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A SHARPENING OF A PROBLEM ON BERNSTEIN

POLYNOMIALS AND CONVEX FUNCTIONS

ULRICH ABEL AND IOAN RAŞA

(Communicated by S. Varošanec)

Abstract. We present an elementary proof of a conjecture by I. Raşa which is an inequality
involving Bernstein basis polynomials and convex functions. It was affirmed in positive very
recently by the use of stochastic convex orderings.

1. Introduction

The classical Bernstein polynomials, defined for f ∈C [0,1] by

(Bn f ) (x) =
n

∑
ν=0

pn,ν (x) f
(ν

n

)
(x ∈ [0,1]) ,

with the basis polynomials

pn,ν (x) =
(

n
ν

)
xν (1− x)n−ν (ν = 0,1,2, . . .) ,

are the most prominent positive linear approximation operators (see [9]). If f ∈C [0,1]
is convex the inequality

n

∑
i=0

n

∑
j=0

[pn,i (x) pn, j (x)+ pn,i (y) pn, j (y)−2pn,i (x) pn, j (y)] f

(
i+ j
2n

)
� 0 (1)

is valid, for x,y ∈ [0,1] .
This inequality involving Bernstein basis polynomials and convex functions was

stated as an open problem 25 years ago by Ioan Raşa. During the Conference on Ulam’s
Type Stability (Rytro, Poland, 2014), Raşa [11] recalled his problem.

Inequalities of type (1) have important applications. They are useful when study-
ing whether the Bernstein-Schnabl operators preserve convexity (see [3, 4, 5]).

Very recently, J. Mrowiec, T. Rajba and S. Wa̧sowicz [10] affirmed the conjecture
in positive. Their proof makes heavy use of probability theory. As a tool they applied
stochastic convex orderings (which they proved for binomial distributions) as well as

Mathematics subject classification (2010): 26D05, 39B62.
Keywords and phrases: Inequalities for polynomials, Functional inequalities including convexity.

c© � � , Zagreb
Paper MIA-21-55

773

http://dx.doi.org/10.7153/mia-2018-21-55


774 ULRICH ABEL AND IOAN RAŞA

the so-called concentration inequality. After that one of the authors gave a short el-
ementary proof [1] of inequality (1) . The other author remarked in [12] that (1) is
equivalent to

(B2n f ) (x)+ (B2n f ) (y) � 2
n

∑
i=0

n

∑
j=0

pn,i (x) pn, j (y) f

(
i+ j
2n

)
. (2)

If f is convex on [0,1] also B2n f is convex on [0,1] (see [2, Corollary 6.3.8]). There-
fore, we have

(B2n f ) (x)+ (B2n f ) (y) � 2(B2n f )
(

x+ y
2

)
. (3)

Thus the following problem seems to be a natural one: Prove that

(B2n f )
(

x+ y
2

)
�

n

∑
i=0

n

∑
j=0

pn,i (x) pn, j (y) f

(
i+ j
2n

)
, (4)

for all convex f ∈C [0,1] and x,y ∈ [0,1] .
If (4) is valid, then (2) – and hence (1) – is a consequence of (3) and (4) .

Starting from these remarks, the second author presented the inequality (4) as an open
problem in [12]. A probabilistic solution was found by A. Komisarski and T. Rajba [7]
using the methods developed in [10] and [8].

The purpose of this short note is to give an analytic proof of the following theorem.

THEOREM 1. Let n,m∈N . If f ∈C [0,1] is a convex function, then the inequality

(Bmn f )

(
1
m

m

∑
ν=1

xν

)
�

n

∑
i1=0

· · ·
n

∑
im=0

(
m

∏
ν=1

pn,iν (xν )

)
f

(
1

mn

m

∑
ν=1

iν

)
,

is valid for all x1, . . . ,xm ∈ [0,1] .

Obviously, the special case m = 2 is inequality (4) .

2. An elementary proof of Theorem 1

Using the obvious identity

pn,i (x) =
1
i!

(
∂
∂ z

)i

[(1+ xz)n]

∣∣∣∣∣
z=−1

we obtain
n

∑
i1=0

· · ·
n

∑
im=0

(
m

∏
ν=1

pn,iν (xν)

)
f

(
1

mn

m

∑
ν=1

iν

)

=
mn

∑
k=0

f

(
k

mn

)
∑

i1+···+im=k

m

∏
ν=1

(
1
iν !

(
∂
∂ z

)iν

(1+ xνz)n

)∣∣∣∣∣
z=−1

=
mn

∑
k=0

f

(
k

mn

)
1
k!

[(
∂
∂ z

)k m

∏
ν=1

(1+ xνz)n

]∣∣∣∣∣
z=−1

,
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where the last equality follows by Leibniz rule for derivatives. In particular, we have

n

∑
i1=0

· · ·
n

∑
im=0

(
m

∏
ν=1

pn,iν (x)

)
f

(
1

mn

m

∑
ν=1

iν

)

=
mn

∑
k=0

f

(
k

mn

)
1
k!

[(
∂
∂ z

)k

(1+ xz)mn

]∣∣∣∣∣
z=−1

= (Bmn f ) (x) .

Inserting

(Bmn f )

(
1
m

m

∑
ν=1

xν

)
=

mn

∑
k=0

f

(
k

mn

)
1
k!

[(
∂
∂ z

)k
(

1
m

m

∑
ν=1

(1+ xνz)

)mn]∣∣∣∣∣
z=−1

we obtain

(Bmn f )

(
1
m

m

∑
ν=1

xν

)
−

n

∑
i1=0

· · ·
n

∑
im=0

(
m

∏
ν=1

pn,iν (xν)

)
f

(
1

mn

m

∑
ν=1

iν

)

=
mn

∑
k=0

f

(
k

mn

)
1
k!

(
∂
∂ z

)k
[(

1
m

m

∑
ν=1

(1+ xνz)

)mn

−
m

∏
ν=1

(1+ xνz)n

]∣∣∣∣∣
z=−1

.

For fixed n ∈ N and x1, . . . ,xm ∈ [0,1] , we define

g(z) ≡ gm,n (z;x1, . . . ,xm) = z−2

((
1
m

m

∑
ν=1

(1+ xνz)

)mn

−
m

∏
ν=1

(1+ xνz)n

)
.

Note that g is a polynomial in z of degree at most mn−2.

LEMMA 1. Fix x1, . . . ,xm ∈ [0,1] . Then, the function g satisfies g(k) (−1) � 0 ,
for k = 0,1, . . . ,mn−2 .

Proof. For abbreviation, put aν = 1+ xνz . We have(
1
m

m

∑
ν=1

(1+ xνz)

)mn

−
m

∏
ν=1

(1+ xνz)n

=

(
1
m

m

∑
ν=1

aν

)mn

−
(

m

∏
ν=1

aν

)n

=

((
1
m

m

∑
ν=1

aν

)m

−
m

∏
ν=1

aν

)
n−1

∑
j=0

(
1
m

m

∑
ν=1

aν

)n−1− j( m

∏
ν=1

aν

) j

.

We see that the second factor

n−1

∑
j=0

(
1
m

m

∑
ν=1

aν

)n−1− j( m

∏
ν=1

aν

) j
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has non-negative derivatives of all orders at z = −1. This reduces the problem to the
case n = 1, i.e., (

m

∑
ν=1

aν

)m

−mm
m

∏
ν=1

aν

when multiplied by mm . For m = 2, we have

(a1 +a2)
2 −4a1a2 = (a1−a2)

2 = (x1− x2)
2 z2

such that g2,1 (z;x1,x2) = (x1− x2)
2 /4. For m � 2, Gusić [6, Theorem 1] (cf. [13,

Eq. (2)]) proved the representation(
m

∑
ν=1

aν

)m

−mm
m

∏
ν=1

aν = ∑
1�i< j�m

(ai−a j)
2 Pi, j (a1, . . . ,am) ,

for some homogeneous polynomials Pi, j of degree n− 2 with all non-negative coef-
ficients. Applying this with ai = 1+ xiz we see that each Pi, j (a1, . . . ,am) has all the
derivatives at z = −1 non-negative and so does (ai−a j)

2 /z2 by the m = 2 case. Thus
g(z) has all the derivatives at z = −1 non-negative as well. �

The key result is the next proposition. The proof follows the lines of [1, Prop. 1].

PROPOSITION 1. Fix x1, . . . ,xm ∈ [0,1] . Then, for any real numbers a0, . . . ,amn ,
the identity

n

∑
i1=0

· · ·
n

∑
im=0

[(
m

∏
ν=1

pn,iν

(
1
m

m

∑
ν=1

xν

))
−
(

m

∏
ν=1

pn,iν (xν )

)]
·a|i|

=
mn−2

∑
k=0

(
Δ2ak

) 1
k!

g(k) (−1) (5)

is valid.

Here we put |i| =
m
∑

ν=1
iν and Δ denotes the forward difference Δak := ak+1 − ak

such that Δ2ak = ak+2−2ak+1 +ak .
Because g is a polynomial in z of degree at most mn− 2, it is obvious that

g(mn−1) (−1) = g(mn) (−1) = 0.

Proof of Theorem 1. For k = 0,1, . . . ,mn−2, we put

ak = f

(
k

mn

)
.

If f ∈ C [0,1] is a convex function it follows that Δ2ak � 0, for k = 0,1, . . . ,mn− 2.
Therefore, application of Proposition 1 proves Theorem 1. �
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