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TOPICAL FUNCTIONS: HERMITE-HADAMARD TYPE
INEQUALITIES AND KANTOROVICH DUALITY

M. H. DARYAEI AND A. R. DOAGOOEI

(Communicated by C. P. Niculescu)

Abstract. For a certain class of elementary functions consisting of min-type functions, we ap-
ply techniques from abstract convex analysis to study Hermite-Hadamard type inequalities for
increasing and plus-homogeneous (topical) functions. Some examples of such inequalities for
functions with the special domains are given as well. In the next part, we study Kantorovich
duality for the optimal mass transportation problems whenever the cost function is a min-type
function. In this case, some pricing criteria are established as well.

1. Introduction

Let f be a convex function defined on the segment [a,b] of the real line. Then the
following inequality holds:

a+b 1 b 1
1(557) <5 | rwar <5 (1@ + o)) M
These inequalities are well known as the Hermite-Hadamard inequalities [10]. There
are many generalizations of these inequalities for classes of non-convex functions such
as quasiconvex functions [13, 14], p-functions [13], ICAR (Increasing and Convex-
Along-Rays) functions [6], IR (Increasing and Radiant) functions [19], and IPH (In-
creasing and Positively Homogeneous) functions [ 1]. More results regarding Hadamard
type inequalities have been presented in [7].

For instance [14], if f: [0,1] — R is an arbitrary nonnegative quasiconvex func-
tion, then for every u € (0, 1) one has

1 1
<—F"F— dx. 2
10 < ey | ) @
The inequality (2) is sharp, which means that there is a quasiconvex function for which
the equality holds.
If

D:{(x,y) E]Rizogxéa, 0< 2 QV},
X
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where a > 0 and v > 0, then for every ICAR function f we have:

a VCl
1(5:5) < a7 £ sy

where A(D) is the area of D and this inequality is sharp [6].

The class of topical functions is one of the interesting classes of abstract convex
functions (see [12, 15]). These functions have found many applications in various fields,
such as economics, dynamical systems, mathematical optimization and etc. See for
instances [5, 9, 11, 15] and references therein.

Applying techniques from abstract convex analysis, we present some Hermite-
Hadamard type inequalities for the topical functions defined on R”. Some examples
for particular domains are also presented.

The theory of optimal mass transportation has found many applications in ap-
plied sciences such as asymmetric information, incentive compatibility, multidimen-
sional screening and in principal-agent paradigms, see [4, 8, 16, 17, 20] and references
therein. The main key in this theory is the well-known Kantorovich duality problem,
which we recall briefly here.

Let (X,u) and (Y,Vv) be Polish probability measure spaces. Let TTI(u, V) be the
set of all positive measures 7 on the product space X x ¥ such that (A xY) = u(A)
and m(X x B) = v(B), for all measurable sets A C X and B C Y. Consider that the
cost function ¢ : X x Y — R, which gives the cost of transporting one unit of mass at
the point x € X to one unit of mass at the point y € Y, is lower semi continuous. There-
fore, the Monge-Kantorovich’s mass transportation problem is stated as the following
minimization problem:

minimize/ c(x,y)dm(x,y) subjectto 7w e II(u,v). 3)
XxY

Assume that there are upper semi continuous functions fy € L' (1) and go € L'(v) in
such a way that forall x€e X and yeY

Jo(x) +go(y) < c(x,y).

Therefore Kantorovich duality necessitates that

min / c(x,y)dm(x,y) = sup /g )dv(y /f )du(x
XxY ).g—f<c

nell(u,v) feL (u) geLl (v

“)
To have an elaborated description of (4), we refer the reader to [20] (see also [3] Theo-
rem 1.4). The right-hand side of the Kantorovich duality may be interpreted as a pricing
problem: Suppose that a distributor buys a unit of mass at the source x for the price of
f(x) and he/she sells a unit of mass at the target y for the price of g(y). Obviously,
g(y) < f(x) +c(x,y), otherwise the consumer at the point y buys the mass directly
from the producer at the point x and analogously, producer at the point x may sell the
mass directly at the point y. Moreover, the total price that the distributer should pay
is [y f(x)du(x) and the total price for selling the total mass is [, g(y)dv(y). On the
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other hand, the left-hand side of (4) means that in the case of a direct trading, the traders
intend to minimize the total cost of transportation, while the distributor looks forward
to maximizing the profit.

