) Hu is positively homogeneous on X+ ;

(iii) there exist α,β ,r ∈ (0,∞) such that

u(x) =
{−α(−x)r for x ∈ (−∞,0],

βxr for x ∈ (0,∞). (11)

Proof. Assume that (i) holds. For every t ∈ (0,∞) , define a function ut : R → R

by ut(x) = u(tx) for x ∈ R . Then, in view of (3), for every X ∈ X
(2)

+ and t ∈ (0,∞) ,
we have

E[ut(Hu(X)−X)] = E[u(t(Hu(X)−X))] = E[u(Hu(tX)− tX)] = 0,

that is Hut (X) = Hu(X) . Therefore, according to Theorem 6, for every t ∈ (0,∞) there
exists α(t) ∈ (0,∞) such that ut(x) = α(t)u(x) for x ∈ R . Thus

u(tx) = α(t)u(x) for x ∈ R, t ∈ (0,∞). (12)

In particular, we have u(tx) = α(t)u(x) for t,x ∈ (0,∞) . Moreover, as u is strictly
increasing and continuous, so is α . Hence, applying [9, Theorem 13.3.8], we conclude
that there exist β ,r ∈ (0,∞) such that u(x) = βxr for x ∈ (0,∞) and α(t) = tr for
t ∈ (0,∞) . Furthermore, setting in (12) x =−1, we get u(−t)= u(−1)tr for t ∈ (0,∞) ,
whence u(x) = u(−1)(−x)r for x ∈ (−∞,0) . Consequently, as u(0) = 0, we obtain
(11) with α := −u(−1) > 0. Thus, (i) ⇒ (iii) .
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If (iii) holds then u(tx) = tru(x) for x ∈ R , t ∈ (0,∞) . Hence, for every X ∈ X+
and t ∈ (0,∞) , we obtain

E[u(tHu(X)− tX)] = trE[u(Hu(X)−X)] = 0 = E[u(Hu(tX)− tX)],

which gives Hu(tX) = tHu(X) . Therefore (iii) ⇒ (ii) .
Obviously, (ii) ⇒ (i) . �
In the next two theorems we characterize the subadditivity and convexity of the

zero utility principle, respectively.

THEOREM 9. Let u : R → R be a continuous and strictly increasing utility func-
tion with u(0) = 0 . The following statements are equivalent:

(i) Hu(X +Y) � Hu(X)+Hu(Y ) for X ,Y ∈ X f in
+ ;

(ii) Hu(X +Y) � Hu(X)+Hu(Y ) for X ,Y ∈ X+ ;

(iii) u is superadditive, that is u(x+ y) � u(x)+u(y) for x,y ∈ R .

Proof. Assume that (i) holds. We show that

MDu(x+ y) � MDu(x)+MDu(y) for x, y ∈ (0,∞)n, n ∈ N, (13)

where Du is given by (4). To this end, fix n∈N , and x = (x1, . . . ,xn) , y = (y1, . . . ,yn)∈
(0,∞)n . Since P is non-atomic, there exist A1, . . . ,An ∈ Σ such that

⋃n
i=1 Ai = Ω ,

Ai ∩Aj = /0 for i, j ∈ {1, . . . ,n} , i 	= j and P(Ai) = 1/n for i ∈ {1, . . . ,n} . Let X =
∑n

i=1 1lAixi . Then X ∈ X f in
+ and, in view of (3), we get

n

∑
i=1

Du(xi,Hu(X)) = −n
n

∑
i=1

1
n
u(Hu(X)− xi) = −n

n

∑
i=1

E[1lAiu(Hu(X)− xi)]

= −nE

[
n

∑
i=1

1lAiu(Hu(X)− xi)

]
= −nE[u(Hu(X)−X)] = 0.

Thus Hu(X) = MDu(x) . Furthermore, taking Y = ∑n
i=1 1lAiyi , in the same way we

obtain Hu(Y ) = MDu(y) and Hu(X +Y ) = MDu(x+ y) . Therefore, making use of (i) ,
we get MDu(x + y) � MDu(x)+ MDu(y) . In this way we have proved (13). Hence,
according to Theorem 2, there exist functions A,B : (0,∞)2 → R such that

Du(x+ y,s+ t) � A(s,t)Du(x,s)+B(s,t)Du(y,t) for x,y,s,t ∈ (0,∞).

