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Abstract. In this paper extensions and refinements of Hermite-Hadamard and Fejer type inequal-
ities are derived including monotonicity of some functions related to the Fejer inequality and
extensions for functions, which are 1-quasiconvex and for function with bounded second deriva-
tive. We deal also with Fejer inequalities in cases that p, the weight function in Fejer inequality,
is not symmetric but monotone on [a,b] .

1. Introduction

The Hermite-Hadamard inequality says that for any convex function f : I → R, I
an interval, and for a,b ∈ I

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � f (a)+ f (b)

2
(1.1)

holds, and the Fejer inequality reads

f

(
a+b

2

)∫ b

a
p(x)dx �

∫ b

a
f (t) p(t)dt � f (a)+ f (b)

2

∫ b

a
p(x)dx (1.2)

when f is convex and p : [a,b] → R is non-negative, integrable and symmetric around
x = a+b

2 .
In this paper extensions and refinements of Hermite-Hadamard and Fejer type in-

equalities, are discussed including monotonicity of some functions related to Fejer in-
equality and extensions for functions which are 1-quasiconvex and for function with
bounded second derivative. We deal also with Fejer inequalities in cases that p, the
weight function in the Fejer inequality, is not symmetric but monotone on [a,b] .

This paper may be regarded as a complement and continuation of [3], where we
dealt with Hermite-Hadamard and Fejer type inequalities for N -quasiconvex functions.

DEFINITION 1. Let N ∈ N . A real-valued function ψN defined on an interval
[a,b) with 0 � a < b � ∞ is called N -quasiconvex if it can be represented as the
product of a convex function ϕ and the function g(x) = xN . For N = 0, ψ0 = ϕ and
for N = 1 the function ψ1 (x) = xϕ (x) is called 1-quasiconvex function.
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We quote from [3] some refined Hermite-Hadamard and Fejer type inequalities for
N -quasiconvex functions that we use in the sequel, in particular for N = 1:

LEMMA 1. [3, Theorem 1 and Corollary 1] Let ϕ : [a,b]→ R, a � 0 be differen-
tiable, convex and ψN (x) = xNϕ (x) , N = 1,2, . . . . Let p : [a,b] → R be non-negative,
integrable and symmetric around x = a+b

2 .
Then,

∫ b

a
ψN (x) p(x)dx

� ψN

(
a+b

2

)∫ b

a
p(x)dx+

∫ b

a

(
x− a+b

2

)2 N

∑
k=1

xk−1ψ
′
N−k

(
a+b

2

)
p(x)dx

= ψN

(
a+b

2

)∫ b

a
p(x)dx+

∫ b

a

(
x− a+b

2

)2
(

∂
∂x

(
xN − xN

x− x
ϕ (x)

)∣∣∣∣
x= a+b

2

)
p(x)dx,

and

∫ b

a
ψN (x) p(x)dx

� ψN (a)+ ψN (b)
2

∫ b

a
p(x)dx

− 1
(b−a)

N

∑
k=1

∫ b

a
(x−a)(b− x)ψ

′
N−k (x)

(
(b− x)bk−1 +(x−a)ak−1

)
p(x)dx.

=
ψN (a)+ ψN (b)

2

∫ b

a
p(x)dx− 1

(b−a)

∫ b

a

[
(x−a)(b− x)2

∂
∂x

(
bN − xN

b− x
ϕ (x)

)

+(x−a)2 (b− x)
∂
∂x

(
xN −aN

x−a
ϕ (x)

)]
p(x)dx.

In particular if ϕ : [a,b] → R, a � 0, is a differentiable and convex function and
ψ1 (x) = xϕ (x) , then

ψ1

(
a+b

2

)∫ b

a
p(x)dx+ ϕ

′
(

a+b
2

)∫ b

a

(
x− a+b

2

)2

p(x)dx (1.3)

�
∫ b

a
ψ1 (x) p(x)dx

� ψ1 (a)+ ψ1 (b)
2

∫ b

a
p(x)dx−

∫ b

a
ϕ

′
(x) (b− x)(x−a) p(x)dx,

where p : [a,b] → R, is non-negative, integrable and symmetric around x = a+b
2 .
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EXAMPLE 1. [3, Example 1] If ϕ : [a,b] → R, a � 0, is differentiable, convex
and ψ1 (x) = xϕ (x) , then

ψ1

(
a+b

2

)
+

1
12

ϕ
′
(

a+b
2

)
(b−a)2

� 1
b−a

∫ b

a
ψ1 (x)dx

� ψ1 (a)+ ψ1 (b)
2

− 1
b−a

∫ b

a
ϕ

′
(x)(b− x)(x−a)dx.