In the second part of this paper we are going to study Kantorovich duality when-
ever the cost function is a specific minimum type function. We exploit a similar discus-
sion from [3] in order to establish some pricing criteria whenever the primary pricing
function is topical.

This article has the following structure. In section 2, we provide some prelimi-
naries, definitions and results relative to topical functions. In section 3, we consider
Hermite-Hadamard type inequalities for the class of topical functions. Some examples
of such inequalities for functions defined on R? are given in section 4. Finally we study
mass transportation problem in the framework of Kantorovich duality for topical cost
function in Section 5.

2. Preliminaries

We assume that R” is equipped with the coordinate-wise order relation. A function
fiR" — R = [—oo, 4] is said to be increasing if x <y implies f(x) < f(y) for all
x, y € R". f is called plus-homogeneous if f(x+ A1) = f(x) + A for all x € R"” and
all A € R, where 1 =(1,...,1) e R™.

DEFINITION 1. A function f:R" — R is called ropical if it is increasing and
plus-homogeneous.

LEMMA 1. [15] Let f:R" — R be a topical function.
(i) If there exists x € R" such that f(x) = +oo, then f = +oo.
(ii) If there exists x € R" such that f(x) = —eo, then f = —co.

It follows from Lemma 1 that a topical function is either finite (i.e., finite-valued
at each x € R") or identically <o or identically —eo.
Now, we present the following simple examples of topical functions.

EXAMPLE 1. Every positive linear function f: R" — R (i.e., f(x) > 0 for all
x> 0) such that f(1) =1 is topical.

EXAMPLE 2. Functions of the form

fx): (xi +¢;) and f(x) := max (x; + ¢;)

= min
1<i<n 1<i<n

are topical, where ¢ := (cy,...,¢,) € R".

EXAMPLE 3. The Log-sum-exp function of the form

n

f) = %ln@em, (xeR"),

i=1

where 0 < p < oo, is topical.
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Let us mention some properties of the set I" of all topical functions f : R" — R.
(1) We have T+ R =T, thatis,if f€T and c € R, then f+ceT.

(2) T is a convex set.

(3) T is a complete lattice, that is, if {f}gcp is an arbitrary family of " and

flx)= sup fp (x), (xeR"),
BeB
then the function f belongsto T
(4) T is closed with respect to the point-wise convergence of functions.

REMARK 1. Every finite topical function f is continuous on R". Indeed, let
X, xp € R" xp — x and € > 0. Then x — €l < x; < x+ €1 for sufficiently large
k. Since f is increasing and plus-homogeneous, one has

fx)—e=f(x—el) < flx) < flx+el) = f(x) +e.
These inequalities imply the continuity of f at x.

Now, we recall some definitions from abstract convex analysis. Consider a set X
and a set 7 of functions / : X — R. The function f:X — R is called abstract
convex with respect to 57 (or 7 -convex) if there exists a subset U of J# such that

f(x) =suph(x), (xeX).
heu

The set 77 is called the set of elementary functions. Consider the coupling function
¢ :R"x R" — R defined by

(P(xay> = min (xi+yi>7 (.X, ye Rn) (5)

1<i<n
It is shown in [15] that the function f : R” — R is topical if and only if

Sx) =z ox,—y)+ f(y), Vx,yeR™. (6)

Formula (6) implies the following result.

PROPOSITION 1. Let f be an arbitrary function defined on R" and A C R". Then
the function

Jalx) = SUAP(f(Y) +o(x,-y), (xeR)
ye

is topical. Moreover if f is topical then:
(i) fa(x) < f(x) forall x € R".
(ii) falx) = f(x) forall x € A.

