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TOPICAL FUNCTIONS: HERMITE–HADAMARD TYPE

INEQUALITIES AND KANTOROVICH DUALITY
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(Communicated by C. P. Niculescu)

Abstract. For a certain class of elementary functions consisting of min-type functions, we ap-
ply techniques from abstract convex analysis to study Hermite-Hadamard type inequalities for
increasing and plus-homogeneous (topical) functions. Some examples of such inequalities for
functions with the special domains are given as well. In the next part, we study Kantorovich
duality for the optimal mass transportation problems whenever the cost function is a min-type
function. In this case, some pricing criteria are established as well.

1. Introduction

Let f be a convex function defined on the segment [a,b] of the real line. Then the
following inequality holds:

f
(a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � 1

2
( f (a)+ f (b)). (1)

These inequalities are well known as the Hermite-Hadamard inequalities [10]. There
are many generalizations of these inequalities for classes of non-convex functions such
as quasiconvex functions [13, 14], p -functions [13], ICAR (Increasing and Convex-
Along-Rays) functions [6], IR (Increasing and Radiant) functions [19], and IPH (In-
creasing and Positively Homogeneous) functions [1]. More results regardingHadamard
type inequalities have been presented in [7].

For instance [14], if f : [0,1]−→ R is an arbitrary nonnegative quasiconvex func-
tion, then for every u ∈ (0,1) one has

f (u) � 1
min(u,1−u)

∫ 1

0
f (x)dx. (2)

The inequality (2) is sharp, which means that there is a quasiconvex function for which
the equality holds.

If
D =

{
(x,y) ∈ R

2
+ : 0 � x � a, 0 � y

x
� ν

}
,
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where a > 0 and ν > 0, then for every ICAR function f we have:

f
(a

3
,

νa
3

)
� 1

A(D)

∫
D

f (x,y)dxdy,

where A(D) is the area of D and this inequality is sharp [6].
The class of topical functions is one of the interesting classes of abstract convex

functions (see [12, 15]). These functions have found many applications in variousfields,
such as economics, dynamical systems, mathematical optimization and etc. See for
instances [5, 9, 11, 15] and references therein.

Applying techniques from abstract convex analysis, we present some Hermite-
Hadamard type inequalities for the topical functions defined on R

n . Some examples
for particular domains are also presented.

The theory of optimal mass transportation has found many applications in ap-
plied sciences such as asymmetric information, incentive compatibility, multidimen-
sional screening and in principal-agent paradigms, see [4, 8, 16, 17, 20] and references
therein. The main key in this theory is the well-known Kantorovich duality problem,
which we recall briefly here.

Let (X ,μ) and (Y,ν) be Polish probability measure spaces. Let Π(μ ,ν) be the
set of all positive measures π on the product space X ×Y such that π(A×Y ) = μ(A)
and π(X ×B) = ν(B) , for all measurable sets A ⊆ X and B ⊆ Y . Consider that the
cost function c : X ×Y → R , which gives the cost of transporting one unit of mass at
the point x ∈ X to one unit of mass at the point y∈Y , is lower semi continuous. There-
fore, the Monge-Kantorovich’s mass transportation problem is stated as the following
minimization problem:

minimize
∫

X×Y
c(x,y)dπ(x,y) subject to π ∈ Π(μ ,ν). (3)

Assume that there are upper semi continuous functions f0 ∈ L1(μ) and g0 ∈ L1(ν) in
such a way that for all x ∈ X and y ∈Y

f0(x)+g0(y) � c(x,y).

Therefore Kantorovich duality necessitates that

min
π∈Π(μ,ν)

∫
X×Y

c(x,y)dπ(x,y) = sup
f∈L1(μ),g∈L1(ν),g− f�c

(
∫
Y

g(y)dν(y)−
∫

X
f (x)dμ(x)).

