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QUADRATIC INTERPOLATION OF THE HEINZ MEANS

FUAD KITTANEH, MOHAMMAD SAL MOSLEHIAN AND MOHAMMAD SABABHEH

(Communicated by J.-C. Bourin)

Abstract. The main goal of this article is to present several quadratic refinements and reverses
of the well known Heinz inequality, for numbers and matrices, where the refining term is a
quadratic function in the mean parameters. The proposed idea introduces a new approach to
these inequalities, where polynomial interpolation of the Heinz function plays a major role. As a
consequence, we obtain a new proof of the celebrated Heron-Heinz inequality proved by Bhatia,
then we study an optimization problem to find the best possible refinement. As applications, we
present matrix versions including unitarily invariant norms, trace and determinant versions.

1. Introduction

The celebrated Heinz inequality states that

2
√

ab � atb1−t +a1−tbt � a+b, a,b > 0, 0 � t � 1. (1)

In [5], a matrix version of this inequality was shows as follows

2|||A 1
2 XB

1
2 ||| � |||AtXB1−t +A1−tXBt ||| � |||AX +XB|||, 0 � t � 1, (2)

where X ∈ Mn , the algebra of all n×n complex matrices, and A,B ∈ M
+
n , the cone of

positive semidefinite matrices in Mn. In the setting of matrices, the notation ||| · ||| will
be used for an arbitrary unitarily invariant norm on Mn. Recall that these are norms
on Mn with the property |||UXV ||| = |||X ||| for all X ∈ Mn and any unitary matrices
U,V ∈ Mn.

In the past few years, a considerable attention has been put towards refining or
reversing these inequalities, and some related inequalities. We refer the reader to [1,
4, 8, 9, 10, 12, 17, 18]. For example, in [10], the convexity of the function t �→ ||| �
|||AtXB1−t +A1−tXBt ||| was utilized to find some refining terms of (2). Then in [4, 15],
further refinements were obtained, modeling the same idea of [10]; see also [1, 6]. For
example, it was shown in [10] that

f (t) � f (t/2) � 1
t

∫ t

0
f (x)dx � f (0)+ f (1)

2
� f (0), 0 � t � 1

2
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where f (t) = |||AtXB1−t +A1−tXBt |||. On the other hand [8, 9] presented the refine-
ment and reverse

‖AtXB1−t +A1−tXBt‖2
2 + r(t)‖AX −XB‖2

2

� ‖AX +XB‖2
2

� ‖AtXB1−t +A1−tXBt‖2
2 +R(t)‖AX −XB‖2

2, 0 � t � 1,

where r(t) = min{t,1− t} , R(t) = max{t,1− t} and ‖·‖2 is the Hilbert-Schmidt norm
defined, for A ∈ Mn , as follows

‖A‖2
2 = ∑

i, j

|ai j|2 = tr(AA∗).

In the above refinements, and many others, r(t) or R(t) term is linear in the pa-
rameter t.

Earlier, Bhatia [2] showed that, for α(t) = (1−2t)2,

Ht(a,b) � Kα(t)(a,b), 0 � t � 1, (3)

where

Ht(a,b) =
atb1−t +a1−tbt

2
and Kt(a,b) = (1− t)

√
ab+ t

a+b
2

are the Heinz and Heron means, respectively.
Notice that both the Heinz means Ht(a,b) and the Heron means Kt(a,b) interpo-

late between the geometric mean a#b :=
√

ab and the arithmetic mean a∇b := a+b
2 .

Inequality (3) attracted researchers who investigated this inequality and some pos-
sible matrix versions. We refer the reader to [14, 7, 19] for some nice discussion and
history of these inequalities.

Rewriting (3), we obtain the following refinement of the Heinz inequality

Ht(a,b)+4t(1− t)(a∇b−a#b)� a∇b.

This last refinement has been explored recently in [13], where some matrix versions
were obtained.

Our motivation of the current work begins with this last inequality and its relation
to (3). So, our first concern is why α(t) is given this way, and is there any alternative?
It turns out (3) follows from a more general inequality that treats quadratic interpola-
tion of the Heinz means. More precisely, if we let H(t) := Ht(a,b) and we find the
quadratic polynomial interpolating H at t = 0, 1

2 ,1, we obtain Kα(t). Therefore, (3)
has its geometric meaning now. We refer the reader to [17] for an interpolation idea
that treated Young’s inequality.

But then, if this is the origin of (3), what about taking the quadratic polynomial
interpolating Ht(a,b) at 0,τ,1, for an arbitrary value τ ∈ (0,1). This idea will be the
main work in this paper, where we describe these polynomials and their relation to
the Heinz means. Then, we discuss the “best” possible choice of τ . This decision
will depend on the error between the Heinz means H(t) and the quadratic polynomial
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Fτ(t) . We will show that the 1-norm difference between H(t) and Fτ(t) is minimized
at the unique root of 8τ3−12τ2 +1 = 0 in

(
0, 1

2

)
. This is an interesting result because

this τ is independent of a and b. Our numerical experiments show that other norms are
minimized at values that depend on a and b , which makes the 1-norm an interesting
case.

