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WITH APPLICATIONS TO HERSCH–PFLUGER DISTORTION FUNCTION

MIAO-KUN WANG, SONG-LIANG QIU AND YU-MING CHU

(Communicated by I. Perić)

Abstract. In this paper, we find an infinite series formula for the Hübner upper bound func-

tion, present the bounds for the Hersch-Pfluger distortion function, and improve the well known

results on the quasiconformal Schwarz lemma and the solutions of the Ramanujan modular

equations. Besides, the submultiplicative and power submultiplicative properties of the Hersch-

Pfluger distortion function are also discussed.

1. Introduction

In 1952, Hersch and Pfluger [24, 27] generalized the classical Schwarz Lemma for

analytic functions to the class QCK(B) (K > 1) of K -quasiconformal mappings of the

unit disk B = {z ∈ C : |z| < 1} onto itself with the origin fixed. They proved that there

exists strictly increasing function ϕK : [0,1] → [0,1] such that

| f (z)| 6 ϕK(|z|) (1.1)

for each f ∈ QCK(B) and z ∈ B . Inequality (1.1) is known as the Schwarz Lemma for

Quasiconformal mappings and the function ϕK is said to be Hersch-Pfluger distortion

function defined by































ϕK(r) = µ−1

(

µ(r)

K

)

,

µ(r) =
π

2

K ′(r)
K (r)

,

K = K (r) =

∫ π/2

0
(1− r2 sin2 θ )−1/2dθ , K

′(r) = K (r′)

(1.2)

for r ∈ (0,1) and K ∈ (0,∞) , ϕK(0) = ϕK(1)−1 = 0, where r′ =
√

1− r2 , 0 < r < 1,

µ(r) is the conformal modulus of the Grötzsch ring B \ [0,r] and K = K (r) is the
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classical complete elliptic integral of the first kind [1, 3, 7, 11, 12, 13, 14, 21, 22, 23, 37,

38, 39, 42, 43, 44, 46, 48, 52]. For later reference, we recall that the complete elliptic

integrals of the second kind [15, 16, 17, 18, 19, 20, 34, 40, 41, 45, 49, 50, 51] is defined

by

E = E (r) =
∫ π/2

0

√

1− r2 sin2 θdθ , E
′(r) = E (r′), r ∈ (0,1).

The bounds for the Hersch-Pfluger distortion function ϕK(r) have been studied by

a lot of mathematicians for many years [6, 8, 25, 26, 28, 29, 31, 36]. For example, in

1960, Wang [36] obtained that

ϕK(r) 6 41−1/Kr1/K

for all r ∈ (0,1) . Later, Hübner [25] proved

ϕK(r) 6 exp{M (r)(1−1/K)}r1/K

for all r ∈ (0,1) , where M (r) = 2r′2K (r)K (r′)/π + logr is the Hübner upper bound

function [30, 31]. In 1999, Qiu, Vamanamurthy and Vuorinen [31] showed that the

Hübner upper bound function is the best possible function in terms of exponent form,

namely, they proved that, for a(r) is a real function on (0,1) , inequality

ϕK(r) < exp[(1−1/K)a(r)]r1/K (1.3)

takes place for all r ∈ (0,1) if and only if a(r) > M (r) . Moreover, if we let b(r) and

c(r) be real functions defined on (0,1) , then [31] also showed that inequalities

ϕ1/K(r) < exp[(1−K)b(r)]rK (1.4)

and

ϕ1/K(r) > exp[(1−K)c(r)]rK (1.5)

hold for all r ∈ (0,1) and K ∈ (1,∞) if and only if b(r) 6 M (r) and c(r) > U (r) =
µ(r)+ logr , respectively, where µ(·) is the Grötzsch ring function defined as in (1.2).

On the other hand, Vuorinen [35] found that the solutions of Ramanujan’s modular

equation in number theory are related to the Hersch-Pfluger distortion function. Indeed,

the classical modular equation of degree p can be expressed by µ(s) = pµ(r) (0 < r <
1) and its solution is given by

s = ϕK(r), K = 1/p.

For these, and more properties and inequalities for ϕK(r) can be found in the literature

[2, 4, 5, 9, 10, 32, 47, 53].

The main purpose of this paper is to find an infinite series formula and present new

bounds for the Hübner upper bound function, discuss the submultiplicative and power

submultiplicative properties for the Hersch-Pfluger distortion function, and improve

the well known results on the quasiconformal Schwarz lemma and the solutions of the

Ramanujan modular equations.

Throughout this paper, we let r′ =
√

1− r2 for 0 < r < 1, and U (r) = µ(r) +

logr , M (r) = 2r′2K (r)K (r′)/π + logr . We now state our main results as follows.
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THEOREM 1.1. Let r0 = r′ ≡
√

1− r2 , r1 = 2
√

r′/(1 + r′) = ϕ2(r0) , r2 =
2
√

r1/(1 + r1) = ϕ2(r1) = ϕ4(r0) , · · · , rn = 2
√

rn−1/(1 + rn−1) = ϕ2(rn−1) = ϕ2n(r0) .

Then

M (r) =
1

2
[(1− r0) log(1− r0)+ (1 + r0) log(1 + r0)]

+
1

2

∞

∑
k=1

{[

k−1

∏
m=0

( rm

2

)

]

[(1− rk) log(1− rk)+ (1 + rk) log(1 + rk)]

}

.