(4)
To have an elaborated description of (4), we refer the reader to [20] (see also [3] Theo-
rem 1.4). The right-hand side of the Kantorovich duality may be interpreted as a pricing
problem: Suppose that a distributor buys a unit of mass at the source x for the price of
f (x) and he/she sells a unit of mass at the target y for the price of g(y) . Obviously,
g(y) � f (x) + c(x,y) , otherwise the consumer at the point y buys the mass directly
from the producer at the point x and analogously, producer at the point x may sell the
mass directly at the point y . Moreover, the total price that the distributer should pay
is

∫
X f (x)dμ(x) and the total price for selling the total mass is

∫
Y g(y)dν(y) . On the



HERMITE-HADAMARD TYPE INEQUALITIES AND KANTOROVICH DUALITY 781

other hand, the left-hand side of (4) means that in the case of a direct trading, the traders
intend to minimize the total cost of transportation, while the distributor looks forward
to maximizing the profit.

In the second part of this paper we are going to study Kantorovich duality when-
ever the cost function is a specific minimum type function. We exploit a similar discus-
sion from [3] in order to establish some pricing criteria whenever the primary pricing
function is topical.

This article has the following structure. In section 2, we provide some prelimi-
naries, definitions and results relative to topical functions. In section 3, we consider
Hermite-Hadamard type inequalities for the class of topical functions. Some examples
of such inequalities for functions defined on R

2 are given in section 4. Finally we study
mass transportation problem in the framework of Kantorovich duality for topical cost
function in Section 5.

2. Preliminaries

We assume that R
n is equippedwith the coordinate-wise order relation. A function

f : R
n −→ R = [−∞,+∞] is said to be increasing if x � y implies f (x) � f (y) for all

x, y ∈ R
n . f is called plus-homogeneous if f (x+ λ1) = f (x)+ λ for all x ∈ R

n and
all λ ∈ R, where 1 = (1, . . . ,1) ∈ R

n.

DEFINITION 1. A function f : R
n −→ R is called topical if it is increasing and

plus-homogeneous.

LEMMA 1. [15] Let f : R
n −→ R be a topical function.

(i) If there exists x ∈ R
n such that f (x) = +∞, then f ≡ +∞.

(ii) If there exists x ∈ R
n such that f (x) = −∞, then f ≡−∞.

It follows from Lemma 1 that a topical function is either finite (i.e., finite-valued
at each x ∈ R

n ) or identically +∞ or identically −∞.
Now, we present the following simple examples of topical functions.

EXAMPLE 1. Every positive linear function f : R
n −→ R (i.e., f (x) � 0 for all

x � 0) such that f (1) = 1 is topical.

EXAMPLE 2. Functions of the form

f (x) := min
1�i�n

(xi + ci) and f (x) := max
1�i�n

(xi + ci)

are topical, where c := (c1, . . . ,cn) ∈ R
n .

EXAMPLE 3. The Log-sum-exp function of the form

f (x) =
1
p

ln(
n

∑
i=1

epxi), (x ∈ R
n),

where 0 < p < ∞, is topical.
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Let us mention some properties of the set Γ of all topical functions f : R
n −→ R.

(1) We have Γ+R = Γ, that is, if f ∈ Γ and c ∈ R, then f + c ∈ Γ.
(2) Γ is a convex set.
(3) Γ is a complete lattice, that is, if { fβ}β∈B is an arbitrary family of Γ and

f (x) = sup
β∈B

fβ (x), (x ∈ R
n),

then the function f belongs to Γ.
(4) Γ is closed with respect to the point-wise convergence of functions.

REMARK 1. Every finite topical function f is continuous on R
n. Indeed, let

x, xk ∈ R
n, xk −→ x and ε > 0. Then x− ε1 � xk � x + ε1 for sufficiently large

k . Since f is increasing and plus-homogeneous, one has

f (x)− ε = f (x− ε1) � f (xk) � f (x+ ε1) = f (x)+ ε.

These inequalities imply the continuity of f at x.

Now, we recall some definitions from abstract convex analysis. Consider a set X
and a set H of functions h : X −→ R. The function f : X −→ R is called abstract
convex with respect to H (or H -convex) if there exists a subset U of H such that

f (x) = sup
h∈U

h(x), (x ∈ X).

The set H is called the set of elementary functions. Consider the coupling function
ϕ : R

n×R
n −→ R defined by

ϕ(x,y) = min
1�i�n

(xi + yi), (x, y ∈ R
n). (5)

It is shown in [15] that the function f : R
n −→ R is topical if and only if

f (x) � ϕ(x,−y)+ f (y), ∀x, y ∈ R
n. (6)

Formula (6) implies the following result.