To prove our results, we need to prove monotonicity of certain functions.
Our first main result in this paper states that if τ ∈ (0,1) , r(τ) = min{τ,1− τ} ,

R(τ) = 1− r(τ) and ν � r(τ) or ν � R(τ), we have the inequality

a∇b−Hτ(a,b)
τ(1− τ)

� a∇b−Hν(a,b)
ν(1−ν)

,

while we have the reversed inequality when r(τ) � ν � R(τ) . Then letting τ = 1
2 im-

plies (3). Therefore, this is a generalization and a new proof of (3). This last inequality
can be thought of as a quadratic refinement and reverse of the Heinz inequality. Then
this idea is explored to obtain squared versions and multiplicative versions.

Once these numerical results are proved, we present their matrix versions, where
unitarily invariant norms, trace and determinants are involved. Some matrix versions
are as follows. For certain τ,ν , one has

‖AνXB1−ν +A1−νXBν‖2
2 +

ν(1−ν)
τ(1− τ)

[‖AX +XB‖2
2−‖AτXB1−τ +A1−τXBτ‖2

2

]
� ‖AX +XB‖2

2,

which is a quadratic refinement of the matrix Heinz inequality. If we let τ = 1
2 in

this inequality, we obtain a recent result of Krnić [13]. Another matrix version for any
unitarily invariant norm will be

|||AνXB1−ν +A1−νXBν |||

+
ν(1−ν)
τ(1− τ)

[
(|||AX |||+ |||XB|||)− (|||AX |||τ |||XB|||1−τ + |||AX |||1−τ|||XB|||τ)]

� |||AX |||+ |||XB|||.

Further results about the determinant and the trace will be presented too.
For the notations adopted in this paper, we use

a∇t b = (1− t)a+ tb and a#tb = a1−tbt

for the weighted scalar arithmetic and geometric means, while

A∇tB = (1− t)A+ tB and A#tB = A
1
2

(
A− 1

2 BA− 1
2

)t
A

1
2

will be used for the matrix arithmetic and geometric means, when A,B ∈ M
++
n , the

cone of positive definite matrices in Mn.
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2. Main results

2.1. Scalar results

In this part of the paper, we present the scalar results that we need to accomplish
the matrix versions. The main tool in proving the scalar results is some delicate and
tricky computations.

2.1.1. The main scalar results

THEOREM 1. For c > 0, let

f (t) =
1+ c− (ct + c1−t)

t(1− t)
.

Then f is decreasing on
(
0, 1

2

)
and is increasing on

( 1
2 ,1

)
.

Proof. Notice that f (t) = g(t)+g(1− t), where

g(t) =
1∇t c−1#tc

t(1− t)
.

We prove that g is convex on (0,1), then we use this observation to prove the stated
facts about f . Direct Calculus computations show that

g′′(t) = − h(c)
t3(1− t)3 ,

where

h(c) = −2+2t(3+ t(−3+ t− ct))+ ct(2+6(−1+ t)t
+(−1+ t)t logc(2−4t +(−1+ t)t logc)).

Then

h′(c) =
t3

c
k(t) where k(t) = −2c+ ct(2+(−1+ t) logc(−2+(−1+ t) logc))

and
k′(t) = ct(1− t)2 log3 c.

We discuss two cases:
Case I: If c > 1, then clearly k′(t)> 0 and k is an increasing function of t ∈ (0,1).

In particular, k(t) � k(1) = 0, hence h′(c) < 0 and h is decreasing in c ∈ (1,∞). That
is, h(c) � h(1) = 0. Now since h(c) � 0 and 0 < t < 1, we infer that g′′(t) � 0, when
c > 1.

Case II: If 0 < c < 1, then clearly k′(t) < 0 and k is decreasing in t ∈ (0,1).
That is, k(t) � k(1) = 0 and h′(c) � 0. Since h is increasing in c ∈ (0,1), we have
h(c) � h(1) = 0 and hence, g′′(t) � 0.
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Thus, we have shown that, for any c > 0, g is convex on (0,1). Now since
f (t) = g(t) + g(1− t), f is clearly convex. Notice that f (0) = f (1) . Since f is
convex it follows that either f is monotone on (0,1) or is decreasing on (0,t0) and
is increasing on (t0,1) for some 0 < t0 < 1. But since f (0) = f (1) , we have the later
case. Thus, there exists t0 ∈ (0,1) with the above monotonicity property. We assert
that t0 = 1

2 . Notice first that f ′
(

1
2

)
= 0. By Taylor theorem, for any t ∈ (0,1) , there

exists ξt between 1
2 and t such that

f (t) = f

(
1
2

)
+

f ′′(ξt)
2

(
t− 1

2

)2

� f

(
1
2

)
,

where the last inequality follows from the fact that f ′′ > 0. This proves that f attains
its minimum at t0 = 1

2 . This completes the proof. �

COROLLARY 1. Let a,b > 0 and 0 � t � 1. Then the following quadratic refine-
ment of Heinz inequality holds(

atb1−t +a1−tbt)+4t(1− t)(
√

a−
√

b)2 � a+b. (4)

Proof. For c = a
b , let f (t) = 1+c−(ct+c1−t)

t(1−t) . Then f attains its minimum at t0 = 1
2 .

That is, f (t) � f
(

1
2

)
. Simplifying this simple inequality implies the result. �

In particular, we obtain the following Heinz-Heron mean inequality. The proof
follows immediately by simplifying (4).

COROLLARY 2. Let a,b > 0 , 0 � t � 1 and let Ht(a,b) and Kt(a,b) denote the
Heinz and Heron means respectively. Then

Ht(a,b) � Kα(t)(a,b), where α(t) = 1−4t(1− t). (5)

Thus, this is another proof of the well known inequality (3) proved by Bhatia in
[2]. In fact, even this follows from a more general comparison of the Heinz means. The
following result presents a quadratic refinement and reverse of the Heinz inequality.

