A MATRIX INEQUALITY FOR POSITIVE DOUBLE JOHN DECOMPOSITION

Lulu Ma and Lei Hou
(Communicated by F. Hansen)

Abstract

In 1998, Barthe [2] established the reversed Brascamp-Lieb inequality and its geometric version. The matrix inequality for John decomposition played a key role in the proof of the geometric Brascamp-Lieb inequality (see also Ball [1]). In this paper, we propose a new matrix inequality based on the so called "double John decomposition", which is a generalization of the results of Ball and Barthe.

1. Introduction

The celebrated Brascamp-Lieb inequality states: the multilinear operator on $L_{p_{1}}\left(\mathbb{R}^{n_{1}}\right) \times \cdots \times L_{p_{m}}\left(\mathbb{R}^{n_{m}}\right)$ defined by

$$
F\left(f_{1}, \ldots, f_{m}\right)=\int_{\mathbb{R}^{n}} \prod_{i=1}^{m} f_{i}\left(B_{i} x\right) d x
$$

is saturated by Gaussian functions. For details, see [3, 5, 2].
1n 1998, Barthe [2] established the reverse Brascamp-Lieb inequality which was conjectured by Ball [1]. Especially, he obtained the following well-known geometric Brascamp-Lieb inequality:

THEOREM 1. Let m, n be integers. For $i=1, \ldots, m$, let $\left(c_{i}\right)_{i=1}^{m}$ be positive real numbers, $\left(n_{i}\right)_{i=1}^{m}$ be integers, and let B_{i} be a linear surjective map from \mathbb{R}^{n} onto $\mathbb{R}^{n_{i}}$, satisfying $B_{i} B_{i}^{t}=I_{n_{i}}$ and

$$
\sum_{i=1}^{m} c_{i} B_{i} B_{i}^{t}=I_{n}
$$

If for $i=1, \ldots, m, f_{i}$ is a non-negative integrable function on $\mathbb{R}^{n_{i}}$, then one has

$$
\int_{\mathbb{R}^{n}} \prod_{i=1}^{m} f_{i}^{c_{i}}\left(B_{i} x\right) d x \leqslant \prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i}\right)^{c_{i}}
$$

[^0]and
$$
\int_{\mathbb{R}^{n}}^{*} \sup \left\{\prod_{i=1}^{m} f_{i}^{c_{i}}\left(y_{i}\right): x=\sum_{i=1}^{m} c_{i} B_{i}^{t} y_{i}, y_{i} \in \mathbb{R}^{n_{i}}\right\} d x \geqslant \prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n_{i}}} f_{i}\right)^{c_{i}}
$$

Here \int^{*} denotes the outer integral.
In the proof of Theorem 1, a matrix inequality plays a crucial role: if

$$
\begin{equation*}
B_{i}^{t} B_{i}=I_{n_{i}}, \quad \sum_{i=1}^{m} c_{i} B_{i} B_{i}^{t}=I_{n} \tag{1}
\end{equation*}
$$

and A_{i} are $m_{i} \times m_{i}$ positive definite matrixes, then

$$
\operatorname{det}\left(\sum_{i=1}^{m} c_{i} B_{i} A_{i} B_{i}^{t}\right) \geqslant \prod_{i=1}^{m}\left(\operatorname{det} A_{i}\right)^{c_{i}}
$$

The decomposition of identity satisfying (1) is called a john decomposition. For the case $n_{i}=1, i=1, \ldots, m$, it was crucial in the well-known John theorem, see [1].

In 2011, Li and Leng [4] defined the positive double John basis, and established the following matrix inequality: if $\left(c_{i}\right)_{i=1}^{m}$ are positive numbers, and a sequence of pairs $\left\{u_{i}, v_{i}\right\}_{i=1}^{m}$ satisfies

$$
\begin{equation*}
I_{n}=\sum_{i=1}^{m} c_{i} u_{i} \otimes v_{i} \tag{2}
\end{equation*}
$$

then for $\lambda_{i}, \delta_{i}>0$, one has

$$
\operatorname{det}\left(\sum_{i=1}^{m} c_{i} \lambda_{i} u_{i} \otimes u_{i}\right) \operatorname{det}\left(\sum_{i=1}^{m} c_{i} \delta_{i} v_{i} \otimes v_{i}\right) \geqslant \prod_{i=1}^{m}\left(\lambda_{i} \delta_{i}\right)^{c_{i}}
$$

The decomposition of identity satisfying (2) was called a positive double John basis. Using this matrix inequality, they proved a generalized version of Brascamp-Lieb inequality.

Their result are of dimension 1, but as far as we know, the result of Barthe [2] is a multidimensional version. In this paper we defined the multidimensional version of positive double John decomposition as follows.