This is a refinement of the Hermite-Hadamard inequality (1.1) when ϕ is increasing.

At the end of this paper we will prove that the following result from [3] generalizes
and gives some simpler proofs of results from [6].

THEOREM 1. [3, Theorem 2] Let ϕ : [a,b] → R, a � 0, be a differentiable, con-
vex function and let N = 1,2,3, . . . , . Then for ψ1 (x) = xϕ (x) we get that the inequal-
ities

1
b−a

∫ b

a
ψ1 (x)dx (1.4)

� b−a
6

ϕ (b)+
b+2a

3
1

b−a

∫ b

a
ϕ (x)dx

� (b−a)(ψN (a)+ ψN (b))
6(bN −aN)

+
(bN+1 −aN+1)+2ab(bN−1−aN−1)

3(bN −aN)
1

b−a

∫ b

a
ϕ (x)dx

� ψ1 (a)+ ψ1 (b)
6

+
(b+a)

3
1

b−a

∫ b

a
ϕ (x)dx

� ψ1 (a)+ ψ1 (b)
2

− (b−a)(ϕ (b)−ϕ (a))
6

hold, which are Hermite-Hadamard refinements of (1.1) for ψ1 when ϕ (b)−ϕ (a)� 0 .

REMARK 1. Using [3, Lemma 1], Theorem 1 is proved (see [3, Theorem 2]) by
using Lemma 1 for each n = 1,2, . . .N from which the inequality

1
b−a

∫ b

a
ψ1 (x)dx

� (b−a)(ψN (a)+ ψN (b))
6(bN −aN)

+
(bN+1 −aN+1)+2ab(bN−1−aN−1)

3(bN −aN)
1

b−a

∫ b

a
ϕ (x)dx

is derived.
As it is also proved in [3, Theorem 2] that the right hand-side of this inequality

is monotone decreasing with N and as it is also bounded below, the first and the third
inequalities in (1.4) follow.
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The paper is organized as follows: After this introductory section we discuss in
Section 2 the monotonicity of some functions related to the Fejer inequality.

The third section is devoted to results involving Fejer and Hermite-Hadamard in-
equalities for functions with bounded second derivatives and demonstrate examples
with relation to fractional integrals. In particular it is explained that our results imply
generalized versions of some recent results by F. Chen [5]

Fejer’s inequality for special convex functions obtained by replacing the non-
negative symmetric function p in (1.2) with monotone functions and some more results
related to quasiconvexity are discussed in Section 4. In particular it is pointed out that
our Theorem 1 directly implies some improved versions of results in [6].

2. Monotonicity of some functions related to the Fejer inequality

In this section we extend some of the results obtained in [3] and show that when
ψ is 1-quasiconvex, that is, ψ (x) = xϕ (x) and if ϕ is convex, ϕ ′ � 0, then

P(t) =
∫ b

a
ψ
(

tx+(1− t)
a+b

2

)
p(x)dx (2.1)

and

Q(t)=
1
2

∫ b

a

[
ψ
(

1+ t
2

a+
1− t

2
x

)
p

(
x+a

2

)
+ ψ

(
1+ t

2
b+

1− t
2

x

)
p

(
x+b

2

)]
dx

(2.2)
are non-decreasing in t, 0 � t � 1 when p = p(x) is non-negative, differentiable and
symmetric around x = a+b

2 .
To prove the theorems we use a similar technique as that used in [2], (there for su-

perquadratic functions) and the following result that appears in the proof of [3, Theorem
1] and is related to N -quasiconvex functions:

LEMMA 2. Let ϕ : [a,b] → R, a � 0, be a differentiable, convex function and
ψN (x) = xNϕ (x) , N = 1,2,3, . . . , . Let p : [a,b] → R be non-negative, integrable and
symmertic around x = a+b

2 . Then,

(ψN (b)+ ψN (a)) p(x) (2.3)

� ψN (x) p(x)+ ψN (a+b− x)p(a+b− x)

+
(x−a)(b− x)

b−a

N

∑
k=1

(
(b− x)bk−1 +(x−a)ak−1

)
ψ

′
N−k (x) p(x)

+
(x−a)(b− x)

b−a

N

∑
k=1

(
(x−a)bk−1 +(b− x)ak−1

)
ψ

′
N−k (a+b− x)p(a+b− x).

We use in the following theorems 2 and 3, Inequality (2.3) for N = 1 and p(x)= 1.
Our first monotonicity result is a refinement of the known result which says that

P(s) � P(t) for a convex function ψ (see [2, Theorem F]). It reads:
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THEOREM 2. Let ψ be 1 -quasiconvex function on [a,b] , a � 0, that is ψ (x) =
xϕ (x) . Let ϕ be a differentiable convex function satisfying ϕ ′ � 0. Let p = p(x) be
non-negative integrable and symmetric around x = a+b

2 . If P(t) is defined by (2.1),
then, for 0 � s � t � 1, t > 0,

P(s) � P(t)− (t2 − s2)∫ b

a

(
x− a+b

2

)2

ϕ
′
(

sx+(1− s)
a+b

2

)
p(x)dx (2.4)

� P(t) .

Proof. For every z, m, M on [a,b] , a � m � z � M � b we get in the same way
as we get for N = 1 and p(x) = 1 in (2.3) that:

ψ (z)+ ψ (M +m− z) (2.5)

� ψ (m)+ ψ (M)−
(

ϕ
′
(z)+ ϕ

′
(M +m− z)

)
(M− z)(z−m) .

Replacing in (2.5) z by sx +(1− s) a+b
2 , M by (a+b− x)t +(1− t) a+b

2 , and m by
tx+(1− t) a+b

2 , we obtain that for 0 � s � t � 1, t > 0, a � x � a+b
2 ,

ψ
(

sx+(1− s)
a+b

2

)
+ ψ

(
s(a+b− x)+ (1− s)

a+b
2

)
(2.6)

� ψ
(

tx+(1− t)
a+b

2

)
+ ψ

(
t (a+b− x)+ (1− t)

a+b
2

)

−(t2− s2)(x− a+b
2

)2(
ϕ

′
(

sx+(1− s)
a+b

2

)

+ϕ
′
(

s(a+b− x)+ (1− s)
a+b

2

))
.

Since p(x) is non-negative and symmetric around x = a+b
2 we get from (2.6) that

∫ b

a
ψ
(

sx+(1− s)
a+b

2

)
p(x)dx (2.7)

=
∫ a+b

2

a
ψ
(

sx+(1− s)
a+b

2

)
p(x)dx

+
∫ a+b

2

a
ψ
(

s(a+b− x)+ (1− s)
a+b

2

)
p(a+b− x)dx

�
∫ a+b

2

a
ψ
(

tx+(1− t)
a+b

2

)
p(x)dx

+
∫ a+b

2

a
ψ
(

t (a+b− x)+ (1− t)
a+b

2

)
p(a+b− x)dx

−
∫ a+b

2

a

(
t2− s2)(x− a+b

2

)2

ϕ
′
(

sx+(1− s)
a+b

2

)
p(x)dx



764 S. ABRAMOVICH AND L.-E. PERSSON

−
∫ a+b

2

a

(
t2− s2)(x− a+b

2

)2

ϕ
′
(

s(a+b− x)+ (1− s)
a+b

2

)
p(a+b− x)dx.