THEOREM 1.2. Let the functions H , J and I be defined on (0,1) by

H(r) =
1

2
[(1− r) log(1− r)+ (1 + r) log(1 + r)],

J(r) = H(r′)+ log2

(

1 +
√

r′

1 + r′

)2

r′3/2

and

I(r) = H(r′)+
r′

2
H

(

2
√

r′

1 + r′

)

+
r′3/2

2(1 + r′−
√

r′)
H

(

2
√

2(1 + r′)1/2r′1/4

(1 +
√

r′)2

)

,

respectively. Then the inequalities

I(r) < M (r) < J(r) (1.6)

hold for all r ∈ (0,1) .

Applying Theorem 1.2 and inequalities (1.3) and (1.4), we get the following corol-

lary immediately.

COROLLARY 1.3. (1) For all r ∈ (0,1) and K ∈ (1,∞) ,

ϕ1/K(r) < exp[(1−K)I(r)]rK

and

ϕK(r) < exp[(1−1/K)J(r)]r1/K,

where I(r) and J(r) are defined as in Theorem 1.2.

(2) If f ∈ QCK(B) , then for each z ∈ B ,

| f (z)| 6 exp{M (|z|)(1−1/K)}|z|1/K 6 exp{J(|z|)(1−1/K)}|z|1/K,

that is

| f (z)| 6
{

4

[1+(1−|z|2)1/2](1−|z|2)3/8

1+(1−|z|2)1/2
[

1− (1−|z|2)1/2
]

1−(1−|z|2)1/2

2

×
[

1 +(1−|z|2)1/2
]

1+(1−|z|2)1/2

2

}1−1/K

|z|1/K .
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THEOREM 1.4. Let a(r,t) , b(r,t) and c(r,t) be the functions defined on (0,1)×
(0,1) . Then

(1) The inequality

ϕK(r)ϕK(t)/ϕK(rt) < ea(r,t)(1−1/K) (1.7)

holds for all r,t ∈ (0,1) and K ∈ [1,∞) if and only if a(r,t) > M (r)+M (t)−M (rt) .

(2) The inequality

ϕ1/K(r)ϕ1/K(t)/ϕ1/K(rt) < eb(r,t)(1−K) (1.8)

holds for all r,t ∈ (0,1) and K ∈ (1,∞) if and only if b(r,t) 6 M (r)+M (t)−M (rt) .

(3) The inequality

ϕ1/K(r)ϕ1/K(t)/ϕ1/K(rt) > ec(r,t)(1−K) (1.9)

holds for all r,t ∈ (0,1) and K ∈ (1,∞) if and only if c(r,t) > U (r)+U (t)−U (rt) .

THEOREM 1.5. Let A(r) , B(r) and C(r) be the functions defined on (0,1) . Then

the following statements are true:

(1) If 0 < p 6 1 , then the inequalities

ϕK(r)p/ϕK(rp) > eA(r)(1−1/K), (1.10)

ϕ1/K(r)p/ϕ1/K(rp) > eB(r)(1−K), (1.11)

ϕ1/K(r)p/ϕ1/K(rp) < eC(r)(1−K) (1.12)

hold for all r ∈ (0,1) and K ∈ (1,∞) if and only if A(r) 6 pM (r)−M (rp) , B(r) >

pM (r)−M (rp) , C(r) 6 pU (r)−U (rp) , respectively.

(2) If p > 1 , then the inequalities

ϕK(r)p/ϕK(rp) < eA(r)(1−1/K), (1.13)

ϕ1/K(r)p/ϕ1/K(rp) > eB(r)(1−K), (1.14)

ϕ1/K(r)p/ϕ1/K(rp) < eC(r)(1−K) (1.15)

hold for all r ∈ (0,1) and K ∈ (1,∞) if and only if A(r) > pM (r)−M (rp) , B(r) >

pU (r)−U (rp) , C(r) 6 pM (r)−M (rp) , respectively.
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2. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. It follows from r0 = r′ ≡
√

1− r2 , r1 = 2
√

r′/(1 + r′) =
ϕ2(r0) , r2 = 2

√
r1/(1+r1) = ϕ2(r1) = ϕ4(r0) , · · · , rn = 2

√
rn−1/(1+rn−1)= ϕ2(rn−1)

= ϕ2n(r0) that

M (r′1) =
2

π

(

2
√

r′

1 + r′

)2

K

(

2
√

r′

1 + r′

)

K

(

1− r′

1 + r′

)

+ log

(

1− r′

1 + r′

)

=
2

π

4r′

(1 + r′)2
(1 + r′)K ′(r)

(

1 + r′

2

)

K (r)+ log

(

1− r′

1 + r′

)

=
2

r′

[

2

π
r′2K (r)K ′(r)+ logr

]

+ log

(

1− r′

1 + r′

)

− 1

r′
log(1− r′2)

=
2

r′
M (r)− (1− r′) log(1− r′)+ (1 + r′) log(1 + r′)

r′
,

that is,

r0

2
M (r′1) = M (r)− 1

2
[(1− r0) log(1− r0)+ (1 + r0) log(1 + r0)] . (2.1)

Putting r1 into (2.1) instead of r0 , one has

r1

2
M (r′2) = M (r′1)−

1

2
[(1− r1) log(1− r1)+ (1 + r1) log(1 + r1)] . (2.2)