DEFINITION 1. Suppose $m \geqslant n, n_{i}<n$ and $c_{i}>0, i=1, \cdots, m$. Let U_{i}, V_{i} be $n_{i} \times n$ matrices. If $V_{i} U_{i}^{t}=I_{n_{i}}$ and

$$
\sum_{i=1}^{m} c_{i} U_{i}^{t} V_{i}=I_{n}
$$

then we say that U_{i}, V_{i} satisfy the positive double John decomposition.
Our main result is the following matrix inequality, which is the generalization of the results of both Barthe [2] and Li and Leng [4].

Theorem 2. (Main) For $c_{i}>0, i=1, \cdots, m$, let U_{i}, V_{i} be $n_{i} \times n$ matrices satisfying the positive double John decomposition. Then for any $n_{i} \times n_{i}$ positive definite diagonal matrices A_{i}, B_{i}, we have

$$
\begin{equation*}
\operatorname{det}\left(\sum_{i=1}^{m} c_{i} U_{i}^{t} A_{i} U_{i}\right) \operatorname{det}\left(\sum_{i=1}^{m} c_{i} V_{i}^{t} B_{i} V_{i}\right) \geqslant \prod_{i=1}^{m}\left(\operatorname{det} A_{i} \cdot \operatorname{det} B_{i}\right)^{c_{i}} . \tag{3}
\end{equation*}
$$

2. Proof of Theorem 2

Now we prove our main result. The following Cauthy-Binet formula is needed.

Lemma 1. Let $m \geqslant n$ be positive integers and $I \subset\{1,2, \ldots, m\}$. Let A be an $n \times m$ matrix and B an $m \times n$ matrix. If A_{I} denotes the square matrix obtained from A by keeping only the columns with indices in I, and B_{I} denotes the square matrix obtained from B by keeping the rows with indices in I, then we have the formula

$$
\operatorname{det}(A B)=\sum_{|I|=n} \operatorname{det}\left(A_{I}\right) \operatorname{det}\left(B_{I}\right) .
$$

Lemma 2. Let P_{i} be $n \times n_{i}$ matrix, and Q_{i} be $n_{i} \times n$ matrix, for $i=1, \ldots, m$. Let $I_{i} \subseteq\left\{1, \cdots, n_{i}\right\}$ with $\left|I_{1}\right|+\cdots+\left|I_{m}\right|=n$, and $I=\left(I_{1}, \ldots, I_{m}\right)$. Denote $|I|=\left|I_{1}\right|+$ $\cdots+\left|I_{m}\right|$. Denote $D_{I}=\left(D_{I_{1}}, \ldots, D_{I_{m}}\right)$, where $D_{I_{j}}^{t}$ is an $n \times\left|I_{j}\right|$ matrix obtained from P_{j} keeping the columns with indices in $I_{j} ;$ and denote $G_{I}=\left(G_{I_{1}}^{t}, \ldots, G_{I_{m}}^{t}\right)^{t}$, where $G_{I_{j}}$ is an $\left|I_{j}\right| \times n$ matrix obtained from Q_{j} keeping the rows with indices in I_{j}. Then

$$
\operatorname{det}\left(\sum_{i=1}^{m} P_{i} Q_{i}\right)=\sum_{|I|=\left|I_{1}\right|+\ldots+\left|I_{m}\right|=n} \operatorname{det}\left(D_{I}\right) \operatorname{det}\left(G_{I}\right) .
$$

Proof. Clearly,

$$
\sum_{i=1}^{m} P_{i} Q_{i}=\left(P_{1}, \ldots, P_{m}\right)_{n \times\left(n_{1}+\cdots+n_{m}\right)}\left(\begin{array}{c}
Q_{1} \\
\vdots \\
Q_{m}
\end{array}\right)_{\left(n_{1}+\cdots+n_{m}\right) \times n} .
$$

By Lemma 1, we get the desired result.
Proof of Theorem 2. Let $I_{i} \subseteq\left\{1, \cdots, n_{i}\right\}$ with $\left|I_{1}\right|+\cdots+\left|I_{m}\right|=n$, and $I=\left(I_{1}, \ldots, I_{m}\right)$. Denote $|I|=\left|I_{1}\right|+\cdots+\left|I_{m}\right|$. Let $D_{I}^{t}=\left(D_{I_{1}}^{t}, \ldots, D_{I_{m}}^{t}\right)$, where $D_{I_{j}}^{t}$ is an $n \times\left|I_{j}\right|$ matrix obtained from U_{j}^{t} keeping the columns with indices in I_{j}; and let $G_{I}=\left(G_{I_{1}}^{t}, \ldots, G_{I_{m}}^{t}\right)^{t}$, where $G_{I_{j}}$ is an $\left|I_{j}\right| \times n$ matrix obtained from V_{j} keeping the rows with indices in I_{j}.