In the rest of this section and Section 3, we denote by @, the function defined on
R”" by the formula ¢, (x) := @(x,y). Let X, = {¢, : y € R"}, then it is known that any
function f defined on R" is topical if and only if f is X, -convex, see [15].
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DEFINITION 2. Let D C R". A function f: D — R is called topical on D if
there exists a topical function F' defined on R” such that F(x) = f(x) for all x € D.

PROPOSITION 2. Let f be a function defined on the set D C R". The following
assertions are equivalent:
(i) f istopical on D.

(1) @(x,—y)+f(v) < f(x), forall x, y € D.
(iif) f is abstract convex with respect to the set of functions ¢_,+c:D — R
with ye D and ¢ € R.

Proof. (i) = (ii) Since f is topical on D, then there exists a topical function
F :R" — R such that F(x) = f(x) for all x € D. From Proposition 1, the function

Fo(x) = sup(g-y(x) + F(3)),  (x €R)

is topical and Fp(x) = F(x) forall x € D. It follows that

sup(@—y(x) +F(y)) = f(x)
yeD

for all x € D. Therefore

ox,—y)+ fy) < f(x), Vx,yeD.

(if) = (iii) Consider the function fp defined on D as follows

fo(x) =sup(@—,(x) + f(y)), (x€D).

yeD

It is clear that fp is abstract convex with respect to the set {¢_,+c : y € D, c € R}.
It follows from (ii) that for all x € D

fo() < f(x) = f(x) + 9(x, —x) < ilelg(q’—y(X) +/() = o).

So, fp(x) = f(x) forall x € D and we have the desired statement (iif).
(iif) = (i) We have that there exists a set A C D x R such that

f(x)= sup (¢,(x)+¢), (xeD).
(y,c)eA

Now, consider the function F' defined on R" as follows

F(x):= sup (¢_y(x)+c), (xeR").
(y,c)eA

Since the function ¢_, + ¢ is topical for all y € D and ¢ € R, then F is topical and
F(x) = f(x) forall x € D. Hence, f is topicalon D. [
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3. Hermite-Hadamard type inequalities

Let D C R" be a closed domain, that is, D is a bounded set such that cl(intD) = D.
Let Q(D) be the set of all points x € D such that

|
W/thf(x)dx:

where A(D) = [, dx.

PROPOSITION 3. The set Q(D) is compact.

Proof. Since D is compact, we only prove that Q(D) is closed. Let {x,,} C O(D)
and X, — X. Since Qx(x,) = @y, (x), @y is continuous and D is compact, the sequence
{¢_z,} converges uniformly to ¢_z on D. On the other hand, ﬁ Jpo_x5,(x)dx=1

for all n > 1, Therefore, (1D) Jp ¢_z(x)dx=1. Hence, x € Q(D). O

PROPOSITION 4. Let Q(D) be nonempty and f be a topical function defined on
D. Then the following inequality holds:

sup f(x f(x) (7
x€Q(D) /

Proof. Since f is topical on D, it follows from Proposition 2 that

_s(x0)+ f(X) < f(x), Vx,yeD.

Let x € Q(D). It follows from the definition of Q(D) that

ADV(1+ 1) = [ (p5(0+5(P)dx < [ fex)ax

%)Lf(x)dx

Since any topical function is continuous and Q(D) is compact, it follows that the
supremum in (7) is attained.

Therefore

This completes the proof. [l

REMARK 2. Foreach X € Q(D) we have the following inequality:

1

Note that the inequality (8) is sharp. For example, if f(x) = ¢_z(x), then (8) becomes
an equality.
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Now, we consider generalization of the inequality from the right-hand side of (1.1).
Let f be a topical function defined on a closed domain D C R". By Proposition 2.2,
we have @(y,—x) + f(x) < f(y) forall x, y € D. So

fx) < f(y)+ max (x; —y;) Vx, y€D. ©)

1<i<n

Now, let y € D be a minimal element of the set D (note that the point y € D is
called a minimal point of the set D, if x € D and x <y implies that x = y). It follows
from (9) that

) dx < f(Y)AD)+ [ max (x; —y;)dx. (10)

D D 1<i<n

In the rest of this section, we describe the set Q(D), where D is a subset of R?.
Let D C R? be a closed domain. We begin with points (x,y) € Q(D), which does not
belong to the interior of D. Let t € R be a number such that

DC{(x,y) €ER?:y—x<1}.
D is a subset of R? contained in a half-space defined by the line R, = {(x,y) € R? :

y—x=t}. Assume that DNR; # 0. We are looking for a point (x,y) € R, that belongs
to Q(D), that s,

1 . _ _
m/ljmm(x—my—y)dxdy—l, (11)

where A(D) is the area of D.
Since y—x =t and y —x <t forall (x,y) € D, one has

min(x — X,y —y) =y—y.
Let

1
YD:m/Dydxdy. (12)
Then
1 . B B 1 B | .
A—(D)/Dmm(x—x,y—)’)dxdy—m/})(y—y)dxdy—m/ljydxdy—y.

Thus (11) holds if y =¥p — 1. Since (X, y) € R, then we have X =Yp —1— 1.
We have proved the following result.

PROPOSITION 5. Let D C R? be a closed domain and ¢ € R such that
DcC{(x,y) €R?:y—x<1}.
Assume that (Yp—¢t—1,Yp—1) € D. Then (Yp—t—1,Yp—1) € Q(D).

The following result is similar to Proposition 5. So we omit the proof.
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PROPOSITION 6. Let D C R? be a closed domain and u € R such that
Dc{(x,y)eR?:y—x>u}.

Let

Assume that (Xp — 1,Xp+u—1)€ D. Then (Xp —1,Xp+u—1) € Q(D).

We now describe points (i, y) € (intD)NQ(D). First we need some notations. Let
(¥,y) € intD and y — ¥ =t. Consider the line R, = {(x,y) € R* : y—x=1¢}. This line
intersects intD and divides D into two parts D; and D;, which are located in different
half-planes defined by the line R,. We have D = D;UD, and (intD;) N (intDy) = 0
(intD; £ 0 for i =1,2).

Let Yp, be the number defined by (12) for the domain Dy, Xp, be the number
defined by (13) for the domain D, and o = % It is clear that 0 < o < 1 and

A(Dy)

l—a= AD) -

THEOREM 1. Let (x,y) €imtD and y —x =t. Then (X,y) € Q(D) if and only if
F=ap, —1)+(1—a)Xp,—1, y=x+t. (14)
Proof. We have

min(x —x,y—y) =y—y, V(x,y) €Dy,

and
min(x—x,y—y) =x—x, VY(x,y) € D;.

So
1
/mmx X,y— y)dxdy—m(/ (vy— ydxdy+/ x— x)dxdy)

/ydxdy Dl))7—|—/ xdxdy —A(D>)X)
D,

\w\

(A(D1)(Yp, — y) + (A(D2)(Xp, — x))

\_/

(D

(Yp, —x —1) + (1 — o)(Xp, — X)
(Yp, —1) + (1 —a)Xp, — .
(

Assume that (x,y) € Q(D). Then o (Yp, —1)+ (1 — o)Xp, — x = 1. Hence (14) holds.
On the other hand, if (14) holds then

Il
R KR >

1
— [ min(x— %,y — §)dxdy = 1
A(D)/Dmln(x X,y—y)dxdy ,

whence (x,y) € O(D). O
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4. Examples

To illustrate the results obtained in Section 3, we present some examples in the
sequel.

EXAMPLE 4. Let D C R? be the triangle with vertices (a,0), (a+§,0) and (a+
0,0), thatis
D ={(x,y) ER?:a<x<a+34, 0<y<x—a},

where § > 3. So
Dc{(x,y)eR?*:y<x—a}.
We are looking for a point (X,y) € Q(D) that lies on the side of D with endpoints

(a,0) and (a+ 8,8). To do this, we need to calculate Yp, using Proposition 6. It is
clear that A(D) = 572 We have

Y—L/ dd—i/a+5(/x_ad)d—16
b= 2y =5z [ () vddx=38.

Thus, y=Yp—1= %6—1 and x=Yp+a—1= %5+a— 1. Therefore, if § > 3, then
(x,7) €D.

It follows from Remark 2 that the following inequality holds for each topical func-
tion f.

1 1 2
il _1.25—-1 < _
f(35+a 1,35 1)< 62/Df(x7y)dxdy 1,
and so (since f is topical)
1 1 2
_ _ < .
f<35+a735) < 52/Df(x,y)dxdy

On the other hand, («,0) is the unique minimal point of the set D. Since the function
f is increasing, f(a,0) < f(x,y) forall (x,y) € D. By (10), one concludes that

2 3
/ f(x,y)dxdy < 5—f(a,0) + 5—.
D 2 3

EXAMPLE 5. Consider the square in R? formed by the points (—a,0), (0,a),
(a,0) and (0,—a) as its vertices, which we denote by D (we assume that a > 4).
Consider the line R, = {(x,y) € R? : y—x =1t} that | x |< Va> — 4a passing through
the interior of D. This line divides D into two parts. Let the down-side part of R, N D
be denoted by D; and the up-side part of R; N D be denoted by D, We are looking for
a point (x,y) € (intD) N Q(D). According to Proposition 1, we need to calculate Yp,
and Xp, . Itis clear that A(D) = 2a?, A(Dy) =a(a+t) and A(D>) = a(a—t). We have

1 1
D, A(Dl)/Dly xay 4( a)
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and . |
Xp, = —/ xdxdy = — t+a).
D, A(Dz) ) y 4 ( )

Then we get (x,y) as follows

A(D
X = i((DDl; (Yp, —1) + A((D))XDZ—I
= (;;t( (t—a) ) _t( l(t+a)>—1
= a1

and y = x+1 = Z1(r+a)*+1—1. Note that (x,y) € intD. This is equivalent to
S(a+1) < ¥ < $(a—t).Itis easy to see that if | ¥ |< va® —4a, then (X,7) € intD.

Now, let (x',y") be a minimal point of D. Itis clear that x’, y/ <0 and X' +y = —a.
A simple calculation show that, (10) implies the following inequality.

/Df(x,y)dxdy <2a2f(X YY) +2a° —2ax'y'.

5. Topical cost functions in mass transportation problems

In this section we are going to study Kantorovich duality whenever the cost func-
tion is a specific topical function defined (analogously) by the formula (5). More pre-
cisely we assume that

c(x,y) = —0(x,—y) := max (—x; +y;). (15)

1<i<n

We denote the set of all topical function f: R" — R by Z; and the abstract conjugate
function of f with respect to —c is denoted by f~¢ ([18]), which is

fCW) = sup[—c(x,y) = f(x)].

xeR?

THEOREM 2. Let i and v be two positive finite Borel measures on R". Assume
that ||.|| is a norm defined on R" such that ||.|| € L'(u) NL'(v). Then

min max (—x; +y;)dm(x
min [ max (it y)dn(x,y)

= s ([ v - [ f@du)

feENLY (w)nL(v)

Proof. Let fy(x) := —max <i<pxi and go(x) := min;¢;<,x;, forall x € R". Since
Il € L' (w)NL (V). fo.go € L' () "L (v). Clearly, fo(x)+go(x) < maxi<icu(—xi+
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vi). Therefore, according to Kantorovich duality, the equality of (4) fulfills. Now we
are going to show that if g(y) — f(x) < c(x,y) for all x,y € R", then

80— f(0) < —f0) — f(x) S —f ) = fTIV ) Celwy).  (16)