PROPOSITION 1. Let f be an arbitrary function defined on R
n and Δ⊂R

n. Then
the function

fΔ(x) := sup
y∈Δ

( f (y)+ ϕ(x,−y)), (x ∈ R
n)

is topical. Moreover if f is topical then:
(i) fΔ(x) � f (x) for all x ∈ R

n.
(ii) fΔ(x) = f (x) for all x ∈ Δ.

In the rest of this section and Section 3, we denote by ϕy the function defined on
R

n by the formula ϕy(x) := ϕ(x,y) . Let Xϕ = {ϕy : y ∈ R
n}, then it is known that any

function f defined on R
n is topical if and only if f is Xϕ -convex, see [15].
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DEFINITION 2. Let D ⊂ R
n. A function f : D −→ R is called topical on D if

there exists a topical function F defined on R
n such that F(x) = f (x) for all x ∈ D.

PROPOSITION 2. Let f be a function defined on the set D ⊆ R
n. The following

assertions are equivalent:
(i) f is topical on D.
(ii) ϕ(x,−y)+ f (y) � f (x), for all x, y ∈ D.
(iii) f is abstract convex with respect to the set of functions ϕ−y + c : D −→ R

with y ∈ D and c ∈ R.

Proof. (i) ⇒ (ii) Since f is topical on D, then there exists a topical function
F : R

n −→ R such that F(x) = f (x) for all x ∈ D. From Proposition 1, the function

FD(x) = sup
y∈D

(ϕ−y(x)+F(y)), (x ∈ R
n)

is topical and FD(x) = F(x) for all x ∈ D. It follows that

sup
y∈D

(ϕ−y(x)+F(y)) = f (x)

for all x ∈ D. Therefore

ϕ(x,−y)+ f (y) � f (x), ∀x, y ∈ D.

(ii) ⇒ (iii) Consider the function fD defined on D as follows

fD(x) = sup
y∈D

(ϕ−y(x)+ f (y)), (x ∈ D).

It is clear that fD is abstract convex with respect to the set {ϕ−y + c : y ∈ D, c ∈ R}.
It follows from (ii) that for all x ∈ D

fD(x) � f (x) = f (x)+ ϕ(x,−x) � sup
y∈D

(ϕ−y(x)+ f (y)) = fD(x).

So, fD(x) = f (x) for all x ∈ D and we have the desired statement (iii).
(iii) ⇒ (i) We have that there exists a set Δ ⊂ D×R such that

f (x) = sup
(y,c)∈Δ

(ϕ−y(x)+ c), (x ∈ D).

Now, consider the function F defined on R
n as follows

F(x) := sup
(y,c)∈Δ

(ϕ−y(x)+ c), (x ∈ R
n).

Since the function ϕ−y + c is topical for all y ∈ D and c ∈ R, then F is topical and
F(x) = f (x) for all x ∈ D. Hence, f is topical on D . �
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3. Hermite-Hadamard type inequalities

Let D⊂R
n be a closed domain, that is, D is a bounded set such that cl(intD) = D.

Let Q(D) be the set of all points x ∈ D such that

1
A(D)

∫
D

ϕ−x(x)dx = 1,

where A(D) =
∫
D dx.

PROPOSITION 3. The set Q(D) is compact.

Proof. Since D is compact, we only prove that Q(D) is closed. Let {xn} ⊂ Q(D)
and xn −→ x. Since ϕx(xn) = ϕxn(x) , ϕx is continuous and D is compact, the sequence
{ϕ−xn} converges uniformly to ϕ−x on D. On the other hand, 1

A(D)
∫
D ϕ−xn(x)dx = 1

for all n � 1, Therefore, 1
A(D)

∫
D ϕ−x(x)dx = 1. Hence, x ∈ Q(D). �

PROPOSITION 4. Let Q(D) be nonempty and f be a topical function defined on
D. Then the following inequality holds:

sup
x∈Q(D)

f (x) � 1
A(D)

∫
D

f (x)dx−1. (7)

Proof. Since f is topical on D, it follows from Proposition 2 that

ϕ−x(x)+ f (x) � f (x), ∀x, y ∈ D.