COROLLARY 3. Let a,b > 0 and 0 < ν < τ � 1
2 . Then

a∇b−Hτ(a,b)
τ(1− τ)

� a∇b−Hν(a,b)
ν(1−ν)

. (6)

The inequality is reversed if 1
2 � ν < τ < 1.

Proof. For c = a
b , the function f (t) = 1+c−(ct+c1−t)

t(1−t) is decreasing when t < 1
2 and

is increasing when t > 1
2 . Now if ν < τ � 1

2 , we have f (τ) � f (ν) , which implies
the desired inequality in this case. On the other hand, if 1

2 � ν < τ, then f (τ) � f (ν),
which implies the reversed inequality. �

Since the functions we are dealing with are symmetric about t = 1
2 , a full compar-

ison is as follows.
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COROLLARY 4. Let a,b > 0 and fix τ ∈ (0,1). Then

a∇b−Hτ(a,b)
τ(1− τ)

� a∇b−Hν(a,b)
ν(1−ν)

for ν � r(τ) and ν � R(τ). On the other hand if r(τ) � ν � R(τ) , the inequality is
reversed.

In fact the above inequalities have their own geometric meaning, as follows. Let
H(t) = Ht(a,b) = atb1−t+a1−tbt

2 and fix any τ ∈ (0,1). Using the points (0,H(0)) ,
(τ,H(τ)) and (1,H(1)) , we may find a quadratic polynomial that interpolates f at
0,τ,1. Consider the function

Fτ(t) = a∇b− a∇b−Hτ(a,b)
τ(1− τ)

t(1− t). (7)

Notice that, when τ is fixed, Fτ is a quadratic polynomial which coincides with H at
t = 0,τ,1. That is, Fτ is the quadratic interpolating polynomial of Ht(a,b).

From Corollary 4, it follows that Ht(a,b) � Fτ(t) when r(τ) � t � R(t) and
Ht(a,b) � Fτ(t) when t � r(τ) or t � R(τ). Notice that when τ = 1

2 , we are left
with Ht(a,b) � F1

2
(t) , 0 � t � 1, which is the known comparison between the Heinz

and Heron means!
Our next target is to present a squared version of these refinements. This will help

prove some Hilbert-Schmidt norm inequalities for matrices.

THEOREM 1. Let a,b > 0 and 0 < ν , τ < 1. If ν � r(τ) or ν � R(τ) , then

(a∇b)2−Hτ(a,b)2

τ(1− τ)
� (a∇b)2−Hν(a,b)2

ν(1−ν)
. (8)

On the other hand, if r(τ) � ν � R(τ) , the inequality is reversed.

Proof. Notice that, when ν � r(τ) or ν � R(τ) ,

4
[
(a∇b)2−Hν(a,b)2]= (a+b)2− (aνb1−ν +a1−νbν)2

= 2
[
a2∇b2−Hν(a2,b2)

]
� 2

ν(1−ν)
τ(1− τ)

[
a2∇b2−Hτ(a2,b2)

]
=

ν(1−ν)
τ(1− τ)

[
(a+b)2− (aτb1−τ +a1−τbτ)2] .

Then dividing by 4 implies the desired result when ν � r(τ) or ν � R(τ) . The other
case follows similarly. �

Notice that the above refinements and reverses of Heinz inequality have been found

using the monotonicity of the function f (t) = 1+c−(ct+c1−t)
t(1−t) . Convexity of this function,

which we have shown in Theorem 1 implies the following reverse.
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COROLLARY 5. Let a,b > 0 and 0 � t � 1. Then

(
atb1−t +a1−tbt)+ t(1− t)(b−a) log

b
a

� a+b. (9)

Proof. For c = a
b , the function f (t) = 1+c−(ct+c1−t)

t(1−t) is convex. Therefore, f (t) �
(1− t) f (0)+ t f (1). Simplifying this inequality implies the result. �

In [8], a reversed version of Heinz inequality was proved as follows(
atb1−t +a1−tbt)2 +2max{t,1− t}(a−b)2 � (a+b)2. (10)

Numerical experiments show that neither (9) nor (10) is uniformly better than the
other. However, these experiments show that, for most values of t , (9) is better than
(10) when a

b is relatively small and (10) is better when a
b is large. In fact, a squared

logarithmic-refinement maybe obtained as follows.

THEOREM 2. Let a,b > 0 and 0 � t � 1. Then

(atb1−t +a1−tbt)2 +2t(1− t)(b2−a2) log
b
a

� (a+b)2.

Proof. Notice that, utilizing (9),

(a+b)2− (atb1−t +a1−tbt)2 = (a2 +b2)− ((a2)t(b2)1−t +(a2)1−t(b2)t
)

� t(1− t)(b2−a2) log
b2

a2 .

This completes the proof. �
The above refinement are all additive versions, where the refining term is added to

one side of the inequality. Multiplicative versions can be found as follows.

LEMMA 1. For c > 0 , let

f (t) =
(

1+ c
ct + c1−t

) 1
t(1−t)

.

Then f is increasing on
(
0, 1

2

)
and is decreasing on

( 1
2 ,1

)
.

Proof. We prove that f is increasing on
(
0, 1

2

)
, then the conclusion for the other

interval follows by symmetry of f . Thus, for 0 < t < 1
2 , let F(t) = log f (t). That is,

F(t) =
log(c+1)− log(ct + c1−t)

t(1− t)
.

