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Abstract. In 1998, Barthe [2] established the reversed Brascamp-Lieb inequality and its geomet-
ric version. The matrix inequality for John decomposition played a key role in the proof of the
geometric Brascamp-Lieb inequality (see also Ball [1]). In this paper, we propose a new matrix
inequality based on the so called “double John decomposition”, which is a generalization of the
results of Ball and Barthe.

1. Introduction

The celebrated Brascamp-Lieb inequality states: the multilinear operator on
Lp1(R

n1)×·· ·×Lpm(Rnm) defined by

F( f1, . . . , fm) =
∫

Rn

m

∏
i=1

fi(Bix)dx

is saturated by Gaussian functions. For details, see [3, 5, 2].
1n 1998, Barthe [2] established the reverse Brascamp-Lieb inequality which was

conjectured by Ball [1]. Especially, he obtained the following well-known geometric
Brascamp-Lieb inequality:

THEOREM 1. Let m,n be integers. For i = 1, . . . ,m, let (ci)m
i=1 be positive real

numbers, (ni)m
i=1 be integers, and let Bi be a linear surjective map from R

n onto R
ni ,

satisfying BiBt
i = Ini and

m

∑
i=1

ciBiB
t
i = In.

If for i = 1, . . . ,m, fi is a non-negative integrable function on R
ni , then one has

∫
Rn

m

∏
i=1

f ci
i (Bix)dx �

m

∏
i=1

(∫
R

ni
fi
)ci

,
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and ∫ ∗

Rn
sup
{ m

∏
i=1

f ci
i (yi) : x =

m

∑
i=1

ciB
t
iyi,yi ∈ R

ni

}
dx �

m

∏
i=1

(∫
R

ni
fi
)ci

.

Here
∫ ∗ denotes the outer integral.

In the proof of Theorem 1, a matrix inequality plays a crucial role: if

Bt
iBi = Ini ,

m

∑
i=1

ciBiB
t
i = In, (1)

and Ai are mi ×mi positive definite matrixes, then

det
( m

∑
i=1

ciBiAiB
t
i

)
�

m

∏
i=1

(
detAi

)ci .

The decomposition of identity satisfying (1) is called a john decomposition. For the
case ni = 1, i = 1, . . . ,m, it was crucial in the well-known John theorem, see [1].

In 2011, Li and Leng [4] defined the positive double John basis, and established
the following matrix inequality: if (ci)m

i=1 are positive numbers, and a sequence of pairs
{ui,vi}m

i=1 satisfies

In =
m

∑
i=1

ciui⊗ vi, (2)

then for λi,δi > 0, one has

det
( m

∑
i=1

ciλiui⊗ui

)
det
( m

∑
i=1

ciδivi ⊗ vi

)
�

m

∏
i=1

(λiδi)ci .

The decomposition of identity satisfying (2) was called a positive double John basis.
Using this matrix inequality, they proved a generalized version of Brascamp-Lieb in-
equality.

Their result are of dimension 1, but as far as we know, the result of Barthe [2] is
a multidimensional version. In this paper we defined the multidimensional version of
positive double John decomposition as follows.

DEFINITION 1. Suppose m � n , ni < n and ci > 0, i = 1, · · · ,m. Let Ui , Vi be
ni×n matrices. If ViUt

i = Ini and

m

∑
i=1

ciU
t
i Vi = In,

then we say that Ui,Vi satisfy the positive double John decomposition.

Our main result is the following matrix inequality, which is the generalization of
the results of both Barthe [2] and Li and Leng [4].
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THEOREM 2. (Main) For ci > 0 , i = 1, · · · ,m, let Ui , Vi be ni × n matrices
satisfying the positive double John decomposition. Then for any ni×ni positive definite
diagonal matrices Ai,Bi , we have

det
( m

∑
i=1

ciU
t
i AiUi

)
det
( m

∑
i=1

ciV
t
i BiVi

)
�

m

∏
i=1

(
detAi ·detBi

)ci
. (3)

2. Proof of Theorem 2

Now we prove our main result. The following Cauthy-Binet formula is needed.

LEMMA 1. Let m � n be positive integers and I ⊂ {1,2, . . . ,m}. Let A be an
n×m matrix and B an m× n matrix. If AI denotes the square matrix obtained from
A by keeping only the columns with indices in I , and BI denotes the square matrix
obtained from B by keeping the rows with indices in I , then we have the formula

det(AB) = ∑
|I|=n

det(AI)det(BI).

LEMMA 2. Let Pi be n× ni matrix, and Qi be ni × n matrix, for i = 1, . . . ,m.
Let Ii ⊆ {1, · · · ,ni} with |I1|+ · · ·+ |Im| = n, and I = (I1, . . . , Im). Denote |I| = |I1|+
· · ·+ |Im|. Denote DI = (DI1 , . . . ,DIm) , where Dt

Ij
is an n× |I j| matrix obtained from

Pj keeping the columns with indices in Ij; and denote GI = (Gt
I1
, . . . ,Gt

Im )t , where GIj
is an |I j|×n matrix obtained from Qj keeping the rows with indices in Ij. Then

det
( m

∑
i=1

PiQi

)
= ∑

|I|=|I1|+...+|Im|=n

det(DI)det(GI).