Since —c(x,y) — f(x) < —g(y) forall x,y e R", g(y) < —f“(y) forall y € R". On
the other hand it is easy to see that f(=9)(=¢)(x) < f(x) for all x € R". Indeed,

f9C9(x) = supinf[g (x, —2) — 9 (w,—2) + f(w)] < f().
z w
This shows that the inequalities of (16) hold. We need also to prove that f("')("')
is topical and f¢(y) = —f(y). Since f(-)9)(x) = Supyern @ (X, —y) — f74(y), it
follows from Proposition 2 that f (=a)(=) g topical. Now assume that f is a topical
function and 1 is a vector whose components are all 1. Since ¢(x,—y)1 <x—y forall
x,y € R", one has

FO) < flx—o(x,—y)1) = f(x) — 9 (x,—y).

This implies that
) = sup —c(x,y) = f(x) < —f(y).

xeR?

On the other hand —f(y) = —c(y,y) = f(y) < f~(y). Therefore, —f~*(y) = f(y).
Moreover,

f(ic)(ic)(ic) (y) = Supinfsup[¢ ()C, _y) - ¢(X, —W) + ¢(Z7 _W) - f(Z)]

Letting w :=y, one has f(-9)(=9)(=)(y) < f~¢(y), while letting z := x, one has

FEIEIEI0) = ).

This completes the proof.

COROLLARY 1. Suppose that = v and ||.|| € L' (u) "L (v) for some norm |.||
defined on R". Then the optimal plan © € TI(1L,V) is concentrated on the graph of the
identity mapping I : R" — R" defined by 1(x) :=x for all x € R". In this case

P B0 S R 9) =0

It is worthy saying that since y and v are finite measures on R", their supports
are both ¢ -compact. In addition, if the supports of u and v are compact, then the as-
sumption ||.|| € L' (u) N L' (v) is redundant and may be eliminated from both Theorem
2 and Corollary 1.

In the sequel we present a perspective on establishing of pricing functions. Let
M :R" = R" be a set valued mapping and @ # S C dom(M) := {x € R"|M(x) # 0}.
Assume that we have an optimal plan 7 concentrated on the graph(M) := {(x,y) €
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R" xR"|y € M(x)}. Then it is well-known that M must be —c-cyclically monotone
[20]. Indeed, let (f,g) be the the pair of pricing functions solving the right-hand side
of (4). Assume that there are some x,y € R" for which g(y) — f(x) < c(x,y). Then, if
a nonzero mass is transported from x to y, the equality of (4) does not hold. Therefore,
7 is concentrated on the set

{(x,y) € R" xR : g(y) — f(x) = c(x,y) }-

Using a similar argument of the proof of Theorem 2, one could replace the function g
by —f~¢. On the other hand d_.f defined by

O-cf(x) ;= {y eR"f(y) + f(x) = —c(x,y)}
={yeR"c(x,y) —c(z,y) < f(z) = f(x), Vz€R"}

is —c-cyclically monotone. Since graph(M) C graph(d_.f), graph(M) is —c-cyclically
monotone.

Now assume that we already have a pricing function f which solves the right-
hand side of the equality (4) and an optimal plan 7 concentrated on a —c-cyclically
monotone operator M is at hand. Suppose that we are going to adjust a new pricing
function in such a way that the new function is —c-convex and coincides with the old
pricing function f over a nonempty subset S of dom(M). The set of all such functions
is denoted by @/_. s, 5. Recall that a function /1 : R" — (—co,+e0] is called —c-
convex, if there exist a function g : R” — (—eo,+o0] such that h(x) = g~“(x) for all
x € R". We denote by 7. the set of all —c-convex functions. Therefore,

A _cfls.5) = {h € A : graph(M) C graph(d_.h), h|s = f|s}.

The set |_. f|;.5) 1s well-studied in [2, 3]. Concerning the aforementioned pricing
argument, a natural task is to seek the infimum and supremum of 7. Let

= inf  A(x), Ycpom@®) = sup  h(x). (17)
he_c.pigm medlsM] hed|_c M)

O, fls,m) (¥) :
Taking in to account the above argument, 0. r|;a 18 the best new pricing function
for the end customers while y_. ;4 is the best one for the producer in such a way
that both of them coincide with the old pricing function f over S. We are going to
characterize functions o . ;. and ¥ s;.») Whenever the cost function is defined
by (15). To do this, analogously to Proposition 1, we present the following proposition.