From (2.7), by using again the symmetry of p(x) around a+b
2 , it follows, because

ϕ ′
(x) � 0 and 0 � s � t � 1, t > 0, that (2.4) holds for P(t) as defined in (2.1). The

proof is complete. �

Next we prove the following further refinement of the Fejer inequality (1.2) for
1-quasiconvex functions:

COROLLARY 1. Assume that the conditions of Theorem 2 on ψ and p hold. Then

ψ
(

a+b
2

)∫ b

a
p(x)dx+ s2ϕ

′
(

a+b
2

)∫ b

a

(
x− a+b

2

)2

p(x)dx

�
∫ b

a
ψ
(

sx+(1− s)
a+b

2

)
p(x)dx

�
∫ b

a
ψ (x) p(x)dx− (1− s2)∫ b

a

(
x− a+b

2

)2

ϕ
′
(

sx+(1− s)
a+b

2

)
p(x)dx

� ψ (a)+ ψ (b)
2

∫ b

a
p(x)dx−

∫ b

a
ϕ

′
(x) (b− x)(x−a) p(x)dx

−(1− s2)∫ b

a

(
x− a+b

2

)2

ϕ
′
(

sx+(1− s)
a+b

2

)
p(x)dx.

Proof. The left hand-side inequality follows from (2.4) by exchanging s with t so
that t � s and then taking t = 0. The second inequality is obtained by taking t = 1 in
(2.4) The third inequality follows from the right hand-side of (1.3) in Lemma 1. �

The corresponding result for the function Q(t) defined by (2.2) reads:

THEOREM 3. Let ψ and p be defined as in Theorem 1, and let Q(t) be defined
by (2.2). If 0 � s � t � 1, then

Q(s) � Q(t)−Δ(s,t) , (2.8)

where

Δ(s, t) =
∫ a+b

2

a

(
ϕ

′
((1− s)x+ sa)+ ϕ

′
((1− s)(a+b− x)+ sb)

)
(2.9)

×(t− s)(x−a)(a+b−2x+(t + s)(x−a)) p(x)dx.

Proof. For 0 � s � t � 1, t > 0, a � x � b, we choose in (2.5)

z = (1− s)x+ sa, m = (1− t)x+ ta, M = (1− t)(a+b− x)+ tb.



HERMITE-HADAMARD AND FEJER TYPE INEQUALITIES 765

Evidently

a � (1− t)x+ ta � (1− s)x+ sa

� (1− s)(a+b− x)+ sb � (1− t)(a+b− x)+ tb � b,

m+M = (1− t)x+ ta+(1− t)(a+b− x)+ tb = a+b,

z−m = (t− s)(x−a) ,

m+M− z = (1− s)(a+b− x)+ sb.

Hence, from (2.5) we get that

ψ ((1− s)x+ sa)+ ψ ((1− s)(a+b− x)+ sb) (2.10)

� ψ ((1− t)x+ ta)+ ψ ((1− t)(a+b− x)+ tb)

−
(

ϕ
′
((1− s)x+ sa)+ ϕ

′
((1− s)(a+b− x)+ sb)

)
×(t− s)(x−a)(a+b−2x+(s+ t)(x−a)) .

It follows from the symmetry of p = p(x) that Q(s) can be written as

Q(s) =
∫ a+b

2

a
(ψ ((1− s)x+ sa)+ ψ ((1− s)(a+b− x)+ sb)) p(x)dx (2.11)

and therefore according to (2.10) we obtain that

Q(s) =
∫ a+b

2

a
(ψ ((1− s)x+ sa)+ ψ ((1− s)(a+b− x)+ sb)) p(x)dx (2.12)

�
∫ a+b

2

a
(ψ ((1− t)x+ ta)+ ψ ((1− t)(a+b− x)+ tb)) p(x)dx

−
∫ a+b

2

a

((
ϕ

′
((1− s)x+ sa)+ ϕ

′
((1− s)(a+b− x)+ sb)

)
×(t− s)(x−a)(a+b−2x+(s+ t)(x−a))) p(x)dx.