From (2.1) and (2.2) we clearly see that

M (r)− 1

2
[(1− r0) log(1− r0)+ (1 + r0) log(1 + r0)]

− 1

2

( r0

2

)

[(1− r1) log(1− r1)+ (1 + r1) log(1 + r1)]

=
r0r1

22
M (r′2).

Similarly, replacing r2 with r0 in (2.1), we also have

r2

2
M (r′3) = M (r′2)−

1

2
[(1− r2) log(1− r2)+ (1 + r2) log(1 + r2)] ,

which leads to

M (r)− 1

2
[(1− r0) log(1− r0)+ (1 + r0) log(1 + r0)]

− 1

2

(r0

2

)

[(1− r1) log(1− r1)+ (1 + r1) log(1 + r1)]

− 1

2

(r0

2
· r1

2

)

[(1− r2) log(1− r2)+ (1 + r2) log(1 + r2)]

=
r0r1r2

23
M (r′3).
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Generally, by induction we can obtain

M (r)− 1

2
[(1− r0) log(1− r0)+ (1 + r0) log(1 + r0)]

− 1

2

n

∑
k=1

{[

k−1

∏
m=0

( rm

2

)

]

[(1− rk) log(1− rk)+ (1 + rk) log(1 + rk)]

}

=
n

∏
m=0

(rm

2

)

M (r′n+1). (2.3)

From (2.3) and the fact that M (r) is strictly decreasing from (0,1) onto (0, log4)
we know that the double inequality

0 <M (r)− 1

2
[(1− r0) log(1− r0)+ (1 + r0) log(1 + r0)]

− 1

2

n

∑
k=1

{[

k−1

∏
m=0

( rm

2

)

]

[(1− rk) log(1− rk)+ (1 + rk) log(1 + rk)]

}

<
n

∏
m=0

(rm

2

)

log4

holds for all r ∈ (0,1) . Letting n → ∞ , then ∏n
m=0 (rm/2) = 0, and thereby

M (r) =
1

2
[(1− r0) log(1− r0)+ (1 + r0) log(1 + r0)]

+
1

2

∞

∑
k=1

{[

k−1

∏
m=0

(rm

2

)

]

[(1− rk) log(1− rk)+ (1 + rk) log(1 + rk)]

}

.

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. For r ∈ (0,1) , let r0 = r′ =
√

1− r2 , r1 = 2
√

r0/(1 + r0) ,

r2 = 2
√

r1/(1 + r1) . Then from Theorem 1.1 and the inequality

H(r) =
∞

∑
n=0

r2n+2/[(2n + 1)(2n + 2)]< (log2)r2

for r ∈ (0,1) we conclude that

M (r) 6 H(r′)+
r0

2

[

(log2)r2
1

]

+
r0

2

r1

2

[

(log2)r2
2

]

+ · · ·+
n

∏
m=0

( rm

2

)

[(log2)r2
m]+ · · ·

6 H(r′)+ log2

[

r0r2
1

2
+

r0r1

22
+ · · ·+ r0r1

2n
+ · · ·

]

= H(r′)+ log2

[

r0r2
1

2
− r0r1

2
+

r0r1

2
+

r0r1

22
+ · · ·+ r0r1

2n
+ · · ·

]

= H(r′)+

(

1

2
log2

)

r0r1 (1 + r1) = H(r′)+ log2

(

1 +
√

r′

1 + r′

)2

r′3/2
= J(r)
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and

M (r) >H(r′)+
r0

2
H(r1)+

r0

2

r1

2
H(r2)+

r0

2

(r1

2

)2

H(r2)+
r0

2

( r1

2

)3

H(r2)

+ · · ·+ r0

2

( r1

2

)n

H(r2)+ · · ·

=H(r′)+
r0

2
H(r1)+

r0

2
H(r2)

[

r1

2
+
(r1

2

)2

+ · · ·+
(r1

2

)n

+ · · ·
]

=H(r′)+
r′

2
H(r1)+

r0r1

2(2− r1)
H(r2) = I(r). �

3. Proofs of Theorems 1.4 and 1.5

In [6], the following submultiplicative and power submultiplicative properties of

ϕK(r) were proved for K ∈ (1,∞) , p ∈ (1,∞) and r,t ∈ (0,1) by Anderson, Vamana-

murthy and Vuorinen (also see [7, Exercises 10.19 (1), (5)]):

ϕK(r)ϕK(t) 6 41−1/KϕK(rt)

and

ϕK(r)p < 4(p−1)(1−1/K)ϕK(rp).

In this section, we shall refine the above inequalities and establish some new sharp

inequalities concerning the submultiplicative and power submultiplicative properties

for ϕK(r) . In order to prove our main results we need several formulas and lemmas,

which we present in this section.

For 0 < r < 1, denote s = ϕK(r) (K ∈ (0,∞)) , the following formulas were pre-

sented in [7, Equations(3.6)–(3.8),(5.9) and (10.6)] or [4, Theorem 4.1]:

dK

dr
=

E − r′2K

rr′2
,

dE

dr
=

E −K

r
,

d(E − r′2K )

dr
= rK ,

dµ(r)

dr
=

−π2

4rr′2K (r)2
,

∂ s

∂ r
=

ss′2K (s)K ′(s)

rr′2K (r)K ′(r)
=

ss′2K (s)2

Krr′2K (r)2
,

∂ s

∂K
=

2

πK
ss′2K (s)K ′(s) =

2ss′2K (s)2

πK2

K ′(r)
K (r)

.