PROPOSITION 7. Let f be an arbitrary function defined on R” and A C R". Then
the function

[0 = inf(f() — 9(—x.y)), (x€R")

yEA
is topical. Moreover if f is topical then:
(i) fA(x) = f(x) forall x € R".
(it) fA(x) = f(x) forall x € A.
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Proof. The results follow from the fact that
y_¢(_x7y)1>x7 v')CayE]Rn7

where 1 € R" is a vector whose components are all 1. [

The following observation adjusts the new pricing function whenever the old pric-
ing function is topical. For the set valued mapping M, we mean by Im(M), the well-
known image space of M, i.e.

Im(M) = {y e R": (x,y) € graph(M) for some x € dom(M)}.

THEOREM 3. Let M : R" = R”" be a set valued mapping and @ # S C dom(M).
Assume that ¢(x,y) = —@¢(x,—y) and f :dom(M) — (—eo,+e9] is a topical function on
dom(M) such that graph(M) C graph(d_.f). Let o_. f\s » and Y—c ss.m) be defined
by (17). Then:

(i) Ot flgomuny M) (X) = fim(m) (x) for all x € R".

(i) O fi5.1 (X) = fs(x) and Y_c 5,15 (x) = f3(x) for all x € R", where I is the
identity mapping defined on S.

Proof. As seen from the proof of Theorem 2, f~¢(y) = —f(y) for all y € R".
Thus

d—cf(x) ={y eR": f(x) = ¢(x,—y) + F(»)}-
(1): First we show that fin) € F_c g dom(a) M) Applying Proposition 1, f(x) >
Jim(a) (x) forall x € R". Let x E dom(M). Thus there is y € Im(M) such that (x,y) €
graph(&cf). Therefore, fin)(x) 2 f(v) + ¢ (x,—y) = f(x). S0, fimm)(x) = f(x)

for all x € dom(M).
Now assume that (xo,yo) € graph(M) and x € R". Then

Sim(a) (¥0) + 0 (x,—¥0) — ¢ (x0, —y0) = f(x0) + ¢ (x,—¥0) — ¢ (x0, —0)
= f(vo) + ¢ (x,—y0)
< fIm(M) (x)

This implies that (xo,y0) € graph(d—cfim(a)) - Therefore, finu) €
complete the proof, let / € <7

- ’fldom(M)’M] - To

¢S laom(ay:M] and x € R" be arbltrary. Then one has

Jim)(X) = sup  f(vo) + ¢ (x, —yo)

yo€Im(M)

= sup  f(x0) — @ (x0, —y0) + ¢ (x, —yo)
(x0.y0) €graph(M)

= sup  h(xo) — ¢ (x0,—yo) + @ (x,~yo0)
(x0.y0) €graph(M)

< h(x),
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which the equalities come from the facts that (xo,yo) € graphd_.h and h(xp) = f(xo).
This completes the proof of (i).

(ii): The equality o |,z (x) = fs(x) is an immediate consequence of (i). There-

fore we only prove the second equality. According to Proposition 7 part (i), f5(x) =
f(x) forall xe S. Let x € S. Using again Proposition 7 part (i), one has for all w € R”

L)+ 9w, =x) = 9 (x, —x) = f(x) + O (w,—x) = f(w) < f5(w).

This implies that (x,x) € graph(d_.f5) for all x € S. Hence f5 € ¢ fls.15] - Assume
now that h € @/ s - Applying the fact that h € 7. and Proposition 2, h is
topical. Therefore for all w € R”

£ (w) = inf(f(y) = p(=w.y)) = inf(h(y) = (=w.y)) = b (w) > h(w).
ye ye

Hence the proof is complete. [l
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