In other words we find by using (2.11) and (2.12) that (2.8) and (2.9) hold. The proof
is complete. �

EXAMPLE 2. In the special case that s = 0, t = 1 we have that

Q(0) =
∫ b

a
ψ (x) p(x)dx � Q(1)−Δ(0,1)

=
ψ (a)+ ψ (a)

2

∫ b

a
p(x)dx

−
∫ a+b

2

a

(
ϕ

′
(x)+ ϕ

′
(a+b− x)

)
(x−a)(b− x) p(x)dx

=
ψ (a)+ ψ (a)

2

∫ b

a
p(x)dx−

∫ b

a
ϕ

′
(x) (x−a)(b− x) p(x)dx,

which is the same as the right hand-side of (1.3). Hence, Theorem 3 implies in particular
a further refinement of the Fejer inequality (1.2).
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3. Fejer and Hermite-Hadamard inequalities for functions
with bounded second derivatives

We prove now immediate results about Fejer and Hermite-Hadamard type inequal-
ities for functions with bounded second derivatives.

THEOREM 4. Let f : [a,b] → R be a function such that m � f ′′ (x) � M, and
p : [a,b] → R is integrable, non-negative and symmetric on [a,b] . Then

f (a)+ f (b)
2

∫ b

a
p(x)dx− M

2

∫ b

a
(x−a)(b− x) p(x)dx �

∫ b

a
f (x) p(x)dx, (3.1)

f

(
a+b

2

)∫ b

a
p(x)dx+

m
2

∫ b

a

(
x− a+b

2

)2

p(x)dx �
∫ b

a
f (x) p(x)dx, (3.2)

∫ b

a
f (x) p(x)dx � f (a)+ f (b)

2

∫ b

a
p(x)dx− m

2

∫ b

a
(x−a)(b− x) p(x)dx, (3.3)

and

∫ b

a
f (x) p(x)dx � f

(
a+b

2

)∫ b

a
p(x)dx+

M
2

∫ b

a

(
x− a+b

2

)2

p(x)dx. (3.4)

Proof. Since m � f ′′ (x) � M we find that the functions

g1 (x) =
M
2

(x−a)(x−b)− f (x) ,

g2 (x) = f (x)− m
2

(
x− a+b

2

)2

,

g3 (x) = f (x)− m
2

(x−a)(x−b) ,

and

g4 (x) =
M
2

(
x− a+b

2

)2

− f (x) ,

are convex on [a,b] and by using (1.2) for gi, i = 1, . . . ,4, we get the four inequalities
(3.1), (3.2), (3.3) and (3.4), respectively. �

In the next statement we combine the results obtained for 1-quasiconvex functions
with the results obtained for functions with bounded second derivative. This is obtained
by using inequalities (1.3), (3.2) and (3.4).
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COROLLARY 2. Let ϕ be a twice differentiable convex function on [a,b] , a � 0,
and let ψ (x) = xϕ (x) . Let ψ (x) be such that m � ψ ′′ (x) � M and let p(x) be non-
negative, integrable and symmetric around x = a+b

2 . Then

K
∫ b

a

(
x− a+b

2

)2

p(x)dx (3.5)

�
∫ b

a
ψ (x) p(x)dx−ψ

(
a+b

2

)∫ b

a
p(x)dx

� M
2

∫ b

a

(
x− a+b

2

)2

p(x)dx

where K = min
(

m
2 ,ϕ ′ ( a+b

2

))

REMARK 2. The function ψ satisfies ψ ′′ (x) = (xϕ (x))′′ = 2ϕ ′
(x) + xϕ ′′ (x) �

2ϕ ′
(x) . Therefore ϕ ′

(x) � ψ ′′(x)
2 � M

2 and (3.5) gives a nice double inequality for∫ b
a ψ (x) p(x)dx when ψ is 1-quasiconvex function with bounded second derivative.

This means that by replacing
∫ b
a ψ (x) p(x)dx with ψ

(
a+b
2

)∫ b
a p(x)dx, we get that the

maximum length or the error obtained is limited by(
M
2
−K

)∫ b

a

(
x− a+b

2

)2

p(x)dx,

where K = min
(

m
2 ,ϕ ′ ( a+b

2

))
and p(x) is non-negative, integrable and symmetric on

[a,b] .

We show now examples of the use of the Fejer inequality (1.2) and Theorem 4
regarding fractional integrals. These examples appear in [5, Theorem 1.1 and Theorem
1.2] . We show a more general case where the proof is simpler and shorter than that in
[5].