Then

F ′(t) =
G(t)

(c+ c2t)t2(1− t)2 ,
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where

G(t) = (c− c2t)t(1− t) logc+(c+ c2t)(2t −1)
(
log(c+1)− log(ct + c1−t)

)
= (c− c2t)g(t),

for

g(t) = t(1− t) logc+
(c+ c2t)(2t−1)

(
log(c+1)− log(ct + c1−t)

)
c− c2t .

Further, we have

g′(t) = 2
log(c+1)− log(ct + c1−t)

(c− c2t)2 h(t),

where
h(t) = c2− c4t +2c1+2t(2t−1) logc.

Finally we have

h′(t) = 4c2tk(t) logc wherek(t) = c− c2t +(2c t− c) logc

and
k′(t) = 2(c− c2t) logc.

Now we treat two cases, based on whether c > 1 or c < 1.
If c > 1, then clearly k′(t) > 0 because 0 < t < 1

2 , and k is increasing. Hence,
k(t) � k

(
1
2

)
= 0 and h is decreasing. Therefore, h(t) � h

(
1
2

)
= 0 and g is increasing.

Since g is increasing, we have g(t) � g(0) = 0, and hence G � 0. This shows that
F ′(t) � 0 when c > 1 and 0 < t � 1

2 .

If 0 < c < 1, then k′(t) > 0 and k � 0. Hence h′ > 0 and h(t) � h
(

1
2

)
= 0. That

is g′ < 0 and g(t) � g(0) = 0. Since g(t) � 0, 0 < t < 1
2 and 0 < c < 1, it follows

that G(t) � 0 and F ′(t) � 0.
Thus, we have shown that for 0 < t < 1

2 and c > 0, we have F ′(t) � 0. This
completes the proof. �

In particular, f (t) =
(

1+c
ct+c1−t

) 1
t(1−t) attains its maximum at t0 = 1

2 . This entails

the following reversed version of the Heinz inequality.

COROLLARY 6. Let a,b > 0 and let 0 � t � 1. Then

a+b �
(

a∇b
a#b

)4t(1−t) (
atb1−t +a1−tbt) .

A full Comparison can be given as follows.

COROLLARY 7. Let a,b > 0 and let 0 < ν,τ < 1. If ν � r(τ) or ν � R(τ) , then

(
a∇b

Hν(a,b)

) 1
ν(1−ν)

�
(

a∇b
Hτ(a,b)

) 1
τ(1−τ)

. (11)

On the other hand, if r(τ) � ν � R(τ), the inequality is reversed.
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Notice that (11) maybe though of as a refinement and a reverse of the Heinz in-
equality Hν (a,b) � a∇b, if written as

Hτ(a,b)
(

a∇b
Hν(a,b)

) τ(1−τ)
ν(1−ν)

� a∇b �
(

a∇b
Hτ(a,b)

) ν(1−ν)
τ(1−τ)

Hν(a,b).

In fact, Corollary 11 does not provide a refinement and a reverse of the Heinz
inequality Hν (a,b) � a∇b, but it also provides a refinement of the first inequality of
(1), as follows. Letting τ = 1

2 in (11), we have

2
√

ab � (a+b)
(

aνb1−ν +a1−νbν

a+b

) 1
4ν(1−ν)

, 0 < ν < 1.

Now noting that aνb1−ν+a1−νbν

a+b � 1 and 1
4ν(1−ν) � 1, we have

2
√

ab � (a+b)
(

aνb1−ν +a1−νbν

a+b

) 1
4ν(1−ν)

� (a+b)
aνb1−ν +a1−νbν

a+b
= aνb1−ν +a1−νbν , 0 < ν < 1.

2.1.2. The best quadratic interpolator of the Heinz means

We have observed in the previous subsection that the Heinz inequality can be re-
fined or reversed by looking at the quadratic polynomial interpolating Ht at t = 0,τ,1
for any choice of 0 < τ < 1. Moreover, we have seen that the celebrated result of Bhatia
[2] about the comparison between the Heinz and Heron means happens to be a special
case of this general interpolation idea, taking τ = 1

2 .
In this part of the paper, we try to describe the “best” quadratic polynomial Fτ

that interpolates Ht . Thus, we are searching for τ that minimizes the error ‖Ht −Fτ‖ ,
for some norm. We present this best interpolator using the norm ‖ · ‖1. In particular,
we show that ‖Ht −Fτ‖1 will have its minimum value when τ = τ∗ , where τ∗ is the
unique root of 8τ3 − 12τ2 + 1 = 0 between 0 and 1

2 . Thus, τ∗ ≈ 0.326352. Simple
calculations show that this cubic polynomial has 3 real roots, among which τ∗ is the
only root in

(
0, 1

2

)
.

It is interesting that this value τ∗ is independent of a and b .
In the following result, Fτ is the quadratic polynomial interpolating Ht(a,b) at

0,τ,1, as in (7).