The following Lemma 3.1 follows from Theorem 3.21 (7), Exercises 3.43 (11),

(29), (32), Theorem 3.30 (1) and Theorem 5.13 (2) in [7].

LEMMA 3.1. (1) r′1/2
K is strictly decreasing from (0,1) onto (0,π/2);

(2) (K −E )/r2 is strictly increasing from (0,1) onto (π/4,∞);

(3) (K −E )/(r2K ) is strictly increasing from (0,1) onto (1/2,1);

(4) [K −E − (E − r′2K )]/r4 is strictly increasing from (0,1) onto (π/16,∞);

(5) U (r) is strictly decreasing from (0,1) onto (0, log4);

(6) M (r) is strictly decreasing from (0,1) onto (0, log4) .
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LEMMA 3.2. Let K ∈ (0,∞) , 0 < x < r < 1 , s = ϕK(r) and y = ϕK(x) . Then the

following statements are true:

(1) f (K) = s′2K (s)3/(y′2K (y)3) is strictly decreasing from (0,∞) onto (0,1);

(2) g(K) = [K (s)−E (s)]/[K (y)−E (y)] is strictly decreasing from (0,∞) onto

(µ(x)/µ(r),∞) .

Proof. For part (1), by logarithmic differentiation, we have

1

f (K)

d f (K)

dK
=− 4

πK
s2

K (s)K ′(s)+
6

πK
K

′(s)[E (s)− s′2K (s)]

+
4

πK
y2

K (y)K ′(y)− 6

πK
K

′(y)[E (y)− y′2K (y)]

=
2

πK
[ f1(y)− f1(s)], (3.1)

where f1(r) = K ′(r)[K (r)−E (r)]+K ′(r){K (r)−E (r)− [E (r)− r′2K (r)]} . By

Lemma 3.1 (1), (2) and (4), we clearly see that f1(r) is strictly increasing on (0,1) .

Then equation (3.1) leads to the conclusion that d f (K)/dK < 0 for K ∈ (0,∞) since

y < s and f (K) is strictly decreasing on (0,∞) . Moreover, f (0+) = 1 and by Lemma

3.1 (5),

lim
K→+∞

f (K) = lim
K→+∞

µ(y)3

µ(s)3

s′2

y′2
=

µ(x)3

µ(r)3
lim

K→+∞

(

elogs′+µ(s′)

elogy′+µ(y′) eµ(y′)−µ(s′)

)2

=
µ(x)3

µ(r)3
lim

K→+∞

(

eµ(x′)−µ(r′)
)2K

= 0.

For part (2), logarithmic differentiating gives

1

g(K)

dg(K)

dK
=

2

πK

s2K (s)K ′(s)E (s)

K (s)−E (s)
− 2

πK

y2K (y)K ′(y)E (y)

K (y)−E (y)

=
2

πK
[g1(s)−g1(y)], (3.2)

where g1(r) = K ′(r)E (r)[r2K (r)/(K (r)−E (r))] is strictly decreasing on (0,1) by

Lemma 3.1 (3). Then equation (3.2) leads to the conclusion that dg(K)/dK < 0 for

K ∈ (0,∞) since y < s and g(K) is strictly decreasing on (0,∞) . Moreover,

lim
K→0

g(K) = lim
K→0

s2

y2
= lim

K→0

(

elogs+µ(s)

elogy+µ(y)
eµ(y)−µ(s)

)2

= lim
K→0

(

eµ(x)−µ(r)
)2/K

= +∞.

lim
K→+∞

g(K) = lim
K→+∞

KK ′(s)K (r)/K ′(r)−E (s)

KK ′(y)K (x)/K ′(x)−E (y)
=

µ(x)

µ(r)
. �
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LEMMA 3.3. The inequalities

M (r)+M (t) > M (rt) (3.3)

U (r)+U (t) > U (rt) (3.4)

hold for all r,t ∈ (0,1) .

Proof. Inequality (3.4) follows directly from [7, Theorem 5.12 (2)]. For inequality

(3.3), if we let f (r) = M (r)+M (t)−M (rt) for fixed t ∈ (0,1) , then differentiating

f leads to

d f

dr
=

4

πr

[

K
′(x)(K (x)−E (x))−K

′(r)(K (r)−E (r))
]

< 0 (3.5)

for all r ∈ (0,1) , as the function r → K ′(r)[K (r)− E (r)] is strictly increasing on

(0,1) by Lemma 3.1 (1) and (2). Then (3.5) leads to the conclusion that f (r) < f (1−) =
0 for all r ∈ (0,1) , and inequality (3.3) follows. �

LEMMA 3.4. Let p ∈ (0,∞) , then the following statements are true:

(1) The function

f (r) = M (rp)− pM (r)

is strictly decreasing from (0,1) onto (0,(1− p) log4) if 0 < p < 1 , is strictly increas-

ing from (0,1) onto ((1− p) log4,0) if p > 1 and is the constant function f (r) = 0 if

p = 1 ;

(2) The function

g(r) = U (rp)− pU (r)

is strictly decreasing from (0,1) onto (0,(1− p) log4) if 0 < p < 1 , is strictly increas-

ing from (0,1) onto ((1− p) log4,0) if p > 1 and is the constant function g(r) = 0 if

p = 1 .