Proof. Clearly,

m

∑
i=1

PiQi =
(
P1, . . . ,Pm

)
n×(n1+···+nm)

⎛
⎜⎝

Q1
...

Qm

⎞
⎟⎠

(n1+···+nm)×n

.

By Lemma 1, we get the desired result. �

Proof of Theorem 2. Let Ii ⊆{1, · · ·,ni} with |I1|+· · ·+|Im|= n, and I = (I1, . . . , Im).
Denote |I| = |I1|+ · · ·+ |Im|. Let Dt

I = (Dt
I1
, . . . ,Dt

Im ) , where Dt
Ij

is an n×|I j| matrix

obtained from Ut
j keeping the columns with indices in I j; and let GI = (Gt

I1
, . . . ,Gt

Im)t ,
where GIj is an |I j|×n matrix obtained from Vj keeping the rows with indices in I j.
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Note that

m

∑
i=1

ciU
t
i Vi =

(
c1U

t
1, . . . ,cmUt

m

)
n×(n1+···+nm)

⎛
⎜⎝

V1
...

Vm

⎞
⎟⎠

(n1+···+nm)×n

.=
(
c1D

1
1, . . . ,c1D

n1
1 , . . . ,cmD1

m, . . . ,cmDnm
m

)
n×(n1+···+nm)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1
1
...

Gn1
1
...

G1
m
...

Gnm
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(n1+···+nm)×n

,

where Dj
i is the j -th column of Ut

i and Gj
i is the j -th row of Vi .

Write cI =
m
∏
i=1

c|Ii|i . Substituting Pi = ciUt
i and Qi = Vi into Lemma 2, we obtain

1 = detIn = det

(
m

∑
i=1

ciU
t
i Vi

)
= ∑

|I|=|I1 |+...+|Im|=n

cI det(DI)det(GI). (4)

Denote ni×ni positive definite diagonal matrices Ai , Bi by

Ai =

⎛
⎜⎝

ai1
. . .

aini

⎞
⎟⎠ , Bi =

⎛
⎜⎝

bi1
. . .

bini

⎞
⎟⎠ .

We see that

⎛
⎜⎝

A1V1
...

AmVm

⎞
⎟⎠

(n1+···+nm)×n

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11G1
1

...
a1n1G

n1
1

...
am1G1

m
...

amnmGnm
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(n1+···+nm)×n

Substituting Pi = ciUt
i and Qi = AiVi into Lemma 2, we have

det

(
m

∑
i=1

ciU
t
i AiVi

)
= ∑

|I|=|I1|+...+|Im|=n

aIcI det(DI)det(GI),

where aI = ∏
j∈Ii

i=1,...,m

ai j .
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Applying the arithmetic-geometric means inequality, we have

∑
|I|=|I1|+...+|Im|=n

aIcI det(DI)det(GI)

� ∏
|I|=|I1 |+...+|Im|=n

acI det(DI)det(GI )
I

=
m

∏
i=1

ni

∏
j=1

a
∑

|I|=n,Ii� j
cI det(DI )det(GI )

i j .

Observe that ViUt
i = Ini implies

Gj
i D

j
i = 1.

Let u1, . . . ,un−1 be such that Gj
i ui = 0 and Dj,u1, . . . ,un−1 are linear independent,

then we see

det
(
(In− ciD

jGj)(Dj,u1, . . . ,un−1)
)

= det
(
(1− ci)Dj,u1, . . . ,un−1

)
= (1− ci)det(Dj,u1, . . . ,un−1),

which implies
det(In− ciD

jGj) = 1− ci.

Therefore, we get

∑
|I|=n,Ii� j

cI det(DI)det(GI)

= ∑
|I|=n

cI det(DI)det(GI)− ∑
|I|=n, j/∈Ii

cI det(DI)det(GI)

= det(In)−det(In − ciG
j
i D

j
i )

= 1− (1− ci)
= ci.

Now we have shown that

∑
|I|=|I1|+...+|Im|=n

aIcI det(DI)det(GI) �
m

∏
i=1

( ni

∏
j=1

ai j

)ci
. (5)

Similarly, for Ai , Bi , we have

det

(
m

∑
i=1

ciU
t
i AiUi

)
det

(
m

∑
i=1

ciV
t
i BiVi

)

= ∑
|I|=n

aIcI det(DI)2 ∑
|I|=n

bIcI det(GI)2,
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which is greater than

(
∑
|I|=n

cI

√
aIbI det(DI)det(GI)

)2

employing the Cauchy-Schwartz inequality. Applying (5) we get

det

(
m

∑
i=1

ciU
t
i AiUi

)
det

(
m

∑
i=1

ciV
t
i BiVi

)
�

m

∏
i=1

(detAi ·detBi)ci .

This completes the proof. �
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