Thus, taking into account (4), we obtain

u(s+ t− x− y) � A(s,t)u(s− x)+B(s,t)u(t− y) for x,y,s,t ∈ (0,∞). (14)

Setting in (14) x = s/2 and y = t , we get A(s,t) � 1 for s,t ∈ (0,∞) . On the other
hand, applying (14) with x = 2s and y = t , we obtain A(s,t) � 1 for s,t ∈ (0,∞) .
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Hence A(s, t) = 1 for s,t ∈ (0,∞) . Similarly, we have B(s,t) = 1 for s,t ∈ (0,∞) .
Therefore, (14) becomes

u(s+ t− x− y) � u(s− x)+u(t− y) for x,y,s,t ∈ (0,∞). (15)

Let x,y ∈ R and s, t ∈ (0,∞) be such that s > x and t > y . Then, replacing in (15) x
and y by s−x and t−y , respectively, we conclude that u(x+y) � u(x)+u(y) . Hence,
u is superadditive and so (i) ⇒ (iii) .

If u is superadditive then, in view of (3), for every X ,Y ∈ X+ , we get

E[u(Hu(X)+Hu(Y )− (X +Y))] � E[u(Hu(X)−X)]+E[u(Hu(Y )−Y)]
= 0 = E[u(Hu(X +Y )− (X +Y ))],

which implies that Hu(X +Y) � Hu(X)+Hu(Y ) . Therefore, (iii) ⇒ (ii) . The implica-
tion (ii) ⇒ (i) is obvious. �

THEOREM 10. The following statements are equivalent:

(i)

Hu

(
X +Y

2

)
� Hu(X)+Hu(Y )

2
for X ,Y ∈ X f in

+ ;

(ii)

Hu((1−α)X + αY ) � (1−α)Hu(X)+ αHu(Y ) for X ,Y ∈ X+,α ∈ (0,1);

(iii) u is concave.

Proof. Assume that (i) holds. Then, arguing as in the proof of Theorem 9, we
conclude that

MDu

(
x+ y

2

)
� MDu(x)+MDu(y)

2
for x,y ∈ (0,∞)n, n ∈ N,

where Du is given by (4). Hence, according to Theorem 3, there exist functions A,B :
(0,∞)2 → R such that

Du

(
x+ y

2
,
s+ t
2

)
� A(s,t)Du(x,s)+B(s,t)Du(y, t) for x,y,s,t ∈ (0,∞).

Thus, in view of (4), we get

u

(
s− x+ t− y

2

)
� A(s,t)u(s− x)+B(s,t)u(t− y) for x,y,s,t ∈ (0,∞). (16)

Fix t ∈ (0,∞) . Replacing in (16) s , x and y by t , t − x and t − y , respectively, we
obtain

u

(
x+ y

2

)
� A(t,t)u(x)+B(t,t)u(y) for x,y ∈ (−∞,t). (17)
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Interchanging in (17) the role of x and y and adding obtained in this way inequality
side by side to (17), we get

2u

(
x+ y

2

)
� (A(t,t)+B(t,t))(u(x)+u(y)) for x,y ∈ (−∞,t). (18)

Applying (18) with x = y = t/2 and then with x = y =−t/2, we conclude that A(t,t)+
B(t,t) = 1. Hence, (18) becomes

u

(
x+ y

2

)
� u(x)+u(y)

2
for x,y ∈ (−∞,t).

Since t ∈ (0,∞) is arbitrarily fixed, this means that

u

(
x+ y

2

)
� u(x)+u(y)

2
for x,y ∈ R,

that is u is Jensen-concave. Therefore, as u is continuous, it is concave. Hence (i) ⇒
(iii) .

If (iii) holds then, in view of (3), for every X ,Y ∈ X+ and α ∈ (0,1) , we get

E[u((1−α)Hu(X)+ αHu(Y )− ((1−α)X + αY ))]
� (1−α)E[u(Hu(X)−X)]+ αE[u(Hu(Y )−Y)]
= 0 = E[u(Hu((1−α)X + αY )− ((1−α)X + αY ))],

which implies that Hu((1−α)X +αY ) � (1−α)Hu(X)+αHu(Y ) . Therefore, (iii)⇒
(ii) . The implication (ii) ⇒ (i) is trivial. �
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