Let x ∈ Q(D). It follows from the definition of Q(D) that

A(D)(1+ f (x)) =
∫

D
(ϕ−x(x)+ f (x))dx �

∫
D

f (x)dx.

Therefore

f (x) � 1
A(D)

∫
D

f (x)dx−1.

This completes the proof. �
Since any topical function is continuous and Q(D) is compact, it follows that the

supremum in (7) is attained.

REMARK 2. For each x ∈ Q(D) we have the following inequality:

f (x) � 1
A(D)

∫
D

f (x)dx−1. (8)

Note that the inequality (8) is sharp. For example, if f (x) = ϕ−x(x), then (8) becomes
an equality.
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Now, we consider generalization of the inequality from the right-hand side of (1.1).
Let f be a topical function defined on a closed domain D ⊆ R

n. By Proposition 2.2,
we have ϕ(y,−x)+ f (x) � f (y) for all x, y ∈ D. So

f (x) � f (y)+ max
1�i�n

(xi − yi) ∀x, y ∈ D. (9)

Now, let y ∈ D be a minimal element of the set D (note that the point y ∈ D is
called a minimal point of the set D, if x ∈ D and x � y implies that x = y). It follows
from (9) that ∫

D
f (x)dx � f (y)A(D)+

∫
D

max
1�i�n

(xi − yi)dx. (10)

In the rest of this section, we describe the set Q(D), where D is a subset of R
2.

Let D ⊂ R
2 be a closed domain. We begin with points (x , y) ∈ Q(D), which does not

belong to the interior of D. Let t ∈ R be a number such that

D ⊂ {(x,y) ∈ R
2 : y− x � t}.

D is a subset of R
2 contained in a half-space defined by the line Rt = {(x,y) ∈ R

2 :
y−x = t}. Assume that D∩Rt 
= /0. We are looking for a point (x , y)∈ Rt that belongs
to Q(D), that is,

1
A(D)

∫
D

min(x− x ,y− y)dxdy = 1, (11)

where A(D) is the area of D.
Since y − x = t and y− x � t for all (x,y) ∈ D, one has

min(x− x,y− y) = y− y.

Let

YD =
1

A(D)

∫
D

ydxdy. (12)

Then

1
A(D)

∫
D

min(x− x ,y− y)dxdy =
1

A(D)

∫
D
(y− y)dxdy =

1
A(D)

∫
D

ydxdy− y.

Thus (11) holds if y = YD −1. Since (x , y) ∈ Rt , then we have x = YD − t−1.
We have proved the following result.

PROPOSITION 5. Let D ⊂ R
2 be a closed domain and t ∈ R such that

D ⊂ {(x,y) ∈ R
2 : y− x � t}.

Assume that (YD − t−1,YD−1) ∈ D. Then (YD − t−1,YD−1) ∈ Q(D).

The following result is similar to Proposition 5. So we omit the proof.
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PROPOSITION 6. Let D ⊂ R
2 be a closed domain and u ∈ R such that

D ⊂ {(x,y) ∈ R
2 : y− x � u}.

Let

XD =
1

A(D)

∫
D

xdxdy. (13)

Assume that (XD −1,XD +u−1)∈ D. Then (XD −1,XD +u−1)∈ Q(D).

We now describe points (x , y)∈ (intD)∩Q(D). First we need some notations. Let
(x , y) ∈ intD and y− x = t. Consider the line Rt = {(x,y) ∈ R

2 : y−x = t}. This line
intersects intD and divides D into two parts D1 and D2 , which are located in different
half-planes defined by the line Rt . We have D = D1 ∪D2 and (intD1)∩ (intD1) = /0
( intDi 
= /0 for i = 1,2).

Let YD1 be the number defined by (12) for the domain D1, XD2 be the number

defined by (13) for the domain D2 and α = A(D1)
A(D) . It is clear that 0 < α < 1 and

1−α = A(D2)
A(D) .