The following example is related to the Fejer inequality (1.2) when the non-negative
integrable symmetric function p(x) around x = a+b

2 is related to fractional integrals:

EXAMPLE 3. Let f : [a,b] → R be an integrable convex function with a < b .
Then the following inequalities for fractional integrals hold:

f

(
a+b

2

)
� Γ(α +1)

2(b−a)α
(
Jα
a+ f (b)+ Jα

b− f (a)
)

� f (a)+ f (b)
2

(3.6)

with α > 0, where

Jα
a+ f (x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, x > a,

Jα
b− f (x) =

1
Γ(α)

∫ b

x
(t− x)α−1 f (t)dt, x < b,

and Γ(α) is the Gamma function defined by Γ(α) =
∫ ∞
0 e−ttα−1dt.



768 S. ABRAMOVICH AND L.-E. PERSSON

REMARK 3. It is easy to see that Inequality (3.6) is a particular case of the Fejer
inequality (1.2), where

p(x) =
α

2(b−a)α

(
(x−a)α−1 +(b− x)α−1

)
, a < x < b, α > 0, (3.7)

p(x) is symmetric around x = a+b
2 , non-negative, integrable ,

∫ b
a p(x)dx = 1 and f is

a positive convex function on [a,b] , and because

Γ(α +1)
2(b−a)α

(
Jα
a+ f (b)+ Jα

b− f (a)
)

=
Γ(α +1)
2(b−a)α

(
1

Γ(α)

∫ b

a
(b− t)α−1 f (t)dt +

1
Γ(α)

∫ b

a
(t−a)α−1 f (t)dt

)

=
Γ(α +1)
2(b−a)α

(
1

Γ(α)

∫ b

a

(
(b− t)α−1 +(t−a)α−1

)
f (t)dt

)

=
∫ b

a
f (t) p(t)dt.

In particular, we pronounce that Inequality (3.6) holds without the restriction that
f is non-negative as required in [5, Theorem 1.1].

Moreover, going back to Theorem 4, if p(x) is defined by (3.7), then we have the
following:

EXAMPLE 4. For a twice differentiable function f with m � f ”(x) � M on [a,b]
and p as above, we get that:

f (a)+ f (b)
2

− Mα
4(b−a)α

∫ b

a
(x−a)(b− x)

(
(x−a)α−1 +(b− x)α−1

)
dx

� Γ(α +1)
2(b−a)α

(
Jα
a+ f (b)+ Jα

b− f (a)
)
,

f

(
a+b

2

)
+

mα
4(b−a)α

∫ b

a

(
x− a+b

2

)2(
(x−a)α−1 +(b− x)α−1

)
dx

� Γ(α +1)
2(b−a)α

(
Jα
a+ f (b)+ Jα

b− f (a)
)
,

Γ(α +1)
2(b−a)α

(
Jα
a+ f (b)+ Jα

b− f (a)
)

� f (a)+ f (b)
2

− mα
4(b−a)α

∫ b

a
(x−a)(b− x)

(
(x−a)α−1 +(b− x)α−1

)
dx,

and

Γ(α +1)
2(b−a)α

(
Jα
a+ f (b)+ Jα

b− f (a)
)

� f

(
a+b

2

)
+

Mα
4(b−a)α

∫ b

a

(
x− a+b

2

)2(
(x−a)α−1 +(b− x)α−1

)
dx.
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REMARK 4. The inequalities in Example 4 appeared in [5, Theorem 1.2] and in
our case it is just a particular case of Theorem 4.

4. Remarks about other Fejer type inequalities

We extend Fejer’s inequality for special convex functions by replacing the non-
negative symmetric function p = p(x) in (1.2) with monotone functions.

THEOREM 5. Let ϕ : [a,b] → R, be a differentiable and convex function. Let
p : [a,b] → R be a non-negative, integrable and monotone function.

a) Let p
′
(x) � 0 , a � x � b and ϕ (a) � ϕ (b) (see Figure 1). Then

∫ b

a
ϕ (t) p(t)dt � ϕ (a)+ ϕ (b)

2

∫ b

a
p(x)dx. (4.1)

b) Let p
′
(x) � 0 , a � x � b and ϕ (a) � ϕ

(
a+b
2

)
(see Figure 2). Then

ϕ
(

a+b
2

)∫ b

a
p(x)dx �

∫ b

a
ϕ (t) p(t)dt. (4.2)

c) If p
′
(x) � 0 , a � x � b and ϕ (a) � ϕ (b) , then (4.1) holds.

d) If p
′
(x) � 0 , a � x � b and ϕ (a) � ϕ

(
a+b
2

)
, then (4.2) holds.

REMARK 5. In particular cases a) and b) hold when ϕ is increasing and cases c)
and d) hold when ϕ is decreasing.

Figure 1. Figure 2.

Proof. a) From ϕ (a) � ϕ (b) we get that ϕ (a) � ϕ(a)+ϕ(b)
2 � ϕ (b) and together

with the convexity of ϕ as ϕ (t)− ϕ(a)+ϕ(b)
2 � 0 when a � t � c where ϕ (c) =

ϕ(a)+ϕ(b)
2 , we get from Hermite-Hadamard inequalities

∫ b

a

(
ϕ (t)− ϕ (a)+ ϕ (b)

2

)
dt � 0
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and also, ∫ x

a

(
ϕ (t)− ϕ (a)+ ϕ (b)

2

)
dt � 0

for all x on [a,b] (see Figure 1). Denoting

f (t) = ϕ (t)− ϕ (a)+ ϕ (b)
2

we get that

∫ b

a
f (t) p(t)dt =

[(∫ x

a
f (t)dt

)
p(x)

]b

a
−
∫ b

a

(∫ x

a
f (t)dt

)
p
′
(x)dx

= p(b)
∫ b

a
f (t)dt−

∫ b

a

(∫ x

a
f (t)dt

)
p
′
(x)dx � 0,

which means that (4.1) holds.
b) From ϕ (a) � ϕ

(
a+b
2

)
and the convexity of ϕ we get that ϕ (a) � ϕ

(
a+b
2

)
�

ϕ (b) . Denoting g(t) = ϕ (t)− ϕ
(

a+b
2

)
, we find that g(t) � 0 when a+b

2 � t � b,

and since
∫ b
a g(t)dt � 0 and because of the convexity of ϕ , ϕ (t) � ϕ

(
a+b
2

)
when

a � t � a+b
2 and therefore

∫ b
x g(t)dt � 0 for all a � x � b , (see Figure 2).

Hence∫ b

a
g(t) p(t)dt =

[
−
(∫ b

x
g(t)dt

)
p(x)

]b

a
+
∫ b

a

(∫ b

x
g(t)dt

)
p
′
(x)dx

= p(a)
∫ b

a
g(t)dt +

∫ b

a

(∫ b

x
g(t)dt

)
p
′
(x)dx � 0,

in other words (4.2) is proved.
The cases c) and d) can be proved in a similar way so we omit the details. The

proof is complete. �
We finish by going back to Theorem 1 ([3, Theorem 2]), and pointing out that from

this theorem we may get an upper bound for 1
b−a

∫ b
a ϕ (x)x2dx = 1

b−a

∫ b
a ψ2 (x)dx where

ϕ is a convex increasing function. We show that our upper bound of 1
b−a

∫ b
a ψ2 (x)dx

and also the upper bound of 1
b−a

∫ b
a ϕ (x)xdx = 1

b−a

∫ b
a ψ1 (x)dx are better than those

derived from the following theorem in [6, Theorem 1].

THEOREM A. Let ϕ and g be real-valued, non-negative and convex functions on
[a,b] , then:

2ϕ
(

a+b
2

)
g

(
a+b

2

)
− ϕ (a)g(a)+ ϕ (b)g(b)

2
+

(ϕ (b)−ϕ (a))(g(b)−g(a))
3

� 1
b−a

∫ b

a
ϕ (x)g(x)dx

� ϕ (a)g(a)+ ϕ (b)g(b)
2

− (ϕ (b)−ϕ (a))(g(b)−g(a))
6

. (4.3)
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REMARK 6. We see that when g(x) = x inequalities (4.3) in Theorem A for
ψ1 (x) = xϕ (x) are

2ψ1

(
a+b

2

)
− ψ1 (a)+ ψ1 (b)

2
+

(ϕ (b)−ϕ (a))(b−a)
3

(4.4)

� 1
b−a

∫ b

a
ψ1 (x)dx

� ψ1 (a)+ ψ1 (b)
2

− (ϕ (b)−ϕ (a))(b−a)
6

,

and when g(x) = x2 inequalities (4.3) in Theorem A for ψ2 (x) = x2ϕ (x) are

2ψ2

(
a+b

2

)
− ψ2 (a)+ ψ2 (b)

2
+

(ϕ (b)−ϕ (a))
(
b2−a2

)
3

(4.5)

� 1
b−a

∫ b

a
ψ2 (x)dx

� ψ2 (a)+ ψ2 (b)
2

− (ϕ (b)−ϕ (a))
(
b2−a2

)
6

.

EXAMPLE 5. By comparing (4.4) with the inequalities (1.4) we realize that our
result of the upper bound of Hermite-Hadamard inequality in (1.4):

1
b−a

∫ b

a
ψ1 (x)dx � b−a

6
ϕ (b)+

b+2a
3

1
b−a

∫ b

a
ϕ (x)dx (4.6)

� ψ1 (a)+ ψ1 (b)
2

− (ϕ (b)−ϕ (a)) (b−a)
6

,

is a refinement of the upper bound obtained in the right hand-side of (4.4).
Moreover, if ϕ is convex function on [a,b] , 0 � a < b, our inequalities (1.4) and

(4.6) are valid for convex functions that are also not non-negative, whereas Theorem A
and therefore also (4.4) are proved only for convex non-negative ϕ .

We see that (4.5) holds for non-negative convex functions, as stated in Theorem A,
(which is proved in [3, Theorem 1]), whereas (4.7) below uses twice the first inequaily
of (4.6) and therefore ψ1 has to be convex. For ψ1 to be convex it is sufficient that ϕ is
convex and increasing on [a,b] , a � 0. Therefore (4.5) and (4.7) are compared below
when ϕ is convex, increasing and non-negative on [a,b] , 0 � a < b (in such cases ψ2

is also convex).
Using twice (4.6) we get that

1
b−a

∫ b

a
ψ2 (x)dx (4.7)

� b−a
6

ψ1 (b)+
b+2a

3
1

b−a

∫ b

a
ψ1 (x)dx

� b−a
6

bϕ (b)+
b+2a

3

(
b−a

6
ϕ (b)+

b+2a
3

1
b−a

∫ b

a
ϕ (x)dx

)

� b−a
6

bϕ (b)+
b+2a

3

(
b−a

6
ϕ (b)+

b+2a
6

(ϕ (a)+ ϕ (b))
)

.



772 S. ABRAMOVICH AND L.-E. PERSSON

The following simple calculation shows that in fact (4.7) is a better upper bound than
(4.5) when ϕ is differentiable non-negative, increasing and convex function on [a,b] ,
a � 0:

The right hand-side of (4.5) rewritten as

ϕ (b)
(

2
6
b2 +

1
6
a2
)

+ ϕ (a)
(

2
6
a2 +

1
6
b2
)

,

is greater than the right hand-side of (4.7) rewritten as

ϕ (b)
(

5
18

b2 +
4
18

ab+
2
18

a2
)

+ ϕ (a)
(

1
18

b2 +
4
18

ab+
4
18

a2
)

,

because for ϕ (x) � 0[
ϕ (b)

(
2
6
b2 +

1
6
a2
)

+ ϕ (a)
(

2
6
a2 +

1
6
b2
)]

−
[

ϕ (b)
(

5
18

b2 +
4
18

ab+
2
18

a2
)

+ ϕ (a)
(

1
18

b2 +
4
18

ab+
4
18

a2
)]

=
(b−a)2

18
(ϕ (b)+2ϕ (a)) � 0.

The authors thank the anonimous referee for the very helpful remarks and sugges-
tions.
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