Note that

$$
\begin{aligned}
\sum_{i=1}^{m} c_{i} U_{i}^{t} V_{i} & =\left(c_{1} U_{1}^{t}, \ldots, c_{m} U_{m}^{t}\right)_{n \times\left(n_{1}+\cdots+n_{m}\right)}\left(\begin{array}{c}
V_{1} \\
\vdots \\
V_{m}
\end{array}\right)_{\left(n_{1}+\cdots+n_{m}\right) \times n} \\
& \doteq\left(c_{1} D_{1}^{1}, \ldots, c_{1} D_{1}^{n_{1}}, \ldots, c_{m} D_{m}^{1}, \ldots, c_{m} D_{m}^{n_{m}}\right)_{n \times\left(n_{1}+\cdots+n_{m}\right)}\left(\begin{array}{c}
G_{1}^{1} \\
\vdots \\
G_{1}^{n_{1}} \\
\vdots \\
G_{m}^{1} \\
\vdots \\
G_{m}^{n_{m}}
\end{array}\right)_{\left(n_{1}+\cdots+n_{m}\right) \times n}
\end{aligned}
$$

where D_{i}^{j} is the j-th column of U_{i}^{t} and G_{i}^{j} is the j-th row of V_{i}.
Write $c_{I}=\prod_{i=1}^{m} c_{i}^{\left|I_{i}\right|}$. Substituting $P_{i}=c_{i} U_{i}^{t}$ and $Q_{i}=V_{i}$ into Lemma 2, we obtain

$$
\begin{equation*}
1=\operatorname{det} I_{n}=\operatorname{det}\left(\sum_{i=1}^{m} c_{i} U_{i}^{t} V_{i}\right)=\sum_{|I|=\left|I_{1}\right|+\ldots+\left|I_{m}\right|=n} c_{I} \operatorname{det}\left(D_{I}\right) \operatorname{det}\left(G_{I}\right) \tag{4}
\end{equation*}
$$

Denote $n_{i} \times n_{i}$ positive definite diagonal matrices A_{i}, B_{i} by

$$
A_{i}=\left(\begin{array}{ccc}
a_{i 1} & & \\
& \ddots & \\
& & a_{i n_{i}}
\end{array}\right), \quad B_{i}=\left(\begin{array}{llll}
b_{i 1} & & \\
& \ddots & \\
& & \\
& & b_{i n_{i}}
\end{array}\right)
$$

We see that

$$
\left(\begin{array}{c}
A_{1} V_{1} \\
\vdots \\
A_{m} V_{m}
\end{array}\right)_{\left(n_{1}+\cdots+n_{m}\right) \times n}=\left(\begin{array}{c}
a_{11} G_{1}^{1} \\
\vdots \\
a_{1 n_{1}} G_{1}^{n_{1}} \\
\vdots \\
a_{m 1} G_{m}^{1} \\
\vdots \\
a_{m n_{m}} G_{m}^{n_{m}}
\end{array}\right)_{\left(n_{1}+\cdots+n_{m}\right) \times n}
$$

Substituting $P_{i}=c_{i} U_{i}^{t}$ and $Q_{i}=A_{i} V_{i}$ into Lemma 2, we have

$$
\operatorname{det}\left(\sum_{i=1}^{m} c_{i} U_{i}^{t} A_{i} V_{i}\right)=\sum_{|I|=\left|I_{1}\right|+\ldots+\left|I_{m}\right|=n} a_{I} c_{I} \operatorname{det}\left(D_{I}\right) \operatorname{det}\left(G_{I}\right)
$$

where $a_{I}=\prod_{\substack{j \in I_{i} \\ i=1, \ldots, m}} a_{i j}$.

Applying the arithmetic-geometric means inequality, we have

$$
\begin{aligned}
& \sum_{|I|=\left|I_{1}\right|+\ldots+\left|I_{m}\right|=n} a_{I} c_{I} \operatorname{det}\left(D_{I}\right) \operatorname{det}\left(G_{I}\right) \\
\geqslant & \prod_{|I|=\left|I_{1}\right|+\ldots+\left|I_{m}\right|=n} a_{I}^{c_{I} \operatorname{det}\left(D_{I}\right) \operatorname{det}\left(G_{I}\right)} \\
= & \prod_{i=1}^{m} \prod_{j=1}^{n_{i}} a_{i j}^{|I|=n, I_{i} \ni j} c_{l} c_{I} \operatorname{det}\left(D_{I}\right) \operatorname{det}\left(G_{I}\right)
\end{aligned}
$$