THEOREM 1. Let (x , y) ∈ intD and y− x = t. Then (x , y) ∈Q(D) if and only if

x = α(YD1 − t)+ (1−α)XD2 −1, y = x + t. (14)

Proof. We have

min(x− x ,y− y) = y− y, ∀(x,y) ∈ D1,

and
min(x− x ,y− y) = x− x, ∀(x,y) ∈ D2.

So

1
A(D)

∫
D

min(x− x,y− y)dxdy =
1

A(D)
(∫

D1

(y− y)dxdy+
∫
D2

(x− x)dxdy
)

=
1

A(D)
(∫

D1

ydxdy−A(D1)y +
∫

D2

xdxdy−A(D2)x
)

=
1

A(D)
(
A(D1)(YD1 − y)+ (A(D2)(XD2 − x)

)

= α(YD1 − x − t)+ (1−α)(XD2 − x)
= α(YD1 − t)+ (1−α)XD2 − x.

Assume that (x , y) ∈Q(D). Then α(YD1 − t)+(1−α)XD2 − x = 1. Hence (14) holds.
On the other hand, if (14) holds then

1
A(D)

∫
D

min(x− x ,y− y)dxdy = 1,

whence (x , y) ∈ Q(D). �
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4. Examples

To illustrate the results obtained in Section 3, we present some examples in the
sequel.

EXAMPLE 4. Let D⊂R
2 be the triangle with vertices (a,0) , (a+δ ,0) and (a+

δ ,δ ), that is
D = {(x,y) ∈ R

2 : a � x � a+ δ , 0 � y � x−a},
where δ � 3. So

D ⊂ {(x,y) ∈ R
2 : y � x−a}.

We are looking for a point (x , y) ∈ Q(D) that lies on the side of D with endpoints
(a,0) and (a + δ ,δ ). To do this, we need to calculate YD, using Proposition 6. It is

clear that A(D) = δ 2

2 . We have

YD =
1

A(D)

∫
D

ydxdy =
2

δ 2

∫ a+δ

a
(
∫ x−a

0
ydy)dx =

1
3

δ .

Thus, y =YD−1 = 1
3 δ −1 and x =YD +a−1 = 1

3 δ +a−1. Therefore, if δ � 3, then
(x , y) ∈ D.

It follows from Remark 2 that the following inequality holds for each topical func-
tion f .

f (
1
3

δ +a−1,
1
3

δ −1) � 2
δ 2

∫
D

f (x,y)dxdy−1,

and so (since f is topical)

f
(1

3
δ +a,

1
3

δ
)

� 2
δ 2

∫
D

f (x,y)dxdy.

On the other hand, (a,0) is the unique minimal point of the set D . Since the function
f is increasing, f (a,0) � f (x,y) for all (x,y) ∈ D . By (10), one concludes that

∫
D

f (x,y)dxdy � δ 2

2
f (a,0)+

δ 3

3
.

EXAMPLE 5. Consider the square in R
2 formed by the points (−a,0) , (0,a) ,

(a,0) and (0,−a) as its vertices, which we denote by D (we assume that a > 4).
Consider the line Rt = {(x,y) ∈ R

2 : y− x = t} that | x |< √
a2−4a passing through

the interior of D. This line divides D into two parts. Let the down-side part of Rt ∩D
be denoted by D1 and the up-side part of Rt ∩D be denoted by D2 We are looking for
a point (x , y) ∈ (intD)∩Q(D). According to Proposition 1, we need to calculate YD1

and XD2 . It is clear that A(D) = 2a2, A(D1) = a(a+ t) and A(D2) = a(a− t). We have

YD1 =
1

A(D1)

∫
D1

ydxdy =
1
4
(t −a)
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and

XD2 =
1

A(D2)

∫
D2

xdxdy =
−1
4

(t +a).

Then we get (x , y) as follows

x =
A(D1)
A(D)

(
YD1 − t

)
+

A(D2)
A(D)

XD2 −1

=
a(a+ t)

2a2

(1
4
(t−a)− t

)
+

a(a− t)
2a2

(−1
4

(t +a)
)
−1

=
−1
4a

(t +a)2−1.

and y = x + t = −1
4a (t + a)2 + t − 1. Note that (x , y) ∈ intD. This is equivalