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Abstract. In this paper, inequalities among eigenvalues of different self-adjoint discrete Sturm-
Liouville problems are established. For a fixed discrete Sturm-Liouville equation, inequalities
among eigenvalues for different boundary conditions are given. For a fixed boundary condition,
inequalities between the n -th eigenvalues for two different equations are given. These results are
obtained by applying continuity and discontinuity of the n -th eigenvalue function, monotonicity
in some direction of the n -th eigenvalue function, which were given in our previous papers, and
natural loops in the space of boundary conditions. Some results generalize the relevant existing
results about inequalities among eigenvalues of different Sturm-Liouville problems.

1. Introduction

A self-adjoint discrete Sturm-Liouville problem (briefly, SLP) considered in the
present paper consists of a symmetric discrete Sturm-Liouville equation (briefly, SLE)

−∇( fnΔyn)+qnyn = λwnyn, n ∈ [1,N], (1.1)

and a self-adjoint boundary condition (briefly, BC)

A

(
y0

f0�y0

)
+B

(
yN

fN�yN

)
= 0, (1.2)

where N � 2 is an integer, Δ and ∇ are the forward and backward difference operators,
respectively, i.e., Δyn = yn+1−yn and ∇yn = yn−yn−1 ; f = { fn}N

n=0 , q = {qn}N
n=1 and

w = {wn}N
n=1 are real-valued sequences such that

fn �= 0 for n ∈ [0,N], wn > 0 for n ∈ [1,N]; (1.3)

λ is the spectral parameter; the interval [M,N] denotes the set of integers {M,M +
1, · · · ,N} ; A and B are 2× 2 complex matrices such that rank(A,B) = 2, and satisfy
the following self-adjoint boundary condition:

A

(
0 1
−1 0

)
A∗ = B

(
0 1
−1 0

)
B∗, (1.4)
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where A∗ denotes the complex conjugate transpose of A .
Throughout this paper, by C , R , and Z denote the sets of the complex numbers,

real numbers, and integer numbers, respectively; and by z denote the complex conju-
gate of z ∈ C . Moreover, when a capital Latin letter stands for a matrix, the entries
of the matrix are denoted by the corresponding lower case letter with two indices. For
example, the entries of a matrix C are ci j ’s.

As it is mentioned in [1, 7], the discrete SLP (1.1)–(1.2) can be applied to many
fields, ranging from mechanics, to network theory, and to probability theory. The eigen-
values of (1.1)–(1.2) play an important role in studying these physical problems and
they change as the SLP changes. Thus, it is naturally important to compare the eigenval-
ues of different SLPs. In this paper, we shall establish inequalities among eigenvalues
of different SLPs.

Recall that a self-adjoint continuous SLP consists of a differential SLE

− (p(t)y′)′ +q(t)y = λw(t)y, t ∈ (a,b), (1.5)

and a BC

A

(
y(a)

(py′)(a)

)
+B

(
y(b)

(py′)(b)

)
= 0, (1.6)

where −∞ < a < b < +∞ ; 1/p,q,w ∈ L((a,b),R), p,w > 0 almost everywhere on
(a,b) , while L((a,b),R) denotes the space of Lebesgue integrable real functions on
(a,b) ; A and B are 2×2 complex matrices such that rank(A,B) = 2 and (1.4) holds.
For a fixed differential SLE (1.5), inequalities among eigenvalues for different self-
adjoint BCs have been extensively studied by many authors (cf., e.g. [3, 4, 5, 6, 8,
10, 12, 13, 14, 15, 20, 21]). Using the variational method, Courant and Hilbert in
[5] gave inequalities among eigenvalues for different separated BCs. Using the Prüfer
transformation of (1.5), Coddington and Levinson in [4] gave the classical inequalities
among eigenvalues for periodic , antiperiodic , Dirichlet and Neumann BCs under some
conditions on the coefficients of (1.5). See also [20]. For an arbitrary coupled self-
adjoint BC, Eastham and his coauthors in [6, Theorem 3.2] identified two separated BCs
corresponding to the Dirichlet and Neumann BCs in the above case, and established
analogous inequalities. Their proof also depends on the Prüfer transformation of (1.5).
See also [8]. These inequalities are extended to singular SLPs and other cases [3, 10,
12, 13, 14]. Using natural loops in the space of self-adjoint BCs, Peng and his coauthors
in [15] gave a short proof of [6, Theorem 3.2], and obtained new general inequalities.
See Theorem 4.53 in [15].

Next, we recall the related existing results of inequalities among eigenvalues of dif-
ferent self-adjoint discrete SLPs (1.1)–(1.2). For a fixed self-adjoint BC (1.2), inequal-
ities among eigenvalues for different coefficients of (1.1) were obtained by Rayleigh’s
principles and minimax theorems in [16]. Then these results were extended to higher-
order discrete vector SLPs in [17]. For a fixed equation (1.1), by using some oscillation
results obtained in [1] and some spectral results of (1.1)–(1.2) obtained in [16], inequal-
ities among eigenvalues for periodic, antiperiodic, and Dirichlet BCs were given under
the assumption that fn > 0, 1 � n � N −1, and f0 = fN = 1 in [19]. Under the same
conditions of the coefficients of (1.1) and by a similar method used in [19], these results
in [19] were extended to a class of coupled BCs in [18].



INEQUALITIES OF SELF-ADJOINT DISCRETE STURM-LIOUVILLE PROBLEMS 651

The aim of the present paper is to establish more general inequalities among eigen-
values of different SLPs (1.1)–(1.2). For a fixed equation, inequalities among eigenval-
ues for different separated BCs are established in Theorem 3.1, and among eigenvalues
for different BCs in a natural loop are established in Theorems 3.3 and 3.5–3.7. Then,
the inequalities in Theorems 3.3 and 3.5–3.7 are applied to compare eigenvalues for
coupled BCs with those for some certain separated ones (see Theorems 3.8, 3.9, 3.11
and 3.13–3.15), and eigenvalues for different coupled BCs (see Theorem 3.16). The
inequalities in Theorems 3.8, 3.9, 3.11 and 3.13–3.15 extend those in [18, Theorem
3.1] to a more general case. For a fixed BC, inequalities between the n -th eigenval-
ues for two equations with different coefficients and weight functions are established in
Theorem 4.3, which generalize those in [16, Theorem 5.5] and [17, Theorem 3.6] in the
second-order case. Combining the above results, one can establish inequalities between
the n -th eigenvalues of two SLPs with different equations and BCs (see Corollary 4.4).

The method used in this paper is different from those used in [4, 6, 8, 18, 19,
20]. On the one hand, the approaches used in [4, 6, 8, 20] in the continuous case
depend on the Prüfer transformation of (1.5). Although the Prüfer transformation in
discrete version were given in [2], some of its properties in continuous version can
not be extended to the discrete one and thus similar methods used in [4, 6, 8, 20] are
difficultly employed in studying the discrete problem. On the other hand, the variational
method used in [16, 17] is restricted to compare eigenvalues, which have the same
index, of different SLPs, and it seems to us that the method used in [18, 19] in the
discrete case is hardly extended to a more general case. However, motivated by the
method used in [15], the following ingredients can be employed to study our problems:
(1) the continuity and discontinuity of the n -th eigenvalue function, which were studied
in [22]; (2) the monotonicity of the n -th eigenvalue function, which can be deduced
from [22, 23]; (3) natural loops in the space of self-adjoint BCs. Thus, the work in this
paper is a continuation of our previous works [22, 23].

This paper is organized as follows. Section 2 gives some preliminaries. Some
notations are introduced and some lemmas are recalled. Especially, natural loops in
space of self-adjoint BCs, are presented. In Section 3, inequalities among eigenvalues
for different boundary conditions are given. In Section 4, inequalities between the n -th
eigenvalues for two different equations are established.

2. Preliminaries

In this section, some notations and lemmas are introduced. This section is divided
into two parts. In Section 2.1, topology on space of SLPs and several useful properties
of eigenvalues are recalled. In Section 2.2, natural loops in space of self-adjoint BCs
are presented.

2.1. Space of SLPs and properties of eigenvalues

Let the SLE (1.1) be abbreviated as (1/ f ,q,w) . Then the space of the SLEs can
be written as

ΩR,+
N := {(1/ f ,q,w) ∈ R

3N+1 : (1.3) holds},
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and is equipped with the topology deduced from the real space R3N+1 . Note that ΩR,+
N

has 2N+1 connected components. Bold faced lower case Greek letters, such as ωωω , are
used to denote elements of ΩR,+

N .
The quotient space

A C := M∗
2,4(C)/GL(2,C) ,

equipped with the quotient topology, is taken as the space of general BCs; that is, each
BC is an equivalence class of coefficient matrices of system (1.2), where

M∗
2,4(C) := {2×4 complex matrix (A,B) : rank(A,B) = 2},

GL(2,C) := {2×2 comlplex matrix T : det T �= 0}.
The BC represented by system (1.2) is denoted by [A |B] . Bold faced capital Latin
letters, such as A , are also used for BCs. The space of self-adjoint BCs is denoted by
BC . The following result gives the topology and geometric structure of BC .

LEMMA 2.1. ([23, Theorem 2.2]) The space BC equals the union of the follow-
ing relative open subsets:

OC
1,3 =

{[
1 a12 0 z
0 z −1 b22

]
: a12,b22 ∈ R,z ∈ C

}
,

OC
1,4 =

{[
1 a12 z 0
0 z b21 1

]
: a12,b21 ∈ R,z ∈ C

}
,

OC
2,3 =

{[
a11 −1 0 z
z 0 −1 b22

]
: a11,b22 ∈ R,z ∈ C

}
,

OC
2,4 =

{[
a11 −1 z 0
z 0 b21 1

]
: a11,b21 ∈ R,z ∈ C

}
.

(2.1)

Moreover, BC is a connected and compact real-analytic manifold of dimension 4.

Lemma 2.1 says that OC
1,3 , OC

1,4 , OC
2,3 , and OC

2,4 together form an atlas of local

coordinate systems on BC .
The space ΩR,+

N ×BC of the SLPs is a real-analytic manifold of dimension 3N+5
and has 2N+1 connected components.

The following result gives the canonical forms of separated and coupled self-
adjoint BCs.

LEMMA 2.2. ([21, Theorem 10.4.3]) A separated self-adjoint BC can be written
as

Sα ,β :=
[

cosα −sinα 0 0
0 0 cosβ −sinβ

]
, (2.2)

where α ∈ [0,π),β ∈ (0,π ]; and a coupled self-adjoint BC can be written as

[eiγK | − I],

where γ ∈ (−π ,π ], K ∈ SL(2,R) := {2×2 real matrix M : detM = 1}.
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In particular, S0,π is called the Dirichlet BC; S0,β for any β ∈ (0,π ] or Sα ,π for
any α ∈ [0,π) is called the BC which is Dirichlet at an endpoint. By BS and BC

denote the space of separated self-adjoint BCs and that of coupled self-adjoint BCs,
respectively. Then BC = BS ∪BC , and BC is an open subset of BC .

Next, several properties of eigenvalues are presented. For each λ ∈ C , let φ(λ ) =
{φn(λ )}N

n=0 and ψ(λ ) = {ψn(λ )}N
n=0 be the solutions of (1.1) satisfying the following

initial conditions:

φ0(λ ) = 1, f0Δφ0(λ ) = 0; ψ0(λ ) = 0, f0Δψ0(λ ) = 1.

Then the leading terms of φN(λ ) , ψN(λ ) , fNΔφN(λ ) , and fNΔψN(λ ) as polynomials
of λ are

(−1)N−1

(
N−1
∏
i=1

(wi/ fi)
)

λ N−1, (−1)N−1

(
(1/ f0)

N−1
∏
i=1

(wi/ fi)
)

λ N−1,

(−1)N

(
wN

N−1
∏
i=1

(wi/ fi)
)

λ N , (−1)N

(
(wN/ f0)

N−1
∏
i=1

(wi/ fi)
)

λ N ,

(2.3)

respectively. See [23] for details.
The following result says that the eigenvalues of a given SLP can be determined

by a polynomial.

LEMMA 2.3. ([23, Lemmas 3.2 and 3.3]) A number λ ∈ C is an eigenvalue of a
given SLP (1.1)–(1.2) if and only if λ is a zero of the polynomial

Γ(λ ) = detA+detB+G(λ ),

where

G(λ ) := c11φN(λ )+ c12ψN(λ )+ c21 fNΔφN(λ )+ c22 fNΔψN(λ ),

c11 := a22b11−a12b21, c12 := a11b21−a21b11,

c21 := a22b12−a12b22, c22 := a11b22−a21b12.

Let (ωωω ,A) ∈ ΩR,+
N ×BC . Set

r = r(ωωω ,A) := rank

(−a11 + f0a12 b12

−a21 + f0a22 b22

)
. (2.4)

Obviously, 0� r � 2. The following result establishes the relationship between analytic
and geometric multiplicities of each eigenvalue of a given SLP and gives a formula for
counting the number of eigenvalues.

LEMMA 2.4. ([23, Lemma 3.4 and Theorem 3.3]) For any fixed self-adjoint SLP
(1.1)–(1.2), all its eigenvalues are real, the number of its eigenvalues is equal to N −
2+ r , where r is defined by (2.4), and the analytic and geometric multiplicities of each
of its eigenvalue are the same.
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Lemma 2.4 can also be deduced from [16, Theorem 4.1] and [17, Theorem 4.3].
By Lemma 2.4, we shall only say the multiplicity of an eigenvalue without specifying
its analytic and geometric multiplicities. Based on these results, the problem (1.1)–(1.2)
has k = N − 2+ r eigenvalues (counting multiplicities), which can be arranged in the
following non-decreasing order:

λ0 � λ1 � λ2 � · · · � λk−1.

The n -th eigenvalue λn can be considered as a function in the space of the SLPs, called
the n -th eigenvalue function. The following result gives a necessary and sufficient
condition for all the eigenvalue functions to be continuous in a set of space of SLPs.

LEMMA 2.5. ([22, Theorem 2.1]) Let O be a set of ΩR,+
N ×BC . Then the num-

ber of eigenvalues of each (ωωω ,A)∈O is equal if and only if all the eigenvalue functions
restricted in O are continuous. Furthermore, if O is a connected set of ΩR,+

N ×BC ,
then each eigenvalue function is locally a continuous eigenvalue branch in O .

2.2. Natural loops in the space of self-adjoint boundary conditions

In this subsection, natural loops in the space of self-adjoint BCs are presented.
We remark that these natural loops will play an important role in studying inequalities
among eigenvalues for coupled BCs and those for some certain separated ones.

LEMMA 2.6. In BC , we have the following limits:

S1 := lim
s→±∞

[
1 s z 0
0 z b21 1

]
=

[
0 1 0 0
0 0 b21 1

]
,

S2 := lim
t→±∞

[
1 a12 z 0
0 z t 1

]
=

[
1 a12 0 0
0 0 1 0

]
,

S3 := lim
s→±∞

[
s −1 z 0
z 0 b21 1

]
=

[
1 0 0 0
0 0 b21 1

]
,

S4 := lim
t→±∞

[
a11 −1 z 0
z 0 t 1

]
=

[
a11 −1 0 0
0 0 1 0

]
,

S5 := lim
s→±∞

[
s −1 0 z
z 0 −1 b22

]
=

[
1 0 0 0
0 0 −1 b22

]
,

S6 := lim
t→±∞

[
a11 −1 0 z
z 0 −1 t

]
=

[
a11 −1 0 0
0 0 0 1

]
,

S7 := lim
s→±∞

[
1 s 0 z
0 z −1 b22

]
=

[
0 1 0 0
0 0 −1 b22

]
,

S8 := lim
t→±∞

[
1 a12 0 z
0 z −1 t

]
=

[
1 a12 0 0
0 0 0 1

]
.
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The following result gives some natural loops in BC .

LEMMA 2.7.

(i) Every BC A ∈ OC
1,4 lies on the following two simple real-analytic loops in BC :

C1,4,z,b21 =
{

A(s) :=
[

1 s z 0
0 z b21 1

]
, s ∈ R

}
∪{S1} ,

C1,4,z,a12 =
{

Â(t) :=
[

1 a12 z 0
0 z t 1

]
, t ∈ R

}
∪{S2} .

(ii) Every BC A ∈ OC
2,4 lies on the following two simple real-analytic loops in BC :

C2,4,z,b21 =
{

B(s) :=
[

s −1 z 0
z 0 b21 1

]
, s ∈ R

}
∪{S3} ,

C2,4,z,a11 =
{

B̂(t) :=
[

a11 −1 z 0
z 0 t 1

]
, t ∈ R

}
∪{S4} .

(iii) Every BC A ∈ OC
2,3 lies on the following two simple real-analytic loops in BC :

C2,3,z,b22 =
{

C(s) :=
[

s −1 0 z
z 0 −1 b22

]
, s ∈ R

}
∪{S5} ,

C2,3,z,a11 =
{

Ĉ(t) :=
[

a11 −1 0 z
z 0 −1 t

]
, t ∈ R

}
∪{S6} .

(iv) Every BC A ∈ OC
1,3 lies on the following two simple real-analytic loops in BC :

C1,3,z,b22 =
{

D(t) :=
[

1 s 0 z
0 z −1 b22

]
, s ∈ R

}
∪{S7} ,

C1,3,z,a12 =
{

D̂(t) :=
[

1 a12 z 0
0 z −1 t

]
, t ∈ R

}
∪{S8} .

REMARK 2.1. Lemmas 2.6 and 2.7 can be deduced from Lemmas 3.1 and 3.7
in [15], respectively. C1,4,z,b21\{A} is connected for any fixed A ∈ C1,4,z,b21 . Similar
result holds for other natural loops in (i)–(iv) of Lemma 2.7. For each 1 � i � 8, Si

is called a limit boundary condition (briefly, LBC) in the corresponding natural loop.
Note that all the LBCs are separated ones.

3. Inequalities among eigenvalues for different boundary conditions

In this section, for any fixed equation, inequalities among eigenvalues for different
BCs are established. This section is divided into four parts. In Subsections 3.1–3.4,
inequalities among eigenvalues for different separated BCs, among eigenvalues for dif-
ferent BCs in a natural loop, among eigenvalues for coupled BCs and those for some
certain separated ones, and among eigenvalues for different coupled BCs are estab-
lished, respectively.
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3.1. Inequalities among eigenvalues for separated BCs

In this subsection, we shall first compare the eigenvalues for different separated
BCs Sα ,β in two directions α and β , separately. Then we give an application to
compare eigenvalues for an arbitrary separated BC with those for the BCs which are
Dirichlet at an endpoint.

For convenience, denote λn(α,β ) := λn(Sα ,β ) for short, and ξ := arctan(−1/ f0)+
π if f0 > 0; ξ := arctan(−1/ f0) if f0 < 0.

THEOREM 3.1. Fix a difference equation ωωω = (1/ f ,q,w) . Then (ωωω ,Sα ,β ) has
exactly N eigenvalues if α �= ξ and β �= π ; exactly N−1 eigenvalues if either α �= ξ
and β = π or α = ξ and β �= π ; and exactly N−2 eigenvalues if α = ξ and β = π .
Further, for any 0 � α1 < α2 < ξ � α3 < α4 < π , and 0 < β1 < β2 � π , we have that

(i) the eigenvalues of the SLPs (ωωω ,Sαi,β0
) for any β0 ∈ (0,π) , i = 1, · · · ,4 , satisfy

the following inequalities:

λ0(α2,β0) < λ0(α1,β0) < λ0(α4,β0) < λ0(α3,β0) < λ1(α2,β0) < λ1(α1,β0)

< λ1(α4,β0) < λ1(α3,β0) < · · · < λN−2(α2,β0) < λN−2(α1,β0) <

λN−2(α4,β0) < λN−2(α3,β0) < λN−1(α2,β0) < λN−1(α1,β0) < λN−1(α4,β0),

and in addition, λN−1(α4,β0) < λN−1(α3,β0) if α3 �= ξ ;

(ii) similar results in (i) hold with N − 2 and N − 1 replaced by N − 3 and N − 2 ,
respectively, in the case that β0 = π ;

(iii) the eigenvalues of the SLPs (ωωω ,Sα0,β j
) for any α0 ∈ [0,ξ )∪ (ξ ,π) , j = 1,2 ,

satisfy the following inequalities:

λ0(α0,β1) < λ0(α0,β2) < λ1(α0,β1) < λ1(α0,β2) < · · · <
< λN−2(α0,β1) < λN−2(α0,β2) < λN−1(α0,β1),

and in addition, λN−1(α0,β1) < λN−1(α0,β2) if β2 �= π ;

(iv) similar results in (iii) hold with N −2 and N−1 replaced by N−3 and N−2 ,
respectively, in the case that α0 = ξ .

Proof. The number of eigenvalues of (ωωω ,A) in each case can be obtained by
Lemma 2.4. Firstly, we show that (i) holds. Let β0 ∈ (0,π) . By (i) of Corollary 4.2
in [22], the n -th eigenvalue functions λn(α,β0) are strictly decreasing in α ∈ [0,ξ ) or
α ∈ (ξ ,π) for all 0 � n � N−1. This implies that

λn(α2,β0) < λn(α1,β0), 0 � n � N−1,

λn(α4,β0) < λn(α3,β0), 0 � n � N−2,
(3.1)
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and in addition, λN−1(α4,β0) < λN−1(α3,β0) if α3 �= ξ . Again by (i) of Corollary 4.2
in [22], λn(α,β0) , 0 � n � N−1, have the following asymptotic behavior near 0 and
ξ :

lim
α→π− λn(α,β0) = λn(0,β0), 0 � n � N−1,

lim
α→ξ− λ0(α,β0) = −∞, lim

α→ξ− λn(α,β0) = λn−1(ξ ,β0), 1 � n � N−1,

lim
α→ξ+

λn(α,β0) = λn(ξ ,β0), 0 � n � N−2, lim
α→ξ+

λN−1(α,β0) = +∞.

Thus,

λn(α1,β0) � λn(0,β0) = lim
α→π− λn(α,β0) < λn(α4,β0), 0 � n � N−1,

λn(α3,β0) � λn(ξ ,β0) = lim
α→ξ− λn+1(α,β0) < λn+1(α2,β0), 0 � n � N−2,

which together with (3.1), implies that (i) holds. See also Figure 3.1 for N = 4.

α

λ

λ0

λ1

λ2

λ3

λ0

λ1

λ2

λ3

0 ξ π

Figure 3.1: The n-th eigenvalue function of α .

The proof of assertion (ii) is similar to that of (i) by (iii) of Corollary 4.2 in [22].
Now, we show that (iii) holds. Let α0 ∈ [0,ξ )∪ (ξ ,π) . By (ii) of Corollary

4.2 in [22], λn(α0,β ) , 0 � n � N − 1, are strictly increasing in β ∈ (0,π) for all
0 � n � N−1. Thus,

λn(α0,β1) < λn(α0,β2), 0 � n � N−2, (3.2)

and in addition, λN−1(α0,β1) < λN−1(α0,β2) if β2 �= π . Again by (ii) of Corollary 4.2
in [22], λn(α0,β ) , 0 � n � N−1, have the following asymptotic behavior near 0 and
π :

lim
β→π− λn(α0,β ) = λn(α0,π), 0 � n � N−2, lim

β→π− λN−1(α0,β ) = +∞,

lim
β→0+

λ0(α0,β ) = −∞, lim
β→0+

λn(α0,β ) = λn−1(α0,π), 1 � n � N−1.
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Thus,

λn(α0,β2) � λn(α0,π) = lim
β→0+

λn+1(α0,β ) < λn+1(α0,β1), 0 � n � N−2,

which together with (3.2), implies that (iii) holds. See also Figure 3.2 for N = 4.

β

λ

λ0

λ1

λ2

λ3

0 π

Figure 3.2: The n-th eigenvalue function of β .

The proof of assertion (iv) is similar to that of (iii) by (iv) of Corollary 4.2 in
[22]. �

The following result is to compare eigenvalues for an arbitrarily separated BC with
those for the BCs which are Dirichlet at an endpoint.

COROLLARY 3.2. Fix a difference equation ωωω = (1/ f ,q,w) and a separated BC
Sα0,β0

. Then we have that

(i) for any α0 ∈ (0,ξ ) and β0 ∈ (0,π) ,

λ0(α0,β0) < {λ0(0,β0),λ0(α0,π)} < λ1(α0,β0) < {λ1(0,β0),λ1(α0,π)} < · · ·
< λN−2(α0,β0) < {λN−2(0,β0),λN−2(α0,π)} < λN−1(α0,β0) < λN−1(0,β0);

(ii) for any α0 ∈ (ξ ,π) and β0 ∈ (0,π) ,

λ0(0,β0) < λ0(α0,β0) < {λ1(0,β0),λ0(α0,π)}
< λ1(α0,β0) < {λ2(0,β0),λ1(α0,π)} < · · · <

λN−2(α0,β0) < {λN−1(0,β0),λN−2(α0,π)} < λN−1(α0,β0);

(iii) for any α0 = ξ and β0 ∈ (0,π) ,

λ0(0,β0) < λ0(α0,β0) < {λ1(0,β0),λ0(α0,π)}
< λ1(α0,β0) < {λ2(0,β0),λ1(α0,π)} < · · · <

λN−3(α0,β0) < {λN−2(0,β0),λN−3(α0,π)} < λN−2(α0,β0) < λN−1(0,β0);
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(iv) for any α0 ∈ (0,ξ ) and β0 = π ,

λ0(α0,β0) < λ0(0,β0) < λ1(α0,β0) < λ1(0,β0)

< · · · < λN−2(α0,β0) < λN−2(0,β0);

(v) for any α0 ∈ (ξ ,π) and β0 = π ,

λ0(0,β0) < λ0(α0,β0) < λ1(0,β0) < λ1(α0,β0)

< · · · < λN−2(0,β0) < λN−2(α0,β0);

(vi) for any α0 = ξ and β0 = π ,

λ0(0,β0) < λ0(α0,β0) < · · · < λN−3(0,β0) < λN−3(α0,β0) < λN−2(0,β0);

(vii) for any α0 = 0 and β0 ∈ (0,π) ,

λ0(α0,β0) < λ0(α0,π) < · · · < λN−2(α0,β0) < λN−2(α0,π) < λN−1(α0,β0),

where the notation {λ0(0,β0),λ0(α0,π)} means each of λ0(0,β0) and λ0(α0,π) , etc.

Proof. (i) and (iii), (i) and (iv), (ii), and (iii) of Theorem 3.1 imply that assertions
(i)–(ii), (iii), (iv)–(vi), and (vii) hold, respectively. �

3.2. Inequalities among eigenvalues for different BCs in a natural loop

In this subsection, we shall establish inequalities among eigenvalues for different
BCs in a natural loop (given in Lemma 2.7). We shall remark that inequalities among
eigenvalues for different BCs in a natural loop will play an important role in establishing
inequalities among eigenvalues for coupled BCs and those for some certain separated
ones, and among eigenvalues for different coupled BCs in Subsections 3.3 and 3.4.

Firstly, we shall establish inequalities among eigenvalues for different BCs in the
natural loops C1,4,z,b21 and C1,4,z,a12 , separately.

THEOREM 3.3. Fix a difference equation ωωω = (1/ f ,q,w) . Let

A(a12,b21) :=
[

1 a12 z 0
0 z b21 1

]
∈ OC

1,4.

Then (ωωω ,A(a12,b21)) has exactly N eigenvalues if a12 �= 1/ f0 and exactly N − 1
eigenvalues if a12 = 1/ f0 ; (ωωω ,S1) has exactly N eigenvalues in any case; (ωωω ,S2) has
exactly N−1 eigenvalues if a12 �= 1/ f0 and exactly N−2 eigenvalues if a12 = 1/ f0 ,

where S1 and S2 are specified in Lemma 2.6. Further, for any a(1)
12 < a(2)

12 � 1/ f0 <

a(3)
12 < a(4)

12 and b(1)
21 < b(2)

21 , we have that
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(i) the eigenvalues λn(a
(i)
12) of the SLPs (ωωω ,A(a(i)

12 ,b21)) , i = 1, · · · ,4 , and λn(S1)
of (ωωω ,S1) satisfy the following inequalities:

λ0(a
(3)
12 ) � λ0(a

(4)
12 ) � λ0(S1) � λ0(a

(1)
12 ) � λ0(a

(2)
12 )

� λ1(a
(3)
12 ) � λ1(a

(4)
12 ) � λ1(S1) � λ1(a

(1)
12 ) � λ1(a

(2)
12 )

� · · · � λN−2(a
(3)
12 ) � λN−2(a

(4)
12 ) � λN−2(S1) � λN−2(a

(1)
12 )

� λN−2(a
(2)
12 ) � λN−1(a

(3)
12 ) � λN−1(a

(4)
12 ) � λN−1(S1) � λN−1(a

(1)
12 ),

and in addition, λN−1(a
(1)
12 ) � λN−1(a

(2)
12 ) if a(2)

12 < 1/ f0 ;

(ii) the eigenvalues λn(b
( j)
21 ) of the SLPs (ωωω ,A(a12,b

( j)
21 )) , j = 1,2 , and λn(S2) of

(ωωω ,S2) satisfy the following inequalities:

λ0(b
(1)
21 ) � λ0(b

(2)
21 ) � λ0(S2) � λ1(b

(1)
21 ) � λ1(b

(2)
21 ) � λ1(S2) � · · · �

λN−3(b
(1)
21 ) � λN−3(b

(2)
21 ) � λN−3(S2) � λN−2(b

(1)
21 ) � λN−2(b

(2)
21 ),

and in addition, λN−2(b
(2)
21 ) � λN−2(S2) � λN−1(b

(1)
21 ) � λN−1(b

(2)
21 ) if a12 �=

1/ f0 .

Proof. The number of eigenvalues of (ωωω ,A(a12,b21)) , (ωωω ,S1) , and (ωωω ,S2) can
be obtained by Lemma 2.4 and direct computations.

Let A(s) and C1,4,z,b21 = {A(s) : s ∈ R}∪{S1} be given as those in (i) of Lemma

2.7. Then A(a(i)
12) = A(a(i)

12,b21) , i = 1, · · · ,4. By (i)–(ii) of Theorem 4.1 in [22], the
eigenvalue functions λn(A(s)) are continuous and non-decreasing in (−∞,1/ f0) and
(1/ f0,+∞) for all 0 � n � N−1. Thus, one gets that

λn(a
(1)
12 ) � λn(a

(2)
12 ), 0 � n � N−2, λn(a

(3)
12 ) � λn(a

(4)
12 ), 0 � n � N−1, (3.3)

and in addition, λN−1(a
(1)
12 ) � λN−1(a

(2)
12 ) if a(2)

12 < 1/ f0 . By (iii) of Theorem 4.1 in
[22], λn(A(s)) , 0 � n � N−1, have asymptotic behavior near 1/ f0 as follows:

lim
s→(1/ f0)−

λn(A(s)) = λn(A(1/ f0)), 0 � n � N−2, lim
s→(1/ f0)−

λN−1(A(s)) = +∞,

lim
s→(1/ f0)+

λ0(A(s)) = −∞, lim
s→(1/ f0)+

λn(A(s)) = λn−1(A(1/ f0)), 1 � n � N−1.

Since C1,4,z,b21\{A(1/ f0)} is connected by Remark 2.1 and (ωωω ,A) has exactly N
eigenvalues for each A ∈ C1,4,z,b21\{A(1/ f0)} , λn restricted in C1,4,z,b21\{A(1/ f0)}
is continuous for each 0 � n � N−1 by Lemma 2.5. This, together with Lemma 2.6,
implies that lim

s→±∞
λn(A(s)) = λn(S1) for all 0 � n � N−1. See Figure 3.3 for N = 4.

Thus,
λn(a

(4)
12 ) � λn(S1) � λn(a

(1)
12 ), 0 � n � N−1,

λn(a
(2)
12 ) � λn(A(1/ f0)) � λn+1(a

(3)
12 ),0 � n � N−2.

(3.4)
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s

λ

λ0

λ1

λ2

λ3

λ0

λ1

λ2

λ3

0 1/ f0

Figure 3.3: The n-th eigenvalue function of s .

Hence (3.3)–(3.4) imply (i) holds.
Then we show that (ii) holds. Let Â(t) and C1,4,z,a12 = {Â(t) : t ∈ R}∪{S2} be

given as that in (i) of Lemma 2.7. Then A(a12,b
( j)
21 ) = Â(b( j)

21 ) , j = 1,2.
Let a12 �= 1/ f0 . Then λn(Â(t)) are continuous and non-decreasing in t ∈ R for

all 0 � n � N−1 by (i)–(ii) of Theorem 4.1 in [22]. Thus, for each 0 � n � N−1, one
has that

λn(b
(1)
21 ) � λn(b

(2)
21 ). (3.5)

To see the limits of λn(Â(t)) at ±∞ , we notice that for t �= 0,

Â(t) =
[

1 a12 z 0
0 z t 1

]
=

[
1 a12− zz/t 0 −z/t
0 −z/t −1 −1/t

]
. (3.6)

In the case that a12 > 1/ f0 , direct computations show that Â(t) ∈ B+
1,3r if t < 0;

Â(t) ∈ B−
1,3 if t > 0; and S2 ∈ B1,3r , where

B+
1,3r :=

{
A ∈ OC

1,3 : a12 � 1/ f0,b22 � 0,(a12−1/ f0)b22 > |z|2
}

,

B−
1,3 :=

{
A ∈ OC

1,3 : (a12−1/ f0)b22 < |z|2
}

, C :=
[

1 1/ f0 0 0
0 0 1 0

]
,

B1,3r :=
{

A ∈ OC
1,3 : (a12−1/ f0)b22 = |z|2,a12 � 1/ f0,b22 � 0

}
\{C} .

Note that lim
t→±∞

Â(t) = S2 by Lemma 2.6. Then, it follows from (iiia) of Theorem 4.3

in [22] that

lim
t→−∞

λ0(Â(t)) = −∞, lim
t→−∞

λn(Â(t)) = λn−1(S2), 1 � n � N−1,

lim
t→+∞

λn(Â(t)) = λn(S2), 0 � n � N−2, lim
t→+∞

λN−1(Â(t)) = +∞.

See Figure 3.4 for N = 4.
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t

λ

λ0

λ1

λ2

λ3

0

Figure 3.4: The n-th eigenvalue function of t .

Thus,

λn(b
(2)
21 ) � lim

t→+∞
λn(Â(t)) = λn(S2) = lim

t→−∞
λn+1(Â(t)) � λn+1(b

(1)
21 ), (3.7)

for 0 � n � N−2. (3.5) and (3.7) imply (ii) holds in the case that a12 > 1/ f0 .
In the case that a12 < 1/ f0 , direct computations imply that Â(t) ∈ B−

1,3 if t < 0;

Â(t) ∈ B+
1,3l if t > 0; and S2 ∈ B1,3l , where

B+
1,3l :=

{
A ∈ OC

1,3 : a12 � 1/ f0,b22 � 0,(a12−1/ f0)b22 > |z|2
}

,

B1,3l :=
{

A ∈ OC
1,3 : (a12−1/ f0)b22 = |z|2,a12 � 1/ f0,b22 � 0

}
\{C} .

By (iiib) of Theorem 4.3 in [22], similar arguments above yield that (ii) holds in this
case.

Let a12 = 1/ f0 . Then S2 = C . Since C1,4,z,a12\{S2} is connected by Remark
2.1 and (ωωω ,A) has exactly N−1 eigenvalues for each A ∈ C1,4,z,a12\{S2} , by Lemma
2.5 the eigenvalue function λn is continuous and locally forms a continuous eigenvalue
branch in C1,4,z,a12\{S2} for each 0 � n � N − 2. By Theorem 4.6 in [23], λn(Â(t))
is non-decreasing in t ∈ R , and thus (3.5) holds for each 0 � n � N−2. By (3.6) and
direct computations, it follows that Â(t)∈B1,3r if t < 0; and Â(t) ∈B1,3l if t > 0. In
addition, lim

t→±∞
Â(t) = S2 by Lemma 2.6. It follows from (iiic) of Theorem 4.3 in [22]

that
lim

t→−∞
λ0(Â(t)) = −∞, lim

t→−∞
λn(Â(t)) = λn−1(S2), 1 � n � N−2,

lim
t→+∞

λn(Â(t)) = λn(S2), 0 � n � N−3, lim
t→+∞

λN−2(Â(t)) = +∞.

Thus, (3.7) holds for each 0 � n � N−3. Hence, (ii) holds. �

REMARK 3.1. The inequalities in Theorem 3.3 may not be strict. See the follow-
ing example.
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EXAMPLE 3.4. Consider (1.1)–(1.2), where

f0 = 1, f1 = 1, f2 = 1, q1 = q2 = 0, w1 = w2 = 1, N = 2,

and

A1(s) :=
[

1 s −1 0
0 −1 0 1

]
∈ OC

1,4.

Then, by Lemma 2.3,
Γ(λ ) = −(s−1)λ 2 +2(s−2)λ .

Thus, for each s ∈ (−∞,1)∪ (1,∞) , there are exactly two eigenvalues for A1(s) and
exactly one eigenvalue for A1(1) :

λ0(s) =

⎧⎪⎨⎪⎩
0 if s � 1,

2(s−2)/(s−1) if 1 < s � 2,

0 if s > 2,

λ1(s) =

⎧⎪⎨⎪⎩
2(s−2)/(s−1) if s < 1,

0 if 1 < s � 2,

2(s−2)/(s−1) if s > 2.

Note that

S1 = lim
s→+∞

A1(s) =
[

0 1 0 0
0 0 0 1

]
.

It is easy to see that there are exactly two eigenvalues for S1 , and they are 0 and 2. See
Figure 3.5.

s

λ

λ0

λ0

λ0

λ1

λ1

λ1

0 1 2

−2

Figure 3.5: The n-th eigenvalue function of s in Example 3.4.
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Then λ0(S1) = λ0(A1(s)) < λ1(S1) < λ1(A1(s)) for s < 1; λ0(S1) = λ0(A1(s)) <
λ1(S1) for s = 1; λ0(A1(s))< λ0(S1)= λ1(A1(s))< λ1(S1) for 1 < s < 2; λ0(A1(s))=
λ0(S1) = λ1(A1(s)) < λ1(S1) for s = 2; and λ0(A1(s)) = λ0(S1)< λ1(A1(s)) < λ1(S1)
for s > 2.

Secondly, we shall establish inequalities among eigenvalues for different BCs in
the natural loops C2,4,z,b21 and C2,4,z,a11 , separately.

THEOREM 3.5. Fix a difference equation ωωω = (1/ f ,q,w) . Let

A(a11,b21) :=
[

a11 −1 z 0
z 0 b21 1

]
∈ OC

2,4.

Then similar results in Theorem 3.3 hold with a12 , a(i)
12 , 1/ f0 , S1 , and S2 replaced by

a11 , a(i)
11 , − f0 , S3 , and S4 , separately, where i = 1, · · · ,4 , and S3 and S4 are specified

in Lemma 2.6.

Proof. By a similar method to that used in the proof of Theorem 3.3, one can show
that Theorem 3.5 holds with the help of Theorems 4.2 and 4.4 in [22]. �

Thirdly, we shall establish inequalities among eigenvalues for different BCs in the
natural loops C2,3,z,b22 and C2,3,z,a11 , separately. We shall remark that here we only
give the inequalities in the case that z �= 0 since we shall apply Theorem 3.6 to coupled
BCs, which satisfy that z �= 0. One can establish the inequalities in the case that z = 0
with a similar method.

THEOREM 3.6. Fix a difference equation ωωω = (1/ f ,q,w) . Let

A(a11,b22) :=
[

a11 −1 0 z
z 0 −1 b22

]
∈ OC

2,3,

where z �= 0 . Then (ωωω ,A(a11,b22)) has exactly N eigenvalues if b22(a11 + f0) �= |z|2 ,
and exactly N − 1 eigenvalues if b22(a11 + f0) = |z|2 ; (ωωω ,S5) has exactly N eigen-
values if b22 �= 0 , and exactly N − 1 eigenvalues if b22 = 0 ; (ωωω ,S6) has exactly N
eigenvalues if a11 + f0 �= 0 , and exactly N − 1 eigenvalues if a11 + f0 = 0 , where S5

and S6 are specified in Lemma 2.6. Further, we have that

(i) in the case that b22 = 0 , for any a(1)
11 < a(2)

11 , the eigenvalues λn(a
(i)
11) of (ωωω ,

A(a(i)
11 ,b22)) , i = 1,2 , and λn(S5) of (ωωω ,S5) satisfy the following inequalities:

λ0(a
(1)
11 ) � λ0(a

(2)
11 ) � λ0(S5) � λ1(a

(1)
11 ) � λ1(a

(2)
11 ) � λ1(S5) � · · · �

λN−2(a
(1)
11 ) � λN−2(a

(2)
11 ) � λN−2(S5) � λN−1(a

(1)
11 ) � λN−1(a

(2)
11 );

(3.8)
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(ii) in the case that b22 �= 0 , for any a(1)
11 < a(2)

11 � |z|2/b22− f0 and |z|2/b22− f0 <

a(3)
11 < a(4)

11 , the eigenvalues λn(a
(i)
11) of (ωωω ,A(a(i)

11 ,b22)) , i = 1, · · · ,4 , and λn(S5)
of (ωωω ,S5) satisfy the following inequalities:

λ0(a
(3)
11 ) � λ0(a

(4)
11 ) � λ0(S5) � λ0(a

(1)
11 ) � λ0(a

(2)
11 ) �

λ1(a
(3)
11 ) � λ1(a

(4)
11 ) � λ1(S5) � λ1(a

(1)
11 ) � λ1(a

(2)
11 )

� · · · � λN−2(a
(3)
11 ) � λN−2(a

(4)
11 ) � λN−2(S5) � λN−2(a

(1)
11 ) �

λN−2(a
(2)
11 ) � λN−1(a

(3)
11 ) � λN−1(a

(4)
11 ) � λN−1(S5) � λN−1(a

(1)
11 ),

(3.9)

and in addition, λN−1(a
(1)
11 ) � λN−1(a

(2)
11 ) if a(2)

11 < |z|2/b22− f0 ;

(iii) in the case that a11 + f0 = 0 , for any b(1)
22 < b(2)

22 , the eigenvalues λn(b
(i)
22) of

(ωωω ,A(a11,b
(i)
22)) and λn(S6) of (ωωω ,S6) satisfy (3.8) with a(i)

11 and S5 replaced

by b(i)
22 and S6 , separately, where i = 1,2 ;

(iv) in the case that a11+ f0 �= 0 , for any b(1)
22 < b(2)

22 � |z|2/(a11+ f0) and |z|2/(a11+
f0) < b(3)

22 < b(4)
22 , the eigenvalues λn(b

(i)
22) of (ωωω ,A(a11,b

(i)
22)) and λn(S6) of

(ωωω ,S6) satisfy (3.9) with a(i)
11 and S5 replaced by b(i)

22 and S6 , separately, where

i = 1, · · · ,4 , and in addition, λN−1(b
(1)
22 ) � λN−1(b

(2)
22 ) if b(2)

22 < |z|2/(a11 + f0) .

Proof. By a similar method to that used in the proof of (ii) in Theorem 3.3, one
can show that (i) holds with the help of Theorems 4.3–4.4 of [22]; (iii) holds with the
help of Theorems 4.2 and 4.4 of [22]. By a similar method to that used in the proof
of (i) in Theorem 3.3, one gets that (ii) and (iv) hold with the help of Theorem 4.4 of
[22]. �

Fourthly, we shall establish inequalities among eigenvalues for different BCs in
the natural loops C1,3,z,b22 and C1,3,z,a12 with z �= 0, separately.

THEOREM 3.7. Fix a difference equation ωωω = (1/ f ,q,w) . Let

A(a12,b22) :=
[

1 a12 0 z
0 z −1 b22

]
∈ OC

1,3,

where z �= 0 . Then similar results in Theorem 3.6 hold for a11 , a(i)
11 , a11+ f0 , |z|2/b22−

f0 , S5 , and S6 replaced by a12 , a(i)
12 , a12−1/ f0 , |z|2/b22 +1/ f0 , S7 , and S8 , sepa-

rately, where i = 1, · · · ,4 , and S7 and S8 are specified in Lemma 2.6.

Proof. By a similar method to that used in the proof of (ii) in Theorem 3.3, one
can show that (i) holds with the help of Theorems 4.3–4.4 of [22], and (iii) holds with
the help of Theorems 4.1 and 4.4 of [22]. By a similar method to that used in the proof
of (i) in Theorem 3.3, one gets that (ii) and (iv) hold with the help of Theorem 4.3 of
[22]. �
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3.3. Inequalities among eigenvalues for coupled BCs and those for some certain
separated ones

In this subsection, we shall first establish inequalities among eigenvalues for a cou-
pled BC and those for some certain separated ones applying Theorems 3.3 and 3.5–3.7.
Then, for a fixed K ∈ SL(2,R) and γ ∈ (−π ,0)∪ (0,π) , we shall compare eigenval-
ues for [K|− I] , those for [eiγK|− I] , and those for [−K|− I] . Combining the above
two parts, we shall establish inequalities among eigenvalues for three coupled BCs and
those for some certain separated ones, which generalize the main result of [18].

Firstly, we shall establish inequalities among eigenvalues for a coupled BC and
those for some certain separated ones in the next two theorems. Set λn(eiγK) :=
λn([eiγK|− I]) for briefness.

THEOREM 3.8. Fix a difference equation ωωω = (1/ f ,q,w) . Let A = [eiγK|− I] ,
where K ∈ SL(2,R) and γ ∈ (−π ,π ] . Then (ωωω ,A) has exactly N eigenvalues if k11−
f0k12 �= 0 , and exactly N − 1 eigenvalues if k11 − f0k12 = 0 ; (ωωω ,TK) has exactly N
eigenvalues if k11 �= 0 , and exactly N −1 eigenvalues if k11 = 0 ; (ωωω ,UK) has exactly
N−1 eigenvalues if k11− f0k12 �= 0 , and exactly N−2 eigenvalues if k11− f0k12 = 0 ,
where

TK :=
[

0 1 0 0
0 0 −k21 k11

]
and UK :=

[
k11 k12 0 0
0 0 1 0

]
.

Furthermore, we have that

(i) the eigenvalues of (ωωω ,A) and (ωωω ,TK) satisfy the following inequalities:

λ0(TK) � λ0(eiγK) � λ1(TK) � λ1(eiγK)

� · · · � λN−1(TK) � λN−1(eiγK)
(3.10)

in the case that (k11 − f0k12)k11 f0 > 0 ;

λ0(eiγK) � λ0(TK) � λ1(eiγK) � λ1(TK)

� · · · � λN−1(eiγK) � λN−1(TK)
(3.11)

in the case that (k11 − f0k12)k11 f0 < 0 ;

λ0(TK) � λ0(eiγK) � λ1(TK) � λ1(eiγK)

� · · · � λN−2(TK) � λN−2(eiγK) � λN−1(TK)
(3.12)

in the case that k11− f0k12 = 0 ;

λ0(eiγK) � λ0(TK) � λ1(eiγK) � λ1(TK)

� · · · � λN−2(eiγK) � λN−2(TK) � λN−1(eiγK)
(3.13)

in the case that k11 = 0 ;
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(ii) the eigenvalues of (ωωω ,A) and (ωωω ,UK) satisfy the following inequalities:

λ0(eiγK) � λ0(UK) � λ1(eiγK) � λ1(UK)

� · · · � λN−2(eiγK) � λN−2(UK) � λN−1(eiγK)
(3.14)

in the case that k11− f0k12 �= 0 ;

λ0(eiγK) � λ0(UK) � λ1(eiγK) � λ1(UK)

� · · · � λN−3(eiγK) � λN−3(UK) � λN−2(eiγK)
(3.15)

in the case that k11− f0k12 = 0 .

Proof. The number of eigenvalues of (ωωω ,A) , (ωωω ,TK) , and (ωωω ,UK) in each case
can be obtained by Lemma 2.4 and direct computations. Let k11 �= 0. Since detK = 1,

A = [eiγK|− I] =
[

1 k12/k11 −e−iγ/k11 0
−eiγk21 −eiγk22 0 1

]
=

[
1 a12 z 0
0 z b21 1

]
∈ OC

1,4,

where a12 := k12/k11 , b21 := −k21/k11 , and z := −eiγ/k11 . Then by (i) of Lemma 2.7,
A ∈ C1,4,z,b21 ∩C1,4,z,a12 , and the corresponding LBCs satisfy that

S1 =
[

0 1 0 0
0 0 b21 1

]
=

[
0 1 0 0
0 0 −k21 k11

]
= TK ,

S2 =
[

1 a12 0 0
0 0 1 0

]
=

[
k11 k12 0 0
0 0 1 0

]
= UK .

Note that (k11 − f0k12)k11 f0 > 0, (k11 − f0k12)k11 f0 < 0, k11 − f0k12 = 0, and k11 −
f0k12 �= 0 are equivalent to a12 < 1/ f0 , a12 > 1/ f0 , a12 = 1/ f0 , and a12 �= 1/ f0 ,
respectively. Therefore, by Theorem 3.3, one gets that (k11 − f0k12)k11 f0 > 0 implies
(3.10); (k11− f0k12)k11 f0 < 0 implies (3.11); k11− f0k12 = 0 implies (3.12) and (3.15);
k11− f0k12 �= 0 implies (3.14).

Let k11 = 0. Now we show that (3.13)–(3.14) hold in this case. Since k11 = 0,
−k12k21 = 1. Denote

Kε :=
(

ε k12

(−1+ εk22)/k12 k22

)
∈ SL(2,R), ε ∈ R.

Then lim
ε→0

Kε = K . By the definition of TK and UK , we see that

TKε =
[

0 1 0 0
0 0 1− εk22 εk12

]
and UKε =

[
ε k12 0 0
0 0 1 0

]
.

Then
[eiγKε |− I]→ [eiγK|− I], TKε → TK , UKε → UK , as ε → 0.

Since k12 �= 0, one can choose a sufficiently small ε1 > 0 such that ε − f0k12 �= 0,
where 0 � ε � ε1 . Thus, by Lemma 2.4, there are exactly N eigenvalues for each
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[eiγKε | − I] , 0 � ε � ε1 , and by Lemma 2.5, λn(eiγKε) is continuous in ε ∈ [0,ε1] ,
which implies that

λn(eiγKε) → λn(eiγK), as ε → 0+, 0 � n � N−1. (3.16)

Suppose that k12 < 0. By Lemma 2.4, (ωωω ,UKε ) has exactly N − 1 eigenvalues
for each ε ∈ [0,ε1] . Thus by Lemma 2.5, λn(UKε ) is continuous in ε ∈ [0,ε1] , which
implies that

λn(UKε ) → λn(UK), as ε → 0+, 0 � n � N−2. (3.17)

If f0 > 0, then TK ∈ B2,3r and TKε ∈ B+
2,3r , where ε ∈ (0,ε1] and

B2,3r :=
{

A ∈ OC
2,3 : (a11 + f0)b22 = |z|2,a11 + f0 � 0,b22 � 0

}
\{C} ,

B+
2,3r :=

{
A ∈ OC

2,3 : a11 � − f0,b22 � 0,(a11 + f0)b22 > |z|2
}

.

Note that ε1 can be chosen such that 1−εk22 > 0 for any 0 < ε � ε1 . By Theorem 4.4
in [22],

λ0(TKε ) →−∞, λn(TKε ) → λn−1(TK), as ε → 0+, 1 � n � N−1. (3.18)

If f0 < 0, then TK ∈ B2,3l and TKε ∈ B−
2,3 , where ε ∈ (0,ε1] and

B2,3l :=
{

A ∈ OC
2,3 : (a11 + f0)b22 = |z|2,a11 + f0 � 0,b22 � 0

}
\{C} ,

B−
2,3 :=

{
A ∈ OC

2,3 : (a11 + f0)b22 < |z|2
}

.

By Theorem 4.4 in [22], (3.18) holds.
Since (ε − f0k12) f0ε > 0, where 0 < ε � ε1 , by (3.10) and (3.14) for [eiγKε |− I] ,

λ0(TKε ) � λ0(eiγKε) � {λ1(TKε ),λ0(UKε )}
� λ1(eiγKε ) � {λ2(TKε ),λ1(UKε )} � · · · �

λN−2(eiγKε) � {λN−1(TKε ),λN−2(UKε )} � λN−1(eiγKε).

(3.19)

Let ε → 0+ in (3.19). It follows from (3.16)–(3.18) that (3.13)–(3.14) hold for [eiγK|−
I] .

Suppose that k12 > 0. With a similar method to that used in the case that k12 < 0,
one can show that (3.13)–(3.14) hold for [eiγK|− I] . �

THEOREM 3.9. Fix a difference equation ωωω = (1/ f ,q,w) . Let A = [eiγK|− I] ,
where K ∈ SL(2,R) and γ ∈ (−π ,π ] . Then (ωωω ,SK) has exactly N eigenvalues if
k12 �= 0 , and exactly N−1 eigenvalues if k12 = 0 ; (ωωω ,VK) has exactly N eigenvalues
if f0k22− k21 �= 0 , and exactly N−1 eigenvalues if f0k22− k21 = 0 , where

SK :=
[

1 0 0 0
0 0 −k22 k12

]
and VK :=

[
k21 k22 0 0
0 0 0 1

]
.

Furthermore, we have that
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(i) the eigenvalues of (ωωω ,A) and (ωωω ,SK) satisfy the following inequalities:

λ0(eiγK) � λ0(SK) � λ1(eiγK) � λ1(SK)

� · · · � λN−2(eiγK) � λN−2(SK) � λN−1(eiγK)
(3.20)

in the case that k12 = 0 ;

λ0(SK) � λ0(eiγK) � λ1(SK) � λ1(eiγK)

� · · · � λN−1(SK) � λN−1(eiγK)
(3.21)

in the case that (k11 − f0k12)k12 > 0 ;

λ0(eiγK) � λ0(SK) � λ1(eiγK) � λ1(SK)

� · · · � λN−1(eiγK) � λN−1(SK)
(3.22)

in the case that (k11 − f0k12)k12 < 0 ;

λ0(SK) � λ0(eiγK) � λ1(SK) � λ1(eiγK)

� · · · � λN−2(SK) � λN−2(eiγK) � λN−1(SK)
(3.23)

in the case that k11− f0k12 = 0 ;

(ii) the eigenvalues of (ωωω ,A) and (ωωω ,VK) satisfy the following inequalities:

λ0(eiγK) � λ0(VK) � λ1(eiγK) � λ1(VK)

� · · · � λN−2(eiγK) � λN−2(VK) � λN−1(eiγK)
(3.24)

in the case that f0k22− k21 = 0 ;

λ0(VK) � λ0(eiγK) � λ1(VK) � λ1(eiγK)

� · · · � λN−1(VK) � λN−1(eiγK)
(3.25)

in the case that (k11 − f0k12)( f0k22− k21) > 0 ;

λ0(eiγK) � λ0(VK) � λ1(eiγK) � λ1(VK)

� · · · � λN−1(eiγK) � λN−1(VK)
(3.26)

in the case that (k11 − f0k12)( f0k22− k21) < 0 ;

λ0(VK) � λ0(eiγK) � λ1(VK) � λ1(eiγK)

� · · · � λN−2(VK) � λN−2(eiγK) � λN−1(VK)
(3.27)

in the case that k11− f0k12 = 0 .
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Proof. The number of eigenvalues of (ωωω ,A) , (ωωω ,SK) , and (ωωω ,VK) in each case
can be obtained by Lemma 2.4 and direct computations. Let k22 �= 0. Since detK = 1,

A = [eiγK|− I] =
[

eiγk11 eiγk12 −1 0
−k21/k22 −1 0 e−iγ/k22

]
=

[
a11 −1 0 z
z 0 −1 b22

]
∈ OC

2,3,

where a11 := −k21/k22 , z := eiγ/k22 , b22 := k12/k22 . Then by (iii) of Lemma 2.7,
A ∈ C2,3,z,b22 ∩C2,3,z,a11 , and the corresponding LBCs satisfy that

S5 =
[

1 0 0 0
0 0 −1 b22

]
=

[
1 0 0 0
0 0 −k22 k12

]
= SK ,

S6 =
[

a11 −1 0 0
0 0 0 1

]
=

[
k21 k22 0 0
0 0 0 1

]
= VK .