Observe that $V_{i} U_{i}^{t}=I_{n_{i}}$ implies

$$
G_{i}^{j} D_{i}^{j}=1
$$

Let u_{1}, \ldots, u_{n-1} be such that $G_{i}^{j} u_{i}=0$ and $D^{j}, u_{1}, \ldots, u_{n-1}$ are linear independent, then we see

$$
\begin{aligned}
\operatorname{det}\left(\left(I_{n}-c_{i} D^{j} G^{j}\right)\left(D^{j}, u_{1}, \ldots, u_{n-1}\right)\right) & =\operatorname{det}\left(\left(1-c_{i}\right) D^{j}, u_{1}, \ldots, u_{n-1}\right) \\
& =\left(1-c_{i}\right) \operatorname{det}\left(D^{j}, u_{1}, \ldots, u_{n-1}\right)
\end{aligned}
$$

which implies

$$
\operatorname{det}\left(I_{n}-c_{i} D^{j} G^{j}\right)=1-c_{i} .
$$

Therefore, we get

$$
\begin{aligned}
& \sum_{|I|=n, I_{i} \ni j} c_{I} \operatorname{det}\left(D_{I}\right) \operatorname{det}\left(G_{I}\right) \\
= & \sum_{|I|=n} c_{I} \operatorname{det}\left(D_{I}\right) \operatorname{det}\left(G_{I}\right)-\sum_{|I|=n, j \notin I_{i}} c_{I} \operatorname{det}\left(D_{I}\right) \operatorname{det}\left(G_{I}\right) \\
= & \operatorname{det}\left(I_{n}\right)-\operatorname{det}\left(I_{n}-c_{i} G_{i}^{j} D_{i}^{j}\right) \\
= & 1-\left(1-c_{i}\right) \\
= & c_{i} .
\end{aligned}
$$

Now we have shown that

$$
\begin{equation*}
\sum_{|I|=\left|I_{1}\right|+\ldots+\left|I_{m}\right|=n} a_{I} c_{I} \operatorname{det}\left(D_{I}\right) \operatorname{det}\left(G_{I}\right) \geqslant \prod_{i=1}^{m}\left(\prod_{j=1}^{n_{i}} a_{i j}\right)^{c_{i}} \tag{5}
\end{equation*}
$$

Similarly, for A_{i}, B_{i}, we have

$$
\begin{aligned}
\operatorname{det}\left(\sum_{i=1}^{m} c_{i} U_{i}^{t} A_{i} U_{i}\right) & \operatorname{det}\left(\sum_{i=1}^{m} c_{i} V_{i}^{t} B_{i} V_{i}\right) \\
& =\sum_{|I|=n} a_{I} c_{I} \operatorname{det}\left(D_{I}\right)^{2} \sum_{|I|=n} b_{I} c_{I} \operatorname{det}\left(G_{I}\right)^{2}
\end{aligned}
$$

which is greater than

$$
\left(\sum_{|I|=n} c_{I} \sqrt{a_{I} b_{I}} \operatorname{det}\left(D_{I}\right) \operatorname{det}\left(G_{I}\right)\right)^{2}
$$

employing the Cauchy-Schwartz inequality. Applying (5) we get

$$
\operatorname{det}\left(\sum_{i=1}^{m} c_{i} U_{i}^{t} A_{i} U_{i}\right) \operatorname{det}\left(\sum_{i=1}^{m} c_{i} V_{i}^{t} B_{i} V_{i}\right) \geqslant \prod_{i=1}^{m}\left(\operatorname{det} A_{i} \cdot \operatorname{det} B_{i}\right)^{c_{i}} .
$$

This completes the proof.

Acknowledgements. The authors are grateful to Professor Gangsong Leng for his encouragements and valuable suggestions. In addition, the authors would like to thank the anonymous referees for their careful reading and valuable suggestions.

Research of the authors are supported by NSFC 11271247.

REFERENCES

[1] K. Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. 44 (1991), 351-359.
[2] F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), 685-693.
[3] H. Brascamp, E. Lieb, Best constants in Young's inequality, its converse and its generalization to more than three functions, Adv. Math. 20 (1976), 151-173.
[4] A. Li, G. Leng, Brascamp-Lieb inequality for positive double John basis and its reverse, Sci. China Math. 54 (2011), 399-410.
[5] E. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), 179-208.

Lulu Ma
Department of Mathematics
Shanghai University
Shanghai 200444, China
e-mail: amandalulu918@163.com
Lei Hou
Department of Mathematics
Shanghai University
Shanghai 200444, China
e-mail: houlei@shu.edu.cn

[^1]
[^0]: Mathematics subject classification (2010): 26D15, 52A21, 52A40.
 Keywords and phrases: Matrix inequality, John decomposition. positive double John decomposition.
 The authors would like to acknowledge the support from the National Natural Science Foundation of China (11271247).

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