Proof. For part (1), clearly, f (r) = 0 if p = 1. Let x = rp , then differentiation

gives
d f (r)

dr
=

4p

πr

[

K
′(r)(K (r)−E (r))−K

′(x)(K (x)−E (x))
]

. (3.6)

Since the function r → K ′(r)[K (r)−E (r)] is strictly increasing on (0,1) , equation

(3.6) implies d f (r)/dr < 0 if 0 < p < 1 and d f (r)/dr > 0 if p > 1. Moreover, by

Lemma 3.1 (6) we have f (0+) = lim
r→0+

M (rp)− pM (r) = (1− p) log4 and f (1−) = 0.

For part (2), g(r) = 0 if p = 1. if we also let x = rp , then by differentiation we

have

dg(r)/dr =
pπ2

4rr′2x′2K (r)2
K (x)2

[x′2K (x)2 − r′2K (r)2]. (3.7)

Lemma 3.1 (1) shows that the function r → r′K (r) is strictly decreasing on (0,1) .

Hence by (3.7) we conclude that dg(r)/dr < 0 if 0 < p < 1 and dg(r)/dr > 0 if p > 1.

Moreover, by Lemma 3.1 (5) we get g(0+) = lim
r→0+

U (rp)− pU (r) = (1− p) log4 and

g(1−) = 0. �
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THEOREM 3.5. Let a(r,t) and b(r,t) be the functions defined on (0,1)× (0,1) .

For each (r,t) ∈ (0,1)× (0,1) , we define the functions f and g on [0,∞) by

f (K) = ϕK(r)ϕK(t)
(

ea(r,t)
)1/K

/ϕK(rt)

and

g(K) = ϕ1/K(r)ϕ1/K(t)
(

eb(r,t)
)K

/ϕ1/K(rt).

Then

(1) f is strictly decreasing on (0,1] if and only if

a(r,t) > U (r)+U (t)−U (rt)

for all r,t ∈ (0,1) , and strictly increasing on (0,1] if and only if

a(r,t) 6 M (r)+M (t)−M (rt)

for all r,t ∈ (0,1) . Moreover, f is strictly decreasing on [1,∞) if and only if

a(r,t) > M (r)+M (t)−M (rt) (3.8)

for all r,t ∈ (0,1) .

(2) g is strictly increasing on (0,1] if and only if

b(r,t) > M (r)+M (t)−M (rt)

for all r,t ∈ (0,1) . For K ∈ [1,∞) , g is strictly decreasing on [1,∞) if and only if

b(r,t) 6 M (r)+M (t)−M (rt) (3.9)

for all r,t ∈ (0,1) , and g is strictly increasing on [1,∞) if and only if

b(r,t) > U (r)+U (t)−U (rt) (3.10)

for all r,t ∈ (0,1) .

Proof. Let x = rt , s = ϕK(r) , u = ϕK(t) , and y = ϕK(x) . Then simple computa-

tions lead to

1

f

∂ f

∂K
=

1

s

2

πK2
ss′2K (s)2 K ′(r)

K (r)
+

1

u

2

πK2
uu′2K (u)2 K ′(t)

K (t)

− 1

y

2

πK2
yy′2K (y)2 K ′(x)

K (x)
− 1

K2
a(r,t)

=
1

K2
[h(K,r,t)−a(r,t)] , (3.11)

where

h(K,r,t) =
2

π
s′2K (s)2 K ′(r)

K (r)
+

2

π
u′2K (u)2 K ′(t)

K (t)
− 2

π
y′2K (y)2 K ′(x)

K (x)
.
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Differentiating h gives

π

2

∂h

∂K
=2

K ′(r)
K (r)

s′K (s)

[

− s

s′
K (s)+ s′

E (s)− s′2K (s)

ss′2

]

2

πK2
ss′2K (s)2 K ′(r)

K (r)

+ 2
K ′(t)
K (t)

u′K (u)

[

− u

u′
K (u)+ u′

E (u)−u′2K (u)

uu′2

]

2

πK2
uu′2K (u)2 K ′(t)

K (t)

−2
K ′(x)
K (x)

y′K (y)

[

− y

y′
K (y)+ y′

E (y)− y′2K (y)

yy′2

]

2

πK2
yy′2K (y)2 K ′(x)

K (x)

=
4

πK2
y′2K (y)3 [K (y)−E (y)]h1(K,r,t), (3.12)

where

h1(K,r,t) =

(

K ′(x)
K (x)

)2

−
(

K ′(r)
K (r)

)2
s′2K (s)3 [K (s)−E (s)]

y′2K (y)3 [K (y)−E (y)]

−
(

K ′(t)
K (t)

)2
u′2K (u)3 [K (u)−E (u)]

y′2K (y)3 [K (y)−E (y)]
. (3.13)

It follows from Lemma 3.2(1) and (2) that the function K → h1(K,r,t) is strictly

increasing on [0,∞) , and

lim
K→0+

h1(K,r,t) = −∞, (3.14)

lim
K→1

h1(K,r,t) =
h2(r,t)

x′2K (x)3 [K (x)−E (x)]
, (3.15)

lim
K→∞

h1(K,r,t) =

(

K ′(x)
K (x)

)2

, (3.16)

where

h2(r,t) =x′2K (x)K ′(x)2
[K (x)−E (x)]− r′2K (r)K ′(r)2

[K (r)−E (r)]

− t ′2K (t)K ′(t)2
[K (t)−E (t)]

<x′2K (x)K ′(x)2
[K (x)−E (x)]− r′2K (r)K ′(r)K ′(x) [K (x)−E (x)]

− t ′2K (t)K ′(t)K ′(x) [K (x)−E (x)]

=
π

2
[M (x)−M (r)−M (t)]K ′(x) [K (x)−E (x)] < 0 (3.17)

for all r,t ∈ (0,1) by (3.3).

Equations (3.14)–(3.16), inequality (3.17) and the monotonicity of the function

K → h1(K,r,t) lead to the conclusion that there exists K0 ∈ (1,∞) such that h1(K,r,t) <
0 for K ∈ (0,K0) and h1(K,r,t) > 0 for K ∈ (K0,∞) . Then from (3.12) and (3.13) we
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know that the function K → h(K,r,t) is strictly decreasing on (0,K0) , and strictly

increasing on (K0,∞) . Moreover, by (3.4) one has

lim
K→0+

h(K,r,t) = U (r)+U (t)−U (rt) > 0, (3.18)

lim
K→1

h(K,r,t) = M (r)+M (t)−M (rt) > 0, (3.19)

lim
K→∞

h(K,r,t) = 0. (3.20)

It follows from (3.11), (3.18), (3.19) and (3.20) together with the piecewise mono-

tonicity of the function K → h(K,r,t) that

∂ f/∂K > 0 for all K ∈ (0,1] ⇐⇒ a(r,t) 6 inf
K∈(0,1]

h(K,r,t) = M (r)+M (t)−M (rt),

∂ f /∂K 6 0 for all K ∈ (0,1] ⇐⇒ a(r,t) > sup
K∈(0,1]

h(K,r,t) = U (r)+U (t)−U (rt),

∂ f /∂K 6 0 for all K ∈ [1,∞) ⇐⇒ a(r,t) > sup
K∈[1,∞)

h(K,r,t) = M (r)+M (t)−M (rt).

Thus part (1) holds true.

Part (2) follows from part (1) and the fact that g(K) = f (1/K) . �

Proof of Theorem 1.4. By Theorem 3.5, the “if” parts are clear. We only need

to prove the “only if” for part (1) , since the others are similar. Denote s = ϕK(r) ,

u = ϕK(t) , and y = ϕK(x) . In (1.7), taking logarithm, rasing to power K/(K −1) and

letting K → 1, we get

lim
K→1

logs+ logu− logy

1−1/K
6 a(r,t).

By l’Hôpital rule, we have

lim
K→1

logs+ logu− logy

1−1/K
= M (r)+M (t)−M (rt),

hence, part (1) follows. �

REMARK 3.6. Let t → 0 in Theorems 3.5 and 1.4, then Theorems 3.5 and 1.4

reduce to Theorem 6 and Corollary 1 (namely, inequalities (1.3)–(1.5) in [31], respec-

tively.

THEOREM 3.7. Let A(r) and B(r) be the functions defined on (0,1) . For each

r ∈ (0,1) and p ∈ (0,∞) , we define the functions F and G on [0,∞) by

F(K) = ϕK(r)p
(

eA(r)
)1/K

/ϕK(rp)
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and

G(K) = ϕ1/K(r)p
(

eB(r)
)K

/ϕ1/K(rp).

Then the following statements are true:

(1) For 0 < p 6 1 , F is strictly increasing on (0,1] if and only if A(r) 6 pU (r)−
U (rp) , and strictly decreasing on (0,1] if and only if A(r) > pM (r)−M (rp) . More-

over, F is strictly increasing on [1,∞) if and only if

A(r) 6 pM (r)−M (rp) (3.21)

for all r ∈ (0,1);

For p > 1 , F is strictly increasing on (0,1] if and only if A(r) 6 pM (r)−M (rp) ,

and strictly decreasing on (0,1] if and only if A(r) > pU (r)−U (rp) . Moreover, F is

strictly decreasing on [1,∞) if and only if

A(r) > pM (r)−M (rp) (3.22)

for all r ∈ (0,1) .

(2) For 0 < p 6 1 , G is strictly decreasing on (0,1] if and only if B(r) 6

pM (r)−M (rp) for all r ∈ (0,1) . Moreover, G is strictly increasing on [1,∞) if

and only if

B(r) > pM (r)−M (rp) (3.23)

for all r ∈ (0,1) , and G is strictly decreasing on [1,∞) if and only if

B(r) 6 pU (r)−U (rp) (3.24)

for all r ∈ (0,1) .

For p > 1 , G is strictly increasing on (0,1] if and only if B(r) > pM (r)−
M (rp) . Moreover, G is strictly increasing on [1,∞) if and only if

B(r) > pU (r)−U (rp) (3.25)

for all r ∈ (0,1) , and G is strictly decreasing on [1,∞) if and only if

B(r) 6 pM (r)−M (rp) (3.26)

for all r ∈ (0,1) .

Proof. Since G(K) = F(1/K) , it suffices to prove the assertion of part (1). Let

x = rp , s = ϕK(r) and y = ϕK(x) . Then logarithmic differentiation of F gives

1

F(K)

∂F

∂K
=p

1

s

2ss′2K (s)2

πK2

K ′(r)
K (r)

− 1

y

2yy′2K (y)2

πK2

K ′(x)
K (x)

− 1

K2
A(r)

=
1

K2
[F1(K)−A(r)], (3.27)
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where

F1(K) =
2p

π

K ′(r)
K (r)

s′2K (s)2 − 2

π

K ′(x)
K (x)

y′2K (y)2. (3.28)

Simple computations lead to

lim
K→0+

F1(K) = pU (r)−U (rp), (3.29)

lim
K→1

F1(K) = pM (r)−M (rp), (3.30)

lim
K→∞

F1(K) = 0, (3.31)

π

2

∂F1

∂K
=2p

K ′(r)
K (r)

s′K (s)

[

− s

s′
K (s)+ s′

E (s)− s′2K (s)

ss′2

]

2

πK2
ss′2K (s)2 K ′(r)

K (r)

−2
K ′(x)
K (x)

y′K (y)

[

− y

y′
K (y)+ y′

E (y)− y′2K (y)

yy′2

]

2

πK2
yy′2K (y)2 K ′(x)

K (x)

=
4

πK2
y′2K (y)3 [K (y)−E (y)]F2(K), (3.32)

where

F2(K) =

(

K ′(x)
K (x)

)2

− p

(

K ′(r)
K (r)

)2
s′2K (s)3 [K (s)−E (s)]

y′2K (y)3 [K (y)−E (y)]
. (3.33)

Next, we divide the proof into two cases.

Case 1 p > 1. Then x < r and thereby y < s . Equation (3.33) and Lemma 3.2(1)

and (2) show that F2(K) is strictly increasing on (0,∞) . Moreover

lim
K→0+

F2(K) = −∞, (3.34)

lim
K→1

F2(K) =

(

K ′(x)
K (x)

)2

− p
r′2K (r)K ′(r)2 [K (r)−E (r)]

x′2K (x)3 [K (x)−E (x)]
< 0, (3.35)

lim
K→∞

F2(K) =

(

K ′(x)
K (x)

)2

, (3.36)

since

[

x′2K (x)3 [K (x)−E (x)]
]

[

(

K ′(x)
K (x)

)2

− p
r′2K (r)K ′(r)2 [K (r)−E (r)]

x′2K (x)3 [K (x)−E (x)]

]

=x′2K (x)K ′(x)2
[K (x)−E (x)]− pr′2K (r)K ′(r)2

[K (r)−E (r)]

<x′2K (x)K ′(x)2
[K (x)−E (x)]− pr′2K (r)K ′(r)K ′(x) [K (x)−E (x)]

=
π

2
[M (rp)− pM (r)]K ′(x) [K (x)−E (x)] < 0.
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It follows from (3.34)–(3.36) and the monotonicity of F2(K) that there exists K1 ∈
(1,∞) such that F2(K) < 0 for K ∈ (0,K1) , and F2(K) > 0 for K ∈ (K1,∞) . By (3.32)

we clearly see that F1(K) is strictly decreasing on (0,K1) , and strictly increasing on

(K1,∞) . Thus from (3.27)–(3.31) and Lemma 3.4 one has

∂F/∂K > 0 for all K ∈ (0,1] ⇐⇒ A(r) 6 inf
K∈(0,1]

F1(K) = pM (r)−M (rp),

∂F/∂K 6 0 for all K ∈ (0,1] ⇐⇒ A(r) > sup
K∈(0,1]

F1(K) = pU (r)−U (rp),

∂F/∂K 6 0 for all K ∈ [1,∞) ⇐⇒ A(r) > sup
K∈[1,∞)

F1(K) = pM (r)−M (rp).

The assertion of part (1) for p > 1 is clear.

Case 2 0 < p 6 1. Then x > r and thereby y > s . Equation (3.33) and Lemma

3.2(1) and (2) imply that F2(K) is strictly decreasing on (0,∞) . Moreover

lim
K→0+

F2(K) =

(

K ′(x)
K (x)

)2

, (3.37)

lim
K→1

F2(K) =

(

K ′(x)
K (x)

)2

− p
r′2K (r)K ′(r)2 [K (r)−E (r)]

x′2K (x)3 [K (x)−E (x)]
> 0, (3.38)

lim
K→∞

F2(K) = −∞, (3.39)

since

[

x′2K (x)3 [K (x)−E (x)]
]

[

(

K ′(x)
K (x)

)2

− p
r′2K (r)K ′(r)2 [K (r)−E (r)]

x′2K (x)3 [K (x)−E (x)]

]

=x′2K (x)K ′(x)2
[K (x)−E (x)]− pr′2K (r)K ′(r)2

[K (r)−E (r)]

>x′2K (x)K ′(x)K ′(r) [K (r)−E (r)]− pr′2K (r)K ′(r)2
[K (r)−E (r)]

=
π

2
[M (rp)− pM (r)]K ′(r) [K (r)−E (r)] > 0.

It follows from (3.37)–(3.39) and the monotonicity of F2(K) that there exists K2 ∈
(1,∞) such that F2(K) > 0 for K ∈ (0,K2) , and F2(K) < 0 for K ∈ (K2,∞) . By (3.32)

we clearly see that F1(K) is strictly increasing on (0,K2) , and strictly decreasing on

(K2,∞) . Thus from (3.27)–(3.31) and Lemma 3.4 one has

∂F/∂K > 0 for all K ∈ (0,1] ⇐⇒ A(r) 6 inf
K∈(0,1]

F1(K) = pU (r)−U (rp),

∂F/∂K 6 0 for all K ∈ (0,1] ⇐⇒ A(r) > sup
K∈(0,1]

F1(K) = pM (r)−M (rp),

∂F/∂K > 0 for all K ∈ [1,∞) ⇐⇒ A(r) > inf
K∈[1,∞)

F1(K) = pM (r)−M (rp).

The assertion of part (1) for 0 < p 6 1 is clear. �

Proof of Theorem 1.5. Theorem 1.5 follows from Theorem 3.7 together with the

similar proof of Theorem 1.4. �
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4. Remarks

REMARK 4.1. The following well-known upper and lower bounds for M (r) were

given in [30, 31]:

I1(r) = [(1− log4)r + log4]r′2
arthr

r
< M (r) < J1(r) = r′2

arthr

r
log4 (4.1)

M (r) < J2(r) = r′3/2
log4 (4.2)

for all r ∈ (0,1) , where arth is the inverse of the hyperbolic tangent function. Conse-

quently, for each z ∈ B and f ∈ QCK(B) ,

| f (z)| 6 min{4(1−|z|2)3/4(1−1/K)|z|1/K ,4
(1−|z|2) arth|z|

|z| (1−1/K)|z|1/K}.

Computational and numerical experiments show that the upper bound in (1.6) is

tighter than the upper bounds in (4.1) and (4.2), and the lower bound in (1.6) is also

better than that in (4.1) for 0 < r 6 0.963 (see Figures 1–2). Therefore, Corollary 1.3

is an improvement of the quasiconformal Schwarz lemma and the estimation for the

solutions of Ramanujan’s modular equations.

J HrL

J1HrL

J2 HrL

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 1: The graph of J(r) , J1(r) and J2(r) on (0,1)

REMARK 4.2. In 1999, Qiu and Vuorinen [33] found a infinite series for U (r) =
µ(r)+ logr as follows:

U (r) =
∞

∑
n=0

1

2n
log(1 + rn)

for all r ∈ (0,1) , where rn is defined as in Theorem 1.1.
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IHrL - I1HrL

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Figure 2: The graph of the difference of I(r)− I1(r) on (0,1)

Simple computations lead to

I∗(r) < U (r) < J∗(r),

where I∗(r) = log(1 + r′)+ [log(1 + r1) + log(1 + r2)]/2, and J∗(r) = log(1 + r′) +
[log(1 + r1)+ log2]/2.

Let I(r) and J(r) be defined as in Theorem 1.2. Then the explicit forms of in-

equalities (1.7)–(1.15) involving ϕK(r) in Theorems 1.4 and 1.5 can be derived. Here

we omit the details.

REMARK 4.3. As described in Section 3, Anderson, Vamanamurthy and Vuori-

nen [6] proved that

ϕK(r)ϕK(t) 6 41−1/KϕK(rt), ϕK(r)p < 4(p−1)(1−1/K)ϕK(rp)

for K, p ∈ (1,∞) and r,t ∈ (0,1) .

From Lemma 3.1 (6) and Lemma 3.3 we clearly see that inequalities (1.7) and

(1.13) with a(r,t)= M (r)+M (t)−M (rt) and A(r) = pM (r)−M (rp) in Theorems

1.4 and 1.5 refine the above inequalities.

REMARK 4.4. One of the referees communicated to us that some upper and lower

bounds of ϕK(r) were obtained by the descending and ascending Landen transfor-

mations in [7, Corollary 5.44], and these results might be better than those in Corol-

lary 1.3. Actually, Vuorinen et al. in [7, Corollary 5.44], using the identity ϕK(r) =
ϕ2p(ϕK(ϕ2−p(r))) and inequalities

r1/K 6 ϕK(r) 6 41−1/Kr1/K , K > 1, (4.3)

41−KrK
6 ϕ1/K(r) 6 rK , K > 1, (4.4)
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provided refinements of (4.3) and (4.4). Note that our Corollary 1.3 improves the right-

hand inequalities of (4.3) and (4.4). If we employ ϕK(r) = ϕ2p(ϕK(ϕ2−p(r))) and

inequalities in Corollary 1.3, then the analog of Corollary 5.44 in [7] can be also derived

in the same way, which also refine their results.
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[12] Y.-M. CHU, Y.-F. QIU, M.-K. WANG, Hölder mean inequalities for the complete elliptic integrals,

Integral Transforms Spec. Funct. 23, 7 (2012), 521–527.

[13] Y.-M. CHU, M.-K. WANG, Optimal inequalities between harmonic, geometric, logarithmic, and

arithmetic-geometric means, J. Appl. Math. 2011 (2011), Article ID 618929, 9 pages.

[14] Y.-M. CHU, M.-K. WANG, Inequalities between arithmetic-geometric, Gini, and Toader means, Ab-

str. Appl. Anal. 2012 (2012), Article ID 830585, 11 pages.

[15] Y.-M. CHU, M.-K. WANG, Optimal Lehmer mean bounds for the Toader mean, Results Math. 61,

3–4 (2012), 223–229.

[16] Y.-M. CHU, M.-K. WANG, Y.-P. JIANG, S.-L. QIU, Concavity of the complete elliptic integrals of
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