Note that b22 = 0 is equivalent to k12 = 0; in the case that b22 �= 0, one gets that
a11 + f0 < |z|2/b22 , a11 + f0 > |z|2/b22 , and a11 + f0 = |z|2/b22 are equivalent to
(k11 − f0k12)k12 > 0, (k11 − f0k12)k12 < 0, and k11 − f0k12 = 0, respectively; a11 +
f0 = 0 is equivalent to f0k22 − k21 = 0; in the case that a11 + f0 �= 0, one gets that
b22 < |z|2/(a11 + f0) , b22 > |z|2/(a11 + f0) , and b22 = |z|2/(a11 + f0) are equivalent
to (k11 − f0k12)( f0k22 − k21) > 0, (k11 − f0k12)( f0k22 − k21) < 0, and k11 − f0k12 =
0, respectively. Therefore, by Theorem 3.6, one gets that k12 = 0 implies (3.20);
(k11− f0k12)k12 > 0 implies (3.21); (k11− f0k12)k12 < 0 implies (3.22); k11− f0k12 = 0
implies (3.23) and (3.27); f0k22−k21 = 0 implies (3.24); (k11− f0k12)( f0k22−k21) > 0
implies (3.25); (k11− f0k12)( f0k22− k21) < 0 implies (3.26).

Let k22 = 0. Now we show that (3.21)–(3.23) and (3.25)–(3.27) hold in this case.
Since k22 = 0, −k12k21 = 1. Denote

Kε =
(

k11 k12

(−1+ εk11)/k12 ε

)
∈ SL(2,R), ε ∈ R. (3.28)

Then lim
ε→0

Kε = K . By the definition of SK and VK , one has that

SKε =
[

1 0 0 0
0 0 −ε k12

]
and VKε =

[−1+ εk11 εk12 0 0
0 0 0 1

]
.

Then
[eiγKε |− I]→ [eiγK|− I], SKε → SK , VKε → VK , as ε → 0.

In the case that (k11 − f0k12)k12 > 0, by (3.21) for [eiγKε |− I] , ε > 0, one gets
that

λ0(SKε ) � λ0(eiγKε ) � λ1(SKε ) � λ1(eiγKε)

� · · · � λN−1(SKε ) � λN−1(eiγKε).
(3.29)

Since k11− f0k12 �= 0 and k12 �= 0, there are exactly N eigenvalues for each [eiγKε |− I]
and for each SKε , where 0 � ε � 1, by Lemma 2.4. It follows from Lemma 2.5 that
λn(eiγKε) and λn(SKε ) are continuous in ε ∈ [0,1] , which implies that,

λn(eiγKε) → λn(eiγK), λn(SKε ) → λn(SK), as ε → 0+, 0 � n � N−1. (3.30)
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Let ε → 0+ in (3.29). It follows from (3.30) that (3.21) holds for [eiγK|− I] .
With similar arguments to the proof of (3.21) for [eiγK| − I] , one can show that

(3.22)–(3.23) hold for [eiγK|− I] .
Next, we show that (3.25)–(3.27) hold for [eiγK|− I] . In the case that −(k11 −

f0k12)k21 > 0, one can choose an ε1 > 0 sufficiently small that (k11 − f0k12)( f0ε −
(−1 + εk11)/k12) = −(k11 − f0k12)(k21 + ε(k11 − f0k12)/k12) > 0 and 1 − ε(k11 −
f0k12) > 0, 0 � ε � ε1 . Then by (3.25) for [eiγKε |− I] , where 0 < ε � ε1 , one has that

λ0(VKε ) � λ0(eiγKε ) � λ1(VKε ) � λ1(eiγKε)

� · · · � λN−1(VKε ) � λN−1(eiγKε ).
(3.31)

Since k11− f0k12 �= 0 and 1− k11ε + f0k12ε = 1− ε(k11− f0k12) > 0, by Lemma 2.4
there are exactly N eigenvalues for each [eiγKε |− I] and each VKε , where 0 � ε � ε1 .
By Lemma 2.5, λn(eiγKε) and λn(VKε ) are continuous in ε ∈ [0,ε1] , which implies
that

λn(eiγKε) → λn(eiγK), λn(VKε ) → λn(VK), as ε → 0+, 0 � n � N−1. (3.32)

Let ε → 0+ in (3.31). It follows from (3.32) that (3.25) holds for [eiγK|− I] .
With a similar argument to the proof of (3.25) for [eiγK|− I] , one can show that

(3.26)–(3.27) hold for [eiγK|− I] . �

REMARK 3.2. (ii) of Theorem 3.8 and (i) of Theorem 3.9 can also be obtained by
dividing the discussion into two cases: k12 �= 0 and k12 = 0, applying Theorem 3.5,
and using a similar method to that used in the proof of them; while (i) of Theorem 3.8
and (ii) of Theorem 3.9 can also be obtained by dividing the discussion into two cases:
k21 �= 0 and k21 = 0, applying Theorem 3.7, and using a similar method to that used in
the proof of them.

The following result, which is a direct consequence of Theorems 3.8–3.9, gives
comparison of eigenvalues for [eiγK|− I] with those for SK , those for UK , those for
TK , and those for VK under the assumption that k11− f0k12 = 0.

COROLLARY 3.10. Fix a difference equation ωωω = (1/ f ,q,w) . Let A = [eiγK|−
I] ∈ BC , where K ∈ SL(2,R) and γ ∈ (−π ,π ] . If k11− f0k12 = 0 , then

{λ0(SK),λ0(TK),λ0(VK)} � λ0(eiγK) � {λ1(SK),λ1(TK),

λ1(VK),λ0(UK)} � λ1(eiγK) � {λ2(SK),λ2(TK),λ2(VK),

λ1(UK)} � · · · � λN−3(eiγK) � {λN−2(SK),λN−2(TK),λN−2(VK),

λN−3(UK)} � λN−2(eiγK) � {λN−1(SK),λN−1(TK),λN−1(VK)}.

Note that a coupled BC [eiγK|− I] can be written as [eiγ/2K|− e−iγ/2I] . Then by
Lemma 2.3, a simple calculation yields that

Γ(λ ) = 2cosγ − k22φN(λ )+ k21ψN(λ )+ k12 fNΔφN(λ )− k11 fNΔψN(λ ). (3.33)
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Thus, the eigenvalues for [eiγK|− I] are the same as those for [e−iγK|− I] by (3.33).
Now, it’s ready to establish inequalities among eigenvalues for the three coupled BCs:
[K|− I] , [eiγK|− I] , and [−K|− I] , and those for the corresponding separated ones.

THEOREM 3.11. Fix a difference equation ωωω = (1/ f ,q,w) satisfying that ∏N−1
i=0

(1/ fi)> 0. Let γ ∈ (−π ,0)∪(0,π) and K ∈ SL(2,R) satisfy that k11− f0k12 �= 0 . Then
the eigenvalues of SLPs (ωωω , [K| − I]) , (ωωω , [eiγK| − I]) , (ωωω , [−K| − I]) , and (ωωω ,SK)
satisfy the following inequalities:

(i) for k11− f0k12 > 0 and k12 > 0 ,

λ0(SK) � λ0(K) < λ0(eiγK) < λ0(−K) � λ1(SK) � λ1(−K) <

λ1(eiγK) < λ1(K) � · · · � λN−2(SK) � λN−2(K) < λN−2(eiγK) <

λN−2(−K) � λN−1(SK) � λN−1(−K) < λN−1(eiγK) < λN−1(K)

(3.34)

in the case that N is even;

λ0(SK) � λ0(K) < λ0(eiγK) < λ0(−K) � λ1(SK) � λ1(−K) <

λ1(eiγK) < λ1(K) � · · · � λN−2(SK) � λN−2(−K) < λN−2(eiγK)

< λN−2(K) � λN−1(SK) � λN−1(K) < λN−1(eiγK) < λN−1(−K)

(3.35)

in the case that N is odd;

(ii) for k11− f0k12 > 0 and k12 < 0 ,

λ0(K) < λ0(eiγK) < λ0(−K) � λ0(SK) � λ1(−K) < λ1(eiγK) < λ1(K)

� λ1(SK) � · · · � λN−2(K) < λN−2(eiγK) < λN−2(−K) �
λN−2(SK) � λN−1(−K) < λN−1(eiγK) < λN−1(K) � λN−1(SK)

in the case that N is even;

λ0(K) < λ0(eiγK) < λ0(−K) � λ0(SK) � λ1(−K) < λ1(eiγK) < λ1(K)

� λ1(SK) � · · · � λN−2(−K) < λN−2(eiγK) < λN−2(K) �
λN−2(SK) � λN−1(K) < λN−1(eiγK) < λN−1(−K) � λN−1(SK)

in the case that N is odd;

(iii) for k11 > 0 and k12 = 0 ,

λ0(K) < λ0(eiγK) < λ0(−K) � λ0(SK) � λ1(−K) < λ1(eiγK)

< λ1(K) � λ1(SK) � · · · � λN−2(K) < λN−2(eiγK) < λN−2(−K)

� λN−2(SK) � λN−1(−K) < λN−1(eiγK) < λN−1(K)

in the case that N is even;

λ0(K) < λ0(eiγK) < λ0(−K) � λ0(SK) � λ1(−K) < λ1(eiγK)

< λ1(K) � λ1(SK) � · · · � λN−2(−K) < λN−2(eiγK) < λN−2(K)

� λN−2(SK) � λN−1(K) < λN−1(eiγK) < λN−1(−K)
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in the case that N is odd;

(iv) assertions in (i)–(iii) hold with K replaced by −K .

Proof. First, we show that (i) holds. We only show that (3.34) holds, since (3.35)
can be shown similarly. By (2.3) and (3.33), one can easily verify that the leading term
of Γ(λ ) as a polynomial of λ is

(−1)N+11/ f0(wN

N−1

∏
i=1

(wi/ fi))(k11− f0k12)λ N .

Since k11− f0k12 > 0 and 1/ f0(wN ∏N−1
i=1 (wi/ fi)) > 0, one has that

lim
λ→−∞

Γ(λ ) = −∞, lim
λ→+∞

Γ(λ ) = −∞, (3.36)

in the case that N is even.
Let γ ∈ (−π ,0)∪ (0,π) . By Lemma 2.3, λn(eiγK), 0 � n � N − 1, are exactly

the zeros of the polynomial Γ(λ ) for (ωωω , [eiγK| − I]) . It follows from Theorem 3.1
in [23] that λn(eiγK) is a simple eigenvalue for each 0 � n � N − 1. Thus by Rolle
mean value Theorem, there are exactly N−1 real zeros for Γ′(λ ) and they are denoted
by x1, · · · ,xN−1 . Then xn ∈ (λn−1(eiγK),λn(eiγK)) , and Γ(λ ) is strictly increasing in
(−∞,x1) and strictly decreasing in (x1,x2) . Hence Γ(x1) > 0. From (3.33), (3.36),
and the above discussion, it follows that λ0(K) < λ0(eiγK) < λ0(−K) and λ1(−K) <
λ1(eiγK) < λ1(K) . Similarly, one can show that

λ j(K) < λ j(eiγK) < λ j(−K), j = 0,2,4, · · · ,N−2,

λ j(−K) < λ j(eiγK) < λ j(K), j = 1,3,5, · · · ,N−1.
(3.37)

Since (k11 − f0k12)k12 > 0, it follows from (3.21) that

λ0(SK) � {λ0(eiγK) : γ ∈ (−π ,π ]}� λ1(SK) � {λ1(eiγK) : γ ∈ (−π ,π ]}
� · · · � λN−1(SK) � {λN−1(eiγK) : γ ∈ (−π ,π ]}. (3.38)

Therefore, (3.37)–(3.38) imply that (3.34) holds.
Assertions (ii)–(iii) can be shown similarly.
Now we show that (iv) holds. It follows from the definition of SK in Theorem

3.9 that SK = S−K . Since k11 − f0k12 �= 0 and the entries of K satisfy none of the
conditions in (i), (ii) or (iii), there are exactly three cases:

(i ′ ) k11− f0k12 < 0, k12 < 0;

(ii ′ ) k11− f0k12 < 0, k12 > 0;

(iii ′ ) k11 < 0, k12 = 0.

If the entries of K satisfy (i ′ ), (ii ′ ), and (iii ′ ), separately, then assertions in (i), (ii), and
(iii) hold for −K , respectively. �

The following result is a direct consequence of Theorems 3.8 and 3.11.
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COROLLARY 3.12. Fix a difference equation ωωω = (1/ f ,q,w) satisfying that ∏N−1
i=0

(1/ fi) > 0 . Let K ∈ SL(2,R) .

(i) If k11− f0k12 > 0 , then there are exactly N eigenvalues for [K|− I] and [−K|−
I] , separately. Further, whether N is odd or even, λ0(K) is a simple eigenvalue;
if λ j(K) < λ j+1(K) for some odd number j (1 � j � N − 2) , then λ j(K) and
λ j+1(K) are simple eigenvalues. Similar results hold in the case that λ j(−K) <
λ j+1(−K) for some even number j (0 � j � N−2) . If N is odd, then λN−1(−K)
is a simple eigenvalue; and if N is even, then λN−1(K) is a simple eigenvalue.

(ii) If k11− f0k12 < 0 , similar results in (i) can be obtained with K replaced by −K .

REMARK 3.3. Theorem 3.1 in [18] gives inequalities among eigenvalues for [K|−
I] , those for [eiγK|− I] , and those for [−K|− I] in the case that k12 = 0 under the as-
sumption that f0 = fN = 1. They are direct consequences of (iii)–(iv) in Theorem 3.11.

With the help of Theorems 3.8–3.9, (3.33), and a similar method to that used in
the proof of Theorem 3.11, one can deduce the following Theorems 3.13–3.15:

THEOREM 3.13. Fix a difference equation ωωω = (1/ f ,q,w) satisfying that ∏N−1
i=0

(1/ fi)> 0 . Let γ ∈ (−π ,0)∪(0,π) and K ∈ SL(2,R) satisfy that k11− f0k12 �= 0 . Then
the eigenvalues of SLPs (ωωω , [K| − I]) , (ωωω , [eiγK| − I]) , (ωωω , [−K| − I]) , and (ωωω ,UK)
satisfy the following inequalities:

(i) if k11− f0k12 > 0 , then

λ0(K) < λ0(eiγK) < λ0(−K) � λ0(UK) � λ1(−K) <

λ1(eiγK) < λ1(K) � λ1(UK) � · · · � λN−2(K) < λN−2(eiγK) <

λN−2(−K) � λN−2(UK) � λN−1(−K) < λN−1(eiγK) < λN−1(K)

in the case that N is even;

λ0(K) < λ0(eiγK) < λ0(−K) � λ0(UK) � λ1(−K) <

λ1(eiγK) < λ1(K) � λ1(UK) � · · · � λN−2(−K) < λN−2(eiγK) <

λN−2(K) � λN−2(UK) � λN−1(K) < λN−1(eiγK) < λN−1(−K)

in the case that N is odd;

(ii) assertion (i) hold with K replaced by −K .

THEOREM 3.14. Fix a difference equation ωωω = (1/ f ,q,w) satisfying that ∏N−1
i=0

(1/ fi) > 0 . Let γ ∈ (−π ,0)∪ (0,π) and K ∈ SL(2,R) satisfy that k11 − f0k12 �= 0 .
Then (i)–(ii) in Theorem 3.11 hold with k12 > 0 , k12 < 0 , and λn(SK) replaced by
f0k11 > 0 , f0k11 < 0 , and λn(TK) , respectively, where 0 � n � N−1 ; (iii) in Theorem
3.11 holds with k11 > 0 , k12 = 0 , and λn(SK) replaced by f0k12 < 0 , k11 = 0 , and
λn(TK) , respectively, where 0 � n � N−2 ; (iv) in Theorem 3.11 also holds.
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THEOREM 3.15. Fix a difference equation ωωω = (1/ f ,q,w) satisfying that ∏N−1
i=0

(1/ fi) > 0 . Let γ ∈ (−π ,0)∪ (0,π) and K ∈ SL(2,R) satisfy that k11 − f0k12 �= 0 .
Then (i)–(ii) in Theorem 3.11 hold with k12 > 0 , k12 < 0 , and λn(SK) replaced by
f0k22− k21 > 0 , f0k22− k21 < 0 , and λn(VK) , respectively, where 0 � n � N−1 ; (iii)
in Theorem 3.11 holds with k11 > 0 , k12 = 0 , and λn(SK) replaced by k11− f0k12 > 0 ,
f0k22− k21 = 0 , and λn(VK) , respectively, where 0 � n � N−2 ; (iv) in Theorem 3.11
also holds.

REMARK 3.4. We have not given the similar inequalities as those in Theorems
3.11 and 3.13–3.15 in the case that k11 − f0k12 = 0 since it is not clear what the limits
of the polynomial Γ(λ ) given in (3.33) are as λ →±∞ in this case.

3.4. Inequalities among eigenvalues for different coupled BCs

In this subsection, we shall establish inequalities among eigenvalues for different
coupled BCs applying Theorems 3.3 and 3.5.

For each K ∈ SL(2,R) , we set

K̂ :=
(

k11 k11/ f0
k21 ( f0 + k11k21)/(k11 f0)

)
if k11 �= 0; (3.39)

and

K̃ :=
(

f0k12 k12

( f0k12k22−1)/k12 k22

)
if k12 �= 0. (3.40)

Note that K̂, K̃ ∈ SL(2,R) , and K = K̂ = K̃ if k11− f0k12 = 0. The next result compares
eigenvalues for [eiγK| − I] with those for [eiγ K̂| − I] , and eigenvalues for [eiγK| − I]
with those for [eiγ K̃|− I] , separately.

THEOREM 3.16. Fix a difference equation ωωω = (1/ f ,q,w) . Let [eiγK|−I]∈BC ,
where γ ∈ (−π ,π ] and K ∈ SL(2,R) satisfies that k11 − f0k12 �= 0 . Then there are
exactly N eigenvalues for [eiγK|− I] , and exactly N−1 eigenvalues for both [eiγ K̂|− I]
and [eiγ K̃|− I] , where K̂ and K̃ are defined by (3.39)–(3.40). Furthermore, we have
that

(i) if k11 �= 0 , then

λ0(eiγK) � λ0(eiγ K̂) � λ1(eiγK) � λ1(eiγ K̂) � · · · �
λN−2(eiγK) � λN−2(eiγ K̂) � λN−1(eiγK);

(ii) if k12 �= 0 , then

λ0(eiγK) � λ0(eiγ K̃) � λ1(eiγK) � λ1(eiγ K̃) � · · · �
λN−2(eiγK) � λN−2(eiγ K̃) � λN−1(eiγK).
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Proof. By Lemma 2.4, the number of eigenvalues for each BC can be obtained
directly. Firstly, we show that (i) holds. Let a12 := k12/k11, z := −eiγ/k11 , and
b21 := −k21/k11 . A(s) has the same meaning as that in Lemma 2.7. Then a direct
computation implies that [eiγK| − I] = A(a12) and [eiγ K̂| − I] = A(1/ f0) . Hence, (i)
holds by Theorem 3.3.

Assertion (ii) can be shown similarly to that for (i) by Theorem 3.5. �

REMARK 3.5. The inequalities in Theorem 3.16 may not be strict. See Example
3.4.

4. Inequalities between the n -th eigenvalues for two different equations

In this section, inequalities between the n -th eigenvalues for two equations with
different coefficients and weight functions are established by applying the monotonicity
result of λn in Theorems 3.1–3.3 in [22].

Fix a self-adjoint BC

A =
[

a11 a12 b11 b12

a21 a22 b21 b22

]
in this section. Let μ1 := a11b22−a21b12 , μ2 := a22b12−a12b22 , and η := −μ2/μ1 if
μ1 �= 0. If μ1 = 0 and μ2 = 0, then the BC A can be written as

either A1 :=
[

a11 −1 0 0
0 0 −1 0

]
or A2 :=

[
1 a12 0 0
0 0 −1 0

]
. (4.1)

Firstly, we give two lemmas, which play important roles in establishing inequali-
ties among eigenvalues for equations with differentweight functions. Fix f = {1/ fn}N

n=0
and q = {qn}N

n=1 . By Lemma 2.4, the number of eigenvalues of ((1/ f ,q,w),A) is in-
dependent of w . Thus, we assume that ((1/ f ,q,w),A) has exactly k (N−2 � k � N )
eigenvalues for each w ∈ RN,+ in the following two lemmas:

LEMMA 4.1. Fix f = { fn}N
n=0 , q = {qn}N

n=1 , 1 � i � N , w(0)
1 , · · · ,w(0)

i−1 , w(0)
i+1,

· · · ,w(0)
N , a self-adjoint BC A , and 1 � j � k . Let λ j(wi) := λ j(w

(0)
1 , · · · ,w(0)

i−1,wi,w
(0)
i+1,

· · · ,w(0)
N ,A) be the j -th eigenvalue function in the wi -direction. If λ j(w

(0)
i ) = 0 for

some w(0)
i ∈ R+ , then λ j(wi) = 0 for all wi > w(0)

i .

Proof. Suppose that there exists w′
i > w(0)

i such that λ j(w′
i) �= 0. By Theorems

3.1–3.3 in [22], λ j(wi) is continuous in wi ∈R+ , and its positive and negative parts are
non-increasing and non-decreasing in wi -direction, respectively. This is a contradiction
to that λ j(w′

i) �= 0. �

LEMMA 4.2. Fix f = { fn}N
n=0 , q = {qn}N

n=1 , a self-adjoint BC A , and 1 � j � k .
Let λ j(w) := λ j(1/ f ,q,w,A) be the j -th eigenvalue function for w ∈ RN,+ . Then
either λ j(w) � 0 for all w ∈ R

N,+ or λ j(w) � 0 for all w ∈ R
N,+ .
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Proof. In the case that there exists w(0) ∈ RN,+ such that λ j(w(0)) > 0, we shall
show that λ j(wi) � 0 for each 1 � i � N and all wi ∈ R+ , where λ j(wi) is defined
in Lemma 4.1. Otherwise, there exists a w′

i ∈ R+ such that λ j(w′
i) < 0. Without loss

of generality, assume that w′
i < w(0)

i . Then there must exist w′′
i ∈ (w′

i,w
(0)
i ) such that

λ j(w′′
i ) = 0 by the continuity of λ j(wi) in wi ∈ R+ . By Lemma 4.1, λ j(wi) = 0 for

all wi > w′′
i . This contradicts λ j(w

(0)
i ) > 0. Thus λ j(wi) � 0 for all wi ∈ R+ . This,

together with the monotonicity of λ j in each wi -direction, 1 � i � N , implies that
λ j(w) � 0 for all w ∈ RN,+ .

In the case that there exists w(0) ∈ R
N,+ such that λ j(w(0)) < 0, with a similar

argument above, one can show that λ j(w) � 0 for all w ∈ RN,+ .
If it is not one of the above two cases, then λ j(w) ≡ 0 for all w ∈ RN,+ . �
Now, inequalities among eigenvalues for equations with different coefficients and

weight functions are established.

THEOREM 4.3. Fix a self-adjoint BC A . Consider the following two different
equations:

−∇( f (i)
n Δyn)+q(i)

n yn = λw(i)
n yn, n ∈ [1,N], i = 1,2, (4.2)i

and the same BC A . By λ (i)
n denote the n-th eigenvalue of (4.2)i and A . Let f (1)

j �
f (2)
j for 0 � j � N − 1 , q(1)

m � q(2)
m for 1 � m � N , and f (1)

N and f (2)
N be two given

non-zero real numbers.

(i) If one of the following conditions (1)–(2) holds,

(1) μ1 �= 0 , μ2 �= 0 , and either f (2)
0 ∈ (−∞,1/η) or f (1)

0 ∈ (1/η ,+∞);

(2) either μ1 = 0 , μ2 �= 0 or μ1 �= 0 , μ2 = 0 ;

then there are exactly N eigenvalues λ (i)
n of (4.2)i and A , where i = 1,2 . Fur-

ther, for any given 0 � n � N−1 ,

(a) if λ (1)
n > 0 and w(1)

m � w(2)
m , 1 � m � N , then

λ (1)
n � λ (2)

n ; (4.3)

(b) if λ (1)
n � 0 and w(1)

m � w(2)
m , 1 � m � N , then (4.3) holds.

(ii) If one of the following conditions (3)–(7) holds,

(3) μ1 �= 0 , μ2 �= 0 , and f (1)
0 = f (2)

0 = 1/η ;

(4) μ1 = 0 , μ2 = 0 , A = A1 with a11 �= 0 , and either f (2)
0 ∈ (−∞,−a11) or

f (1)
0 ∈ (−a11,+∞);

(5) μ1 = 0 , μ2 = 0 , A = A2 with a12 �= 0 , and either f (2)
0 ∈ (−∞,1/a12) or

f (1)
0 ∈ (1/a12,+∞) , where A1 and A2 are specified in (4.1);
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(6) μ1 = 0 , μ2 = 0 , and A = A1 with a11 = 0 ;

(7) μ1 = 0 , μ2 = 0 , and A = A2 with a12 = 0 ;

then there are exactly N − 1 eigenvalues λ (i)
n of (4.2)i and A , where i = 1,2 .

Further, for any given 0 � n � N−2 , assertions (a)–(b) in (i) hold.

(iii) If one of the following conditions (8)–(9) holds,

(8) μ1 = 0 , μ2 = 0 , A = A1 with a11 �= 0 , and f (1)
0 = f (2)

0 = −a11 ;

(9) μ1 = 0 , μ2 = 0 , A = A2 with a12 �= 0 , and f (1)
0 = f (2)

0 = 1/a12 ;

then there are exactly N − 2 eigenvalues λ (i)
n of (4.2)i and A , where i = 1,2 .

Further, for any given 0 � n � N−3 , assertions (a)–(b) in (i) hold.

Proof. The number of eigenvalues of (4.2)i and A in each case can be obtained
by Lemma 2.4. Firstly, we show that (i) holds with the assumption (1). Let 0 � n �
N − 1. In the case that λ (1)

n > 0, λn( f (1),q(1),w) � 0 for all w ∈ RN,+ by Lemma
4.2. By Theorem 3.1 in [22], λn( f (1),q(1),w) is non-increasing in each wm -direction,

1 � m � N . Thus, if w(1)
m � w(2)

m , 1 � m � N , then

λ (1)
n = λn( f (1),q(1),w(1)) � λn( f (1),q(1),w(2)). (4.4)

Again by Theorem 3.1 in [22], λn( f ,q,w(2)) is non-decreasing in f j ∈ (−∞,1/η) or
(1/η ,+∞) in each f j -direction, 0 � j � N −1; and in qm ∈ R in each qm -direction,

1 � m � N . Since f (1)
j � f (2)

j < 1/η or 1/η < f (1)
j � f (2)

j , 0 � j � N−1, q(1)
m � q(2)

m ,
1 � m � N , thus

λn( f (1),q(1),w(2)) � λn( f (2),q(2),w(2)) = λ (2)
n . (4.5)

(4.4)–(4.5) imply (4.3) holds. In the case that λ (1)
n � 0, with a similar method above,

one can show that (4.3) holds.
With a similar argument to that in the proof of (i) with the assumption (1), one can

show that (i) with the assumption (2), (ii)–(iii) hold. �

REMARK 4.1. Theorem 5.5 of [16] and Theorem 3.6 of [17] give several similar

inequalities as those in Theorem 4.3 with the assumption that f (1)
0 = f (2)

0 and f (1)
N =

f (2)
N . In addition, it is required in Theorem 5.5 of [16] that w(1) = w(2) . Note that it is

not required in Theorem 4.3 that f (1)
N = f (2)

N and w(1) = w(2) ; and it is not required in

(1)–(2) and (4)–(7) in Theorem 4.3 that f (1)
0 = f (2)

0 . Thus, Theorem 4.3 can be regarded
as a generalization of the corresponding results in Theorem 5.5 of [16] and Theorem
3.6 of [17].

Combining Theorems 3.3 and 4.3 yields inequalities among eigenvalues of SLPs
with different equations and BCs in OC

1,4 .
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COROLLARY 4.4. Consider the following two different SLPs: (4.2)i and BCs

A(a(i)
12,b

(i)
21) =

[
1 a(i)

12 z 0

0 z b(i)
21 1

]
, i = 1,2. (4.6)i

By λ (i)
n denote the n-th eigenvalue of (4.2)i and (4.6)i . Let f (1)

j � f (2)
j , 0 � j � N−1 ,

q(1)
m � q(2)

m , 1 � m � N , f (1)
N and f (2)

N be two given non-zero real numbers, a(1)
12 � a(2)

12 ,

and b(1)
22 � b(2)

22 .

(i) If one of the following two conditions (1)–(2) holds,

(1) a(1)
12 �= 0 , f (2)

0 a(1)
12 > 0 , and either a(2)

12 < 1/ f (2)
0 or f (1)

0 > 1/a(1)
12 ;

(2) a(1)
12 = 0 , and either a(2)

12 � 1/ f (2)
0 or 1/ f (2)

0 < 0 ;

then there are exactly N eigenvalues λ (i)
n of (4.2)i and (4.6)i , i = 1,2 . Further,

for any given 0 � n � N−1 ,

(a) if λ (1)
n > 0 and w(1)

m � w(2)
m , 1 � m � N , then

λ (1)
n � λ (2)

n ; (4.7)

(b) if λ (1)
n � 0 and w(1)

m � w(2)
m , 1 � m � N , then (4.7) holds.

(ii) If a(1)
12 = a(2)

12 = 1/ f (1)
0 = 1/ f (2)

0 , then there are exactly N − 1 eigenvalues of
(4.2)i and (4.6)i , i = 1,2 . Further, for any given 0 � n � N − 2 , assertions
(a)–(b) in (i) hold.

Proof. Firstly, we show that (i) holds with the assumption (1). Direct compu-

tations imply that μ (i)
1 := a(i)

11b
(i)
22 − a(i)

21b
(i)
12 = 1, μ (i)

2 := a(i)
22b

(i)
12 − a(i)

12b
(i)
22 = −a(i)

12 �= 0,

and η(i) := −μ (i)
2 /μ (i)

1 = a(i)
12 , i = 1,2. If a(2)

12 < 1/ f (2)
0 , then f (2)

0 < 1/a(1)
12 = 1/η(1)

since a(1)
12 � a(2)

12 and f (2)
0 a(1)

12 > 0. If f (1)
0 > 1/a(1)

12 , then f (1)
0 > 1/η(1) . Fix the BC

A(a(1)
12 ,b(1)

21 ) . By (1) of Theorem 4.3, one gets that there are exactly N eigenvalues of
(4.2)1 –(4.6)1 and (4.2)2 –(4.6)1 , and in either case (a) or (b), for each 0 � n � N−1,

λ (1)
n = λn(1/ f (1),q(1),w(1),A(a(1)

12 ,b(1)
21 )) � λn(1/ f (2),q(2),w(2),A(a(1)

12 ,b(1)
21 )). (4.8)

Fix the equation (1/ f (2),q(2),w(2)) . If a(2)
12 < 1/ f (2)

0 , then a(1)
12 � a(2)

12 < 1/ f (2)
0 . If

f (1)
0 > 1/a(1)

12 , then a(2)
12 � a(1)

12 > 1/ f (2)
0 . By Theorem 3.3, one gets that there are exactly

N eigenvalues of (4.2)2 –(4.6)1 and (4.2)2 –(4.6)2 , and for each 0 � n � N−1,

λn(1/ f (2),q(2),w(2),A(a(1)
12 ,b(1)

21 )) � λn(1/ f (2),q(2),w(2),A(a(2)
12 ,b(2)

21 )) = λ (2)
n . (4.9)

Combining (4.8)–(4.9) yields that (4.7) holds.
With a similar argument to that in the proof of (i) with the assumption (1), one can

show that (i) with the assumption (2) and (ii) hold. �
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REMARK 4.2. One can establish inequalities among eigenvalues of SLPs with
different equations and BCs in OC

2,4 , OC
1,3 , and OC

2,3 , separately, with a similar method
to that used in Corollary 4.4. We omit their details.
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