THEOREM 2. Let a,b > 0 and let H(t) := Ht(a,b) represent the Heinz means of
a,b. If Fτ is the quadratic interpolator of Ht , then

min
τ

‖H−Fτ‖1 := min
τ

∫ 1

0
|H(t)−Fτ(t)| dt

is attained at τ∗ , the unique root of 8τ3 −12τ2 +1 = 0 in
(
0, 1

2

)
. Moreover, since Ht

and Fτ are symmetric about t = 1
2 , this minimum is also attained at 1− t∗.
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Proof. Without loss of generality, we may assume a = 1. Since both H and Fτ
are symmetric about t = 1

2 , it suffices to investigate the integral over
[
0, 1

2

]
. Moreover,

it suffices to consider τ ∈ [0, 1
2

]
. Therefore, we are searching for τ∗ ∈ [0, 1

2

]
such that

G(τ) :=
∫ 1/2
0 |H(t)−Fτ∗(t)| dt is minimum. By our remark, which followed Corollary

4, we have H(t) � Fτ(t) when t � τ and H(t) � Fτ(t) when τ � t � 1
2 . Therefore, for

0 < τ < 1
2 ,

G(τ) =
∫ 1

2

0
|H(t)−Fτ(t)|dt =

∫ τ

0
(Fτ(t)−H(t))dt +

∫ 1
2

τ
(H(t)−Fτ(t))dt.

Then

G′(τ) =
{

Fτ(τ)+
∫ τ

0

∂Fτ(t)
∂τ

dt−H(τ)
}

+

{
Fτ(τ)−

∫ 1
2

τ

∂Fτ(t)
∂τ

dt−H(τ)

}

=
∫ τ

0

∂Fτ(t)
∂τ

dt−
∫ 1

2

τ

∂Fτ(t)
∂τ

dt,

where the last equation follows noting that Fτ(τ) = H(τ). Calculus computations imply

G′(τ) =
b−τ(8τ3 −12τ2 +1)

24τ2(1− τ)2 f (τ),

where

f (τ) = (1−bτ)(bτ −b)(2τ −1)+ (b2τ −b)(τ −1)τ logb = (b−b2τ)g(τ),

for

g(τ) =
(1−bτ)(bτ −b)(2τ −1)

b−b2τ − τ(τ −1) logb.

We assert that f � 0. Notice first that

g′(τ) =
(bτ −1)(b−bτ)

(b−b2τ)2 h(τ),

where
h(τ) = 2b−2b2τ +(b+b2τ)(2τ −1) logb.

Further,

h′(τ) = 2k(τ) logb where k(τ) = b+b2τ(−1+(2τ−1) logb)

and
k′(τ) = 2b2τ(2τ −1) log2 b.

If b > 1, then k′(τ) � 0 because τ � 1
2 , hence k is decreasing and k(τ) � k

( 1
2

)
=

0. Hence, h′(τ) � 0 and h(τ) � h
(1

2

)
= 0, which implies g′(τ) � 0 and g(τ) � g(0) =

0. Since b > 1, it follows that f (τ) � 0.
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If b < 1, then k′(τ) � 0 and k(τ) � k
(

1
2

)
= 0. Hence h′(τ) � 0 and h(τ) �

h
(

1
2

)
= 0, which then implies g′(τ) � 0 and g(τ) � g(0) = 0. Since 0 < b < 1, it

follows that f (τ) � 0.
Now let τ∗ be the root of �(τ) := 8τ3−12τ2+1 in

(
0, 1

2

)
, and notice that �(τ) �

0 when 0 � τ � τ∗ and �(τ) � 0 when τ∗ � τ � 1
2 .

Since f (τ) � 0 for all 0 < τ < 1, and

G′(τ) =
b−τ(8τ3 −12τ2 +1)

24τ2(1− τ)2 f (τ),

it follows that G′(τ) � 0 for 0 < τ � τ∗ and G′(τ) � 0 for τ∗ � τ � 1
2 . This shows

that G attains its minimum at τ = τ∗, which completes the proof. �

2.2. Matrix versions

In this part of the paper, we present some interesting matrix versions, based on the
above scalar results. We emphasize that the significance of these results is the quadratic
behavior of the refining terms, unlike the known results in the literature where linear
refining terms have been discussed only, except in [13].

2.2.1. Unitarily invariant norm versions

The following is a quadratic refinement and reverse of the Heinz inequality

‖AνXB1−ν +A1−νXBν‖2 � ‖AX +XB‖2,A,B ∈ M
+
n ,X ∈ Mn.

THEOREM 3. Let A,B ∈ M
+
n ,X ∈ Mn and let 0 < ν,τ < 1. If ν � r(τ) or ν �

R(τ) , then

‖AνXB1−ν +A1−νXBν‖2
2 +

ν(1−ν)
τ(1− τ)

[‖AX +XB‖2
2−‖AτXB1−τ +A1−τXBτ‖2

2

]
� ‖AX +XB‖2

2.

If r(τ) � ν � R(τ) , the inequality is reversed.

Proof. Let A =UΓU∗ and B =VΛV ∗ be the spectral decomposition of A and B .
That is, U,V are unitary matrices and Γ,Λ are the diagonal matrices whose diagonal
entries are the eigenvalues {λi} of A and the eigenvalues {μi} of B , respectively.
Denoting U∗XV by Y and using ◦ for the Schur product, we have

AtXB1−t +A1−tXBt = U
(
[λ t

i μ1−t
j + λ 1−t

i μ t
j]◦ [yi j]

)
V ∗

and AX +XB = U ([λi + μ j]◦ [yi j])V ∗. Now if ν � r(τ) or ν � R(τ) we have

‖AνXB1−ν +A1−νXBν‖2
2

= ∑
i, j

(
λ ν

i μ1−ν
j + λ 1−ν

i μν
j

)2 |yi j|2 (Now apply) (8)
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� ∑
i, j

(λi + μ j)2|yi j|2− ν(1−ν)
τ(1− τ) ∑

i, j

{
(λi + μ j)2 −

(
λ τ

i μ1−τ
j + λ 1−τ

i μτ
j

)2
}
|yi j|2

= ‖AX +XB‖2
2−

ν(1−ν)
τ(1− τ)

[‖AX +XB‖2
2−‖AτXB1−τ +A1−τXBτ‖2

2

]
.

This completes the proof when ν � r(τ) or ν � R(τ). The other case follows simi-
larly. �

In particular, if τ = 1
2 , we obtain the quadratic refinement

‖AνXB1−ν +A1−νXBν‖2
2 +4ν(1−ν)

[
‖AX +XB‖2

2−‖A 1
2 XB

1
2 ‖2

2

]
� ‖AX +XB‖2

2,

which has been proved recently in [13].
Theorem 3 has been proved by employing Proposition 1. A difference version

maybe obtained by employing Corollary 4 as follows. The proof follows the same
steps as Theorem 3, so we omit it.

THEOREM 4. Let A,B ∈ M
+
n ,X ∈ Mn and let 0 < ν,τ < 1. If ν � r(τ) or ν �

R(τ) , then

‖(AX +XB)− (AτXB1−τ +A1−τXBτ)‖2

τ(1− τ)
� ‖(AX +XB)− (AνXB1−ν +A1−νXBν)‖2

ν(1−ν)
.

If r(τ) � ν � R(τ) , the inequality is reversed.

On the other hand, a reverse of the Heinz inequality may be found using Corollary
7 as follows.

THEOREM 5. Let A,B∈ M
++
n ,X ∈ Mn and let 0 < ν,τ < 1. Then there exist two

positive numbers m � M, depending on A,B, such that

‖AX +XB‖2 �
(

M +m

2
√

mM

) ν(1−ν)
τ(1−τ) ‖AνXB1−ν +A1−νXBν‖2

if ν � r(τ) or ν � R(τ) .

Proof. We adopt the notations of Theorem 3. Since A,B ∈ M
++
n , it follows that

λi,μi > 0. Let m = min
1�i�n

{λi,μi} and M = max
1�i�n

{λi,μi}. Now

‖AX +XB‖2
2 = ∑

i, j
(λi + μ j)2|yi j|2

� ∑
i, j

(
λi + μ j

2
√

λiμ j

)2 ν(1−ν)
τ(1−τ) (

λ ν
i μ1−ν

j + λ 1−ν
i μν

j

)2 |yi j|2 (by (11))

�
(

M +m

2
√

mM

)2 ν(1−ν)
τ(1−τ) ‖AνXB1−ν +A1−νXBν‖2

2,
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where the last line is obtained noting m � λi,μ j � M. This completes the proof. �

The function τ �→
(

M+m
2
√

mM

)2 ν(1−ν)
τ(1−τ) attains its minimum at τ = 1

2 . In this case, the

above theorem is optimal and we have

‖AX +XB‖2 �
(

M +m

2
√

mM

)4ν(1−ν)

‖AνXB1−ν +A1−νXBν‖2, 0 � ν � 1.

We should remark that the constant
(

M+m
2
√

mM

)2
is called the Kantorovich constant and

has appeared in many recent studies treating matrix means.
In particular, if there exist m,M > 0 such that mI � A,B � MI, the above result is

valid.
In the above results, we have presented matrix versions using the Hilbert-Schmidt

norm. The following weaker version is valid for any unitarily invariant norm. For the
proof, we need to recall the matrix Hölder inequality [11]

|||AtXB1−t ||| � |||AX |||t |||XB|||1−t , A,B ∈ M
+
n ,X ∈ Mn, (12)

for any unitarily invariant norm ||| · |||.

THEOREM 6. Let A,B ∈ M
+
n ,X ∈ Mn and 0 < ν,τ < 1. If ν � r(τ) or ν � R(τ)

then

|||AνXB1−ν +A1−νXBν |||

+
ν(1−ν)
τ(1− τ)

[
(|||AX |||+ |||XB|||)− (|||AX |||τ |||XB|||1−τ + |||AX |||1−τ|||XB|||τ)]

� |||AX |||+ |||XB|||,

for any unitarily invariant norm ||| · ||| on Mn. In particular, if τ = 1
2 then

|||AνXB1−ν +A1−νXBν |||+4ν(1−ν)
(√

|||AX |||−
√
|||XB|||

)2
� |||AX |||+ |||XB|||,

for all ν ∈ [0,1] .

Proof. When ν � r(τ) or ν � R(τ) , we have

|||AνXB1−ν +A1−νXBν |||
� |||AνXB1−ν |||+ |||A1−νXBν ||| (by the triangly inequality)

� |||AX |||ν |||XB|||1−ν + |||AX |||1−ν |||XB|||ν (by (12))
� (|||AX |||+ |||XB|||)

− ν(1−ν)
τ(1− τ)

[
(|||AX |||+ |||XB|||)− (|||AX |||τ |||XB|||1−τ + |||AX |||1−τ |||XB|||τ)] ,
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where we have used Corollary 4 to obtain the last inequality. This completes the
proof. �

The case τ = 1
2 of the above Theorem has been shown in [13].

When ν = 1
2 , the second inequality of Theorem 6 is equivalent to the matrix

Cauchy-Schwarz inequality ‖|A 1
2 XB

1
2 ‖| � ‖|AX‖| 1

2 ‖|XB‖| 1
2 , which is the case t = 1

2
of (12). It should be mentioned here that this inequality can be concluded from the
matrix arithmetic-geometric mean inequality

2‖|A 1
2 XB

1
2 ‖| � ‖|AX +XB‖|, (13)

which is the case t = 1
2 of (2), as follows: In the inequality (13), replacing A and B by

tA and 1
t B , respectively, where t > 0, and using the triangle inequality, we have

2‖|A 1
2 XB

1
2 ‖| � t‖|AX‖|+ 1

t
‖|XB‖|.

Since this is true for all t > 0, it follows that

2‖|A 1
2 XB

1
2 ‖| � min

t>0

(
t‖|AX‖|+ 1

t
‖|XB‖|

)
= 2‖|AX‖| 1

2 ‖|XB‖| 1
2 ,

which means ‖|A 1
2 XB

1
2 ‖| � ‖|AX‖| 1

2 ‖|XB‖| 1
2 .

In view of the inequalities of Theorem 6 and the inequality (13), it is reasonable to
conjecture that

2‖|A 1
2 XB

1
2 ‖|+

(√
‖|AX‖|−

√
‖|XB‖|

)2
� ‖|AX +XB‖|,

which is a refinement of (13). However, this inequality is refuted by considering the

two-dimensional example A =
[

1 0
0 3

2

]
, X =

[
1 0
0 1

]
and B =

[
1 0
0 1

2

]
. In this case, under

the spectral norm ‖ . ‖ , we have

2‖A 1
2 XB

1
2 ‖+

(√
‖AX‖−

√
‖XB‖

)2
= 2+

(√
3
2
−1

)2

> 2 = ‖AX +XB‖.

2.2.2. Trace and determinant versions

On the other hand, trace versions maybe obtained as follows. For the proof, we
need to remind the reader of some facts about the trace. Recall that when A,B ∈ M

+
n ,

one has
tr(AtB1−t) � trt(A)tr1−t(B), 0 � t � 1. (14)

This inequality follows by log-convexity of the function t �→ tr(AtB1−t), [3, 16]. We
present the following reverse that we need to prove our next result.
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LEMMA 2. Let Let A,B ∈ M
++
n and let 0 � t � 1. Then

tr(AtB1−t)
(

trA · trB
tr2(A1/2B1/2)

)R(t)

� trtA · tr1−tB, (15)

where R(t) = max{t,1− t}.

Proof. Let f (t) = tr(AtB1−t). Then f is log-convex. For 0 � t � 1
2 , notice that

1
2

= αt +(1−α) where α =
1

2−2t
.

Using log-convexity of f , we have

f

(
1
2

)
� f α (t) f 1−α(1).

simplifying this inequality implies the result for 0 � t � 1
2 . Similar computations yield

the result for 1
2 � t � 1. �

THEOREM 7. Let A,B ∈ M
++
n and let 0 < ν,τ < 1. If ν � r(τ) or ν � R(τ) ,

then

tr
(
AνB1−ν+A1−νBν)+ν(1−ν)

τ(1−τ)

⎡
⎢⎣tr(A+B)−

⎛
⎝ trA · trB

tr2
(
A

1
2 B

1
2

)
⎞
⎠

R(τ)

tr
(
AτB1−τ+A1−τBτ)

⎤
⎥⎦

� tr(A+B).

On the other hand, if r(τ) � ν � R(τ) , then

tr(A+B) �

⎛
⎝ trA · trB

tr2
(
A

1
2 B

1
2

)
⎞
⎠

R(ν)

tr
(
AνB1−ν+A1−νBν)+tr

[
A+B−(AτB1−τ+A1−τBτ)] .

Proof. If ν � r(τ) or ν � R(τ), then Corollary 4 implies

a+b � (aνb1−ν +a1−νbν)+
ν(1−ν)
τ(1− τ)

(a+b− (aτb1−τ +a1−τbτ)),

for a,b > 0. In particular, let a = trA and b = trB, then apply (14) and (15) to obtain

tr(A+B) � trνA · tr1−νB+tr1−νA · trνB+
ν(1−ν)
τ(1−τ)

[
tr(A+B)−(trτAtr1−τB+tr1−τAtrτB)

]
� tr

(
AνB1−ν +A1−νBν)

+
ν(1−ν)
τ(1− τ)

⎡
⎢⎣tr(A+B)−

⎛
⎝ trA · trB

tr2
(
A

1
2 B

1
2

)
⎞
⎠

R(τ)

tr
(
AτB1−τ +A1−τBτ)

⎤
⎥⎦ .
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The other inequality follows similarly. �
Our next result is a determinant version, where quadratic refinements are provided.

THEOREM 8. Let A,B ∈ M
++
n and let 0 < ν,τ < 1. If ν � r(τ) or ν � R(τ),

then

det(A+B)
1
n � det(A#νB+A#1−νB)

1
n +

ν(1−ν)
τ(1− τ)

det(A+B− (A#τB+A#1−τB))
1
n .

Proof. Let X =A− 1
2 BA− 1

2 and let λi denote the i-th eigenvalue of X . Then noting
Corollary 4 and the Minkowski inequality

(
n

∏
i=1

ai

) 1
n

+

(
n

∏
i=1

bi

) 1
n

�
(

n

∏
i=1

(ai +bi)

) 1
n

, ai,bi > 0,

we have

det(I +X)
1
n =

(
n

∏
i=1

λi(I +X)

) 1
n

=

(
n

∏
i=1

(1+ λi(X))

) 1
n

�
n

∏
i=1

[
(λ ν

i + λ 1−ν
i )+

ν(1−ν)
τ(1− τ)

(1+ λi− (λ τ
i + λ 1−τ

i ))
] 1

n

�
n

∏
i=1

[
(λ ν

i + λ 1−ν
i )

] 1
n +

n

∏
i=1

[
ν(1−ν)
τ(1− τ)

(1+ λi− (λ τ
i + λ 1−τ

i ))
] 1

n

=

(
n

∏
i=1

λi(Xν +X1−ν)

) 1
n

+
ν(1−ν)
τ(1− τ)

(
n

∏
i=1

λi(I +X − (X τ +X1−τ))

] 1
n

= det(Xν +X1−ν)
1
n +

ν(1−ν)
τ(1− τ)

det(I +X − (X τ +X1−τ))
1
n .

Then multiplying both sides by detA and utilizing simple properties of the determinant,
we get the required inequality. �

Notice that the above theorem provides a refinement of the well known determi-
nant inequality

det(A#νB+A#1−νB) � det(A+B).

In particular, when τ = 1
2 , Theorem 8 reads as follows

det(A#νB+A#1−νB)
1
n +4ν(1−ν)det(A+B−2 A#B)

1
n � det(A+B)

1
n , 0 � ν � 1.

Following the proof of Theorem 8 and using Proposition 1, we obtain the following
squared version for the determinant of the Heinz means.
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THEOREM 9. Let A,B ∈ M
++
n and let 0 < ν,τ < 1. If ν � r(τ) or ν � R(τ),

then

det(A+B)
2
n � det(A#νB+A#1−νB)

2
n +

(
ν(1−ν)
τ(1−τ)

)2

det(A+B−(A#τB+A#1−τB))
2
n .

The above are additive determinant versions. An interesting multiplicative version
can be found using Corollary 7. The proof is similar to that of Theorem 8, and hence is
left to the reader.

THEOREM 10. Let A,B ∈ M
++
n and let 0 < ν,τ < 1. If ν � r(τ) or ν � R(τ),

then (
det(A+B)

det(A#νB+A#1−νB)

) 1
ν(1−ν)

�
(

det(A+B)
det(A#τB+A#1−τB)

) 1
τ(1−τ)

On the other hand, if r(τ) � ν � R(τ) , the inequality is reversed.

In particular, when τ = 1
2 , we have the following multiplicative reverse of the

determinant of the Heinz means

det(A+B) �
(

det(A+B)
2n
√

det(AB)

)4ν(1−ν)

det(A#νB+A#1−νB), 0 � ν � 1. (16)

Notice that 4ν(1−ν) � 1 � ν � 1. In this case, a weaker version of (16) is as follows√
det(AB) � det

A#νB+A#1−νB
2

,

which is the determinant version of the first inequality in (1).

2.2.3. Löwener partial ordering

Our final goal in this article is to present some matrix versions using the strongest
comparison; the Löwener partial ordering. Recall that for two Hermitian matrices
A,B ∈ Mn , the notation A � B is used to mean B−A ∈ M

+
n . This introduces a par-

tial ordering on positive matrices and is considered as the strongest comparison. More
precisely, when A,B ∈ M

+
n are such that A � B , one concludes that λi(A) � λi(B),

where λi(X) is the i− th eigenvalue of X , when written in a decreasing order. Then
the relation λi(A) � λi(B) implies that trA � trB , detA � detB and |||A|||� |||B|||, for
any unitarily invariant norm on Mn. In this section, we use the notation

Ht(A,B) =
A#tB+A#1−tB

2
, A,B ∈ M

++
n .

A standard functional calculus argument applied on (1) implies the following matrix
version

A#B � Ht(A,B) � A∇B, A,B ∈ M
++
n , 0 � t � 1. (17)

In the following theorem, we present a quadratic refinement and reverse of this inequal-
ity.
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THEOREM 11. Let A,B ∈ M
++
n and let 0 < ν,τ < 1. If ν � r(τ) or ν � R(τ),

then
A∇B−Hτ(A,B)

τ(1− τ)
� A∇B−Hν(A,B)

ν(1−ν)
.

On the other hand if r(τ) � ν � R(τ) , the inequality is reversed.

The proof of this theorem follows a standard argument as in the next result.

THEOREM 12. Let A,B ∈ M
++
n and let 0 < ν,τ < 1. If ν � r(τ) or ν � R(τ),

then

A+BA−1B− (A#2τB+A#2−2τB)
τ(1− τ)

� A+BA−1B− (A#2νB+A#2−2νB)
ν(1−ν)

.

On the other hand if r(τ) � ν � R(τ) , the inequality is reversed.

Proof. Letting a = 1 in (6), we get

1+b2− (b2τ +b2−2τ)
τ(1− τ)

� 1+b2− (b2ν +b2−2ν)
ν(1−ν)

, b > 0.

Now let X = A− 1
2 BA− 1

2 . Then X ∈ M
++
n . Therefore by applying monotonicity of

continuous functions on Hermitian matrices, we get

I +X2− (X2τ +X2−2τ)
τ(1− τ)

� I +X2− (X2ν +X2−2ν)
ν(1−ν)

.

Conjugating both sides with A
1
2 implies the desired inequality when ν � r(τ) or ν �

R(τ). The reversed version follows similarly. �

Notice that the above result allows comparison of means with parameters bigger
than 1. This happens when ν,τ > 1

2 .
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