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ON THE REVERSE CONVOLUTION INEQUALITIES
FOR THE KONTOROVICH-LEBEDEYV, FOURIER
COSINE TRANSFORMS AND APPLICATIONS

PHAM VAN HOANG

(Communicated by M. Praljak)

Abstract. In this paper, we investigate some reverse weighted L,-norm (p > 1) inequalities
for convolutions related to Kontorovich-Lebedev, Fourier cosine transforms. A class of intergro-
diffirential equations involing in Bessel operator are considered. The estimate of scratted acoustic
field is established.

1. Introduction

For the Fourier transform, beside the fundamental Young’s inequality, the weighted
L, -norm inequalities for Fourier convolution were considered by S. Saitoh et all (see
[8, 11] and references there in). Inequalities of these types were considered by N. D. V.
Nhan, D. T. Duc, V. K. Tuan (see [6] and references there in). Inequalities for Fourier
cosine convolution was studied by N. T. Hong (see [3]). The reverse weighted L, -norm
convolution inequalities for Fourier transform and its applications also investigated in
[9, 10].

PROPOSITION 1. ([9]) Let Fi and F, be positive functions satisfying

1 1 1 1
0<m? <Fi(x) SMP <eo, 0<mp? <F(x) <KM?P <eo, p>1, xeR. (1)

Then for any positive continuous functions py and p», we have the reverse L,-weighted
convolution inequality

1
1((Fip1) % (F2p2))(pr % p2) 7 e, @)

—1
nmimy
ZApg <m> |\Fl\|L,,(R;p1)”F2HLp(R:pz)7 2
where

(f*g /fx v)g(y)dy, xeR. 3)
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The main key to prove these results is the reverse Holder’s inequality.

PROPOSITION 2. ([13]) For two positive functions [ and g satisfying 0 < m <

! <M < o onthe set X, andfor p,qg>1, p"'+q ' =1,

8

P q
m 1 1
[raw | | [edu| <api (i) [rretan. @)
X X X

1
if the right hand side integral converges, where Ay 4(t) =p 7q

The convolution for Kontorovich-Lebedev transform was first introduced by V. A.
Kakichev in [5]

(F g, 000 = [ [ 5o 200 fugtdudy, x>0, 5)
0

0

where 7% denotes the Kontorovich-Lebedev transform (see [14, 17])

=3

H L) = [Ky0)fdx, y>0, ©)

0

Its kernel consists of the Macdonald function K (x) of the pure imaginary index v = iy.
This function satifies the differential equation

u
z —2+z—z—(z2+v2)u=0. (7

The inequalities of Young’s type as well as the boundedness in weighted L, for the
Kontorovich-Lebedev transform and its convolution were investigated in [4, 15, 16].
Combining the Kontorovich-Lebedev transform together with the Fourier cosine trans-
form, the following convolution was introduced (see [17])

f g // ZTC [ ¢ ( ) € * Sh(u V) f(l )g (V)dll 9 x> O. ( )
X Cil 8
00

In the present paper, we will establish the reverse weighted L,-norm for con-
volutions (5), (8). In the mentioned applications, we are looking solution of integro-
differential equations involing in Bessel operator in the convolution form and estimate it
basing on the reverse norm inequalities of convolution. The estimate for the diffraction
of an acoustic is given.
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2. Reverse convolution inequalities for Kontorovich-Lebedev,
Fourier cosine transforms

The aim of this section is drawing a parallel results of reverse weighted L,-norm
inequalities for convolutions related to Kontorovich-Lebedev, Fourier cosine transforms
as the Fourier convolution (see [9, 10]).

THEOREM 3. Let Fy and F, be positive functions satisfying

1 1 1 1
0<m{ <Fi(x) KM <eo, 0<my <F(x) <My <o, p>1, x>0. (9)
Then for any positive functions p\ and py we have the following reverse L,-weighted

convolution inequalities

‘|((F1P1));‘$(F2p2))(l) P Pz) HL,, (R)

1
1. vV2.\" mymy )
><§K0(T>> {Am(m> E L, @ o wop 122, 4o )y (10)

1
H((Flpl) (F2p2))(p1 TPz) P 1‘|L,,(R+;7tx)

mpmp
> (sl i Il g O

>coshv

1

Proof. First, using the AM-GM inequality for three positive real u, v, 1> e

Louv 1 1 L. xu 1 xv
obtain — = uv— <+ + = Similarly, we have — < P+ =<+
X X X3 V v

1
V4 —- Therefore,
u

Ly, oy o LA S W S S SR A
2\x v u/ S\ 3 63 3 6ud 3 6°)°
So, we obtain the remarkable inequality
1 uy ux vXx
Klouv) = e b (5 H545) 5 <p(x><p2(u)<p(v)’ (12)
X X

3
where ¢(1) = e 55 put fu,v)=F] (u)F} (v)K (x,u,v)p1(u)p2(v), and put g(u, )
= K(x,u,v)p1(u)p2(v). The condition (9) implies

mymy < DY) < MMy, Yu > 0,0 > 0. (13)
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Applying the reverse Holder’s inequality (4) for f and g on X = Ri, we get

Ao (2 ) (Fip) ., (Fap2)0)

Ay (A%) Z 0] K(x,u,v)Fy (1)py () B (v) pa (v)dudy

(i)
> (iif(u,v)dudv) : (/m/mg(u,v)dudv) a
00 00

1

St~

1
/ Tuvgq (u,v)dudv
0

</°°/°° w)Fy (v)K (x,u,v)p1 (u)p2 (v )dudV> (/M/MK x,1u,v)p1 (u)p2 (v )dud")
00 00

(14)

Therefore,

(e g, Ep)W) ) (o1 2, )7

A, (Zi;ﬁé) (//Fp (u)FY (v)K (x u,v)pl(u)pQ(v)dudv)
o o i [ o o l-p
X (//K(x,u,v)pl(u)pg(v)dudv) (//K(x,u,v)pl(u)pz(v)dudv>
00 00

mma\ " T [ o(x)ou)o(
g (—2) O/ O/ OO o) ()01 (1)pa(v)dud (15)

q

MM,

From inequality (12) and using the Fubini theorem to interchange the order of intergra-
tion, we have

I((Fip1) x (F2p2))(p1 *_p P27 N7 e

I P 1-p

0/( Flpl o (F2p2)) ) ( )) dx

{Ap,q (%) }P/ (//Flp(u)sz(v)K(xm,v)pl(u)pz(v)dudv> dx
0 00

WV
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> {an ()} 0] Z Z LIOCIOC o) g (1)1 () pa(v)

:%KO<?>{AP¢1<%>} /F” u)pi (u du/F v)p2(v)p(v)

\/z mimy P p
KO(T {A’W(MIM)} Iz, 2. o1 00 P21z 20 (1O)

To prove the inequality (11), we note that

T(x,u,v) = T (e—xcosh(u+v) +e—xcosh(u—v)> > 271.[ (2\/e—xcosh(u+v) —xcosh(u— v))
— LZe 5 (cosh(u+v)+cosh(u—v)) _ Lefxcoshucoshv 17)
2mx x :

Let f(u,v) = F{ () FL ()T (x,u,v)p1 (u)pa(v) and g(u,v) = T (x,u,v)p1 (u)pa(v). We
have

Y) < MiMs. (18)

(]]f (u,v) dudv) F (/w/oog(mv)dudv) E
00 00

(/OQ/NFIP VES (V)T (x,u,v)p1 (1) p2(v )dudv)
00

P )

(/]T (x,u,v)p1(u)p2(v )dudv)
00

19)
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Therefore,

1
>qu(w) p//—e_XCOShuCOShVFlp(M)sz(\/)pl(u)pz(v)dudv. (20)
MM
00

Similarly, we obtain

1_
1((Frpr) * (Fap2)) (1 +p2)P 117

< P 1-p
— [ (P05 Ep) ((prypa)  mras
0
P
mimy
{3
_p hed
> {AM <M> } / ¢ reoshucosh P () EP () o (1) po (v)doxdudy
0
71) e el
>Apq <M> /Flp(u)pl(u)du/sz(v)pz(v)dv/e_XCOSh“COSh"dx
S\ 0 0
71) hed hed
_ mimy v\ P1(1) / poo P2(V)
B {AM <M1M2>} /F1 (u)coshuduo ) coshv?”

-P
—Ja,, (2172 R|? ) ) @2y
{ P <M1M2>} H lH (R L()Shl,){)H 2” (R+;p())

coshv

(/M/MFIP VEY (DT (x,u,v)p1(u)p2(v)dudy | mxdx
00

/

0

The proof is complete. [

In various problems, the solutions can be presented in the convolution form. In
the cases of interest, the following reverse inequalities could be used to prove the lower
boundedness of these solutions.

Denote Ry = (0; ) for o > 0.

THEOREM 4. Let f and g be positive functions satisfying
0<f(x) <M <oo, 0<g(x) <N <oo, x>0. (22)

3
i) Assume that f € L,(Ry;9), g € L,(Ry; @), where @(t) = (5 +6r3) We have
the inequality

¢(x)

U 2,890 > Gz 1o o 181000 (23)
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Moreover, the following inequality

1
25%[(%(\/35'”) r
H(f%j"gg)”L,(Rg > SNy £z, @) 18], (& ) (24)

holds true for r > p > 1.
ii) Assume that f € L,(Rq),8 € Ly(Rg), where o, 3 are positive real number.
We have the inequality

e—Xcosha coshf3

(fﬂfg)(x) > WWHLP Re) HgHL,, (Rg)" (25)

Moreover, the following inequality

g+l % e*VCOShacosh/}
Y- C]+1> TL'(MN)P*l HfHLp Rey) HgHLp Rﬁ)

holds true for y>q > 1,r > 1.

108y > ( 26)

Proof. 1) We have

(f? }{j"j / x,u,v) fP(u)g? (v)dudv
K )

St~ o\s

<[ [ Kenummr N pu)gvdudy = N E s g) ()
0
(27)
On the other hand, we have
(fr S8 = K(x,u,v) 7 (u)g” (v)dudy
-]
[ [ o(x)e()e(v)
= ———————=fP(u)g? (v)dudv
[
2"’2— / / P2 (1)@ (u)g? (v) @ (v)dudv
00
( )
From (27) and (28), we obtain the estimate
0 2,00 > 5t b 1] e 61 9)
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Therefore,

oo

I, Ol = [1F 8l (dx

HL
0
hod r
>(|A1 R+(p|g|LPR+§D/< MNP 1) >
0
25%[(1 \/—r)
B 5
LT L o 1811E (R0

Hence, one can obtain (24).

ii) Similarly, we have

(728" @ = [ [ T s (w)g?(v)dudy
00
g//T(x,u,v)(MN)p_lf(u)g(v)dudv
00
= (MNP~ (£ 58)(x).
On the other hand,

(ff Tgp)(x) = T (x,u,v)fP (u)g? (v)dudv

e—xcoshucosh va (u)gp (v)dudv

WV

\Y%
B O o O O —

e—xcoshacoshﬁfp (u)g? (v)dudv

I

: O\Q O\Z O\Z
3| -

.cosh o cosh

p
P P
———lI1Z, () 18112, )

From (31) and (32), one can obtain the estimate respective to x on (0;r).

e—Xcosha cosh f3

(f*g)(x) = WWHLP ra)|1811L, &)

(30)

(€29

(32)

(33)
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Therefore,

| % &)y (R yr) = / (F58)(x)xdx
0

e coshacosh 8 "

- p p Y—a
> e W a8l ay) | [ 570
0

1
Y—q+1 g ,—r-coshocoshfB
() 2

ov1) i I e

where y>¢g>1,r>1. U

3. Applications

3.1. A class of integro-differential equations involing the Bessel operator

Inspite of having many useful applications, not many integro-differential equa-
tions can be solved in closed form. In this section, we consider a class of the integro-
differential equation

1 ray uv t)C
+5 // “3(FH5HE) Fu)h(v)dudy = g(x), x>0, (35)
00
which are arisen naturally from the integral equation (see [4, 14, 15])
2 //ef% (5540 f(u)h(v)dudv:g(x), x>0, (36)
X

where D is a differential operator.
In [14], S. B. Yakubovich introduced the following function space

L*(R+) =L(R+,Kqy(x)), a=>0, (37)
with the norm N
e, = [ Kalo)lf)lax. &
0

In this function space, the following analog of the Wiener theorem was established.

THEOREM 5. ([14]) Ler f € L*(Ry). If F(s) = A+ ZL[f](—is) # 0 for all
s in the closed strip |Re(s)| < o, including infinity then there is a unique q from L*

such that |

A+ A Z[f|(—is)

= A+ Llq)(~is). (39)
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LEMMA 1. [16] Let f € L,(Ry;x) and h€ L°(R.). Then, (ff*xh) €L (Ri;x)

and satisfies the factorization equation

ZIf W) = H LU0 H L) (40)

Now, we consider the case operator D is the Bessel operator & of the form

2
Blo](x) = <x2% —i—x% —x2) o(x). 41)

The equation (35) can be written in the form
1 Y Xu XV uv
x)—|—§<@ // —a(HE ( Ya(v)dudv| = g(x). 42)
00

We will find the solution of equation (42) in the L (R ;x) NLO(R.).

THEOREM 6. Let g € Ly(R,;x) and h € L°(R.) are given functions, satifying
L=y A L)) #0, ¥y > 0; 43)
VA LIh|(y) € Ly(Ry:ysinhmy): 4 L (2 L0 (v) = hi(v) € L'(R+). (44)

The equation (42) has a unique solution in L°(R, )N L, (R ;x) which can be presented
in the convolution form

f) =g+ (g * D), (45)

HL
where | exists uniquely via the following

YA L)
1 —y2 Z[h](y)

Assuming that g,1 belong to L,(Ry;¢(x)) and 0 < g(x) <M <o, 0 <I(x) <N < oo,
Vx > 0, we obtain

= A Zy)- (46)

flx) = g(x)+ NP2 1811z, ® o) 1Ly (R0 X >0 (47)

Furthermore,
i) the asymptotics of the solution

=5 (1+0(3) ) x = @)

is valid if we add the condition g,1 € Li(Ry).
ii) a norm estimate

Nl—

1F 1|y s 20y = | 2MN) g L 00 181y o) N (R 4 000) (49)

holds on if we add condition g € L,(R+;(¢@(x))?) and f € Ly,(Ry;x7).
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Proof. Since h € L°(R;), g € L(R,), then viture the (1), we have ®(x) :=
(f Py h)(x) € Ly(R4;x). For o(x) € Ly(R;x), by using the inverse formula for the

) 2
Kontorovich-Lebedev transform between two spaces Ly (R ;x) and L, (R ; % ysinh7my),

we have N
2 .
o(x) = %.,2”71[‘1’()1)} = = /Kiy(x)ysmhny Y(y)dy, (50)
0
therefore we obtain
4 7 .
2x0(x) = p= /Kiy (x)ysinhy W(y)dy, (51)
0
where ¥(y) = 7 .Z[w](y). We have
4 7 .
#xow) = — [ lKy@)lysinhy ¥()dy (52
0
if integral (51) and
O ‘
[ (52K ) ysinhmy wir)as, 53)
0
=0 .
/ (W&y (x)) ysinhmy ¥(y)dy. (54)

0

converge uniformly on any compact subset of R . Since the Macdonald function is a
solution of the Bessel equation, we obtain (see [4, 12, 16])

BKiy(x)] = —y*Kiy (%) (55)
Using (41), (50), (52), we have
HL [%%’[hw(x)}] )= 7 z—lxl(iy(x)% 7 P|Kiz (x)]Tsinhn7¥(7) dT dx
:;fg [fg—l[o—rz\y(r)]] (1) = —y*P(y).  (56)
Formula (56) holds true if
Y¥(y) € Lr(Ry:ysinhy). (57)

By taking the Kontorovich-Lebedev transform to both side of (42), we obtain

H L) =y L)) H LIh ) = A L[g)(y), y>0. (58)
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Combining with (43), we have

ff[f](y):%~ (59)

The condition (44) implies that exsits a unique #; belongs to L°(R,) such that
H LM (y) = y*# ZL[h)(y). In virtue of Wiener-Levy theorem [14], there exists a
% = Z[l](y). The equation
(59) can be rewriten . ZL|[f](y) = # Lg|y) + # Lg|(y)-# Z|l](y). Therefore,
the solution of equation (42) can represented in the convolution form (45).

On the other hand, using formula (233), page 73 in [2]

unique function [ € L°(R, ) satifying

JK

. 52(2) — VK (2) — 2Ky1 (2), (60)
we have 2K, )

Ki X 1 .

2 (09K () — K1 (1), ©1)
and s )

0°K; iy + 2iy+1
) _ DY - B 0+ K. (6)

02x X2

Applying the integral representation 9.6.25, page 376 in [1]

Ky(x) = %/jcos(m)(z% )™V"Y24, Rv > —1/2,
with v =1+1iy and v =2+ iy, and recalling that
T(v+1)=vl(v), [T(1/2+iy)=,/—2—,
cosh(my)
we obtain
Kyr ] < SLEDE ) < SRR any v,

X X

uniformly in x on any compact subset of R . For Kj,(x) the following estimate holds
[14]

IKiy(x)| < e Ko (xcos8), 0<8< g (63)

On the other hand,

=

LU0 = | [ Ke) IO < [ KOOIy = f o (64)
0

0
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‘We have

oo

/ Kiy+v(x)y" sinhry W(y)dy
0

=3

<C / |Kiyov ()| 3" sinhwy |7 Z ] 0| L [R] ()| dy
0

éC/}I(iy+v(x)}ymdy<Cm7v, V=012 m=0,1,2. (65)
0

Thus, integrals (51), (53), and (54) converge uniformly on any compact subset of R, ,
and (52) holds. We have

oo

[ ) Pysinheydy = [ 14 211102152 1) (5) Pysinb sy
0

<A s / -2 Imn)(y) Pysinheydy
Hf”Ll (Ry:Ko (v ||=%/$[hl]”L2 (R4 ysinhry) < °°
Consequently, y>¥(y) € Ly(R, ;ysinh7y).

i) We obtain the inequality (47) by applying directly the inequality (29). Using the
elementary inequality

a® +b* > 2ab, (66)
we obtain
1 1/ uy uz+\/2 e_x
= e () 2
IK (x,u,v)] 72¢ S35 (67)
Therefore,
e
1) =80 +(s_z, D) <)+ [ [ Sgluiv)dudy (68)
00
e —X
=g(x) + g\\gHLl ®H) 1|z, ®+)- (69)

From (47) and (69), one can obtain (48).
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ii) Recalling the inequality (66), (47) we have

1

- o 2p
[1£Praras l/Wg -, D@Padx
0
- %
> | [2rlerle s, Delrax
J |
1
(o) ’
> 20 G 1t V1
!
= [2(MN)1 pHgHLp (R:0(x “ng (Rys(g(x) H ”P (Ry:o(x ))] '

The proof is complete. [

Next, we consider the operator D is the differential operator of the infinite order,
related to Bessel operator

- Z
9= 1(- g ) o

X(}C d X—d2>
0 Cdx T dY?
g T S e

The equation (35) can be rewritten in the form

I I < : ) R R
d.x dx2 71 XU xv ML
2 =
]\1]11“ 1+ Zk 1 O/O/e ( )h(v)dudv g(x)

(71
Assuming that 2 € L°(R,) and g € L (R ;x) are given functions. Recalling the results
in [16], we have

H LIG)(y) = H LIf)3)H L[] () cosh =

5 (72)

where

d d
1 N X x__x —X——= o0 oo l( ' Y)
= ! By .
G(x) 2XN1£‘}°1<EI1 + (2k—1 O/O/e F(u)h(v)dudv

(73)
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By taking the Kontorovich-Lebedev transform to the both side of (71), we obtain

HZLf)) = A L)) A Zh]() Cosh% =HL(y), x>0 (74)

Therefore,
HL
HLI]() = 210 (75)
1 —cosh 7%3[]1} )
if
1 - cosh %fﬁ[h] (v) #0,¥y > 0. (76)

Assuming that exsits ¢; € L°(R..) such that % .Z[q](y) = cosh %,%f Z[h(y). In

virtue of Wiener-Levy theorem [14], there exists a unique function ¢ € L°(R.) satify-

Lo AL aly)
ng Tm = fg[q] (y), then

cosh %fﬁ[h] ()

7y =X Z1g)(y)- (77)
1 —cosh 7%3[}1} ()

The equation (75) can be rewriten
HLIfI) = A Lg](y) + A L8l (y) A L1]q](y).
Therefore, the solution of equation (71) can represented in the convolution form

fx)=gx)+ (g * q)(x). (78)

3.2. Estimate the diffraction of an acoustic via inequalities of generalized
convolution

We will use the similar statement about a particular of the scattered acoustic field
considered in [12] with the spectral potential function g(u) is defined

(F.g)(t) = sinh (27t)u(t). (79)
Hence, we have
U() = T2 ik Feg) 1) (o) )
0
= V(g hn) (). (80)
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Formula (80) gives us another representation of U (x) in a form related to the general-
ized convolution (8). Assuming that g is positive function and g € L,(Ry), ¢ > 0. By
using the inequality (25), we have

bis e—¥cosho coshf3

|U(x)| = 2\/_(8 hy)(x) > WHgHL[)RD{ || 1\|p (Rg)’ ,B>0. (81)

1
In particular, p = 2, we obtain f h ———5—dv=_2Tanhf3, 8 > 0. Thus,
0 €o

—xcosh occosh 8

€ 2
> - .
V0] > 2Tanh B lel

If U€Ly(R:x?), r>1and g € [,(Rgy), & >0, B > 0 then we have estimate

222 2.2

2U H X

U1, 50 = [ 10 P = TE iy
0

2
T r —2FCos S
= TH[(gThl)”iz(Rr;xz) > n—MTanh2ﬁe 2 coshacoshﬁHgHiz(Ra)’ (82)

i !mymn

by using the inequality (26) with y=¢g=2, p=2, M = sup g(x) < e and 0 < hj(x) =
)CER+
1
cosh 5
Therefore,

<N=1,x>0.

[T —rcosh sh 2
HUHLz(Rr;xz) 2 mTanhﬁe rcosh o cos! ﬁ”g”Lz(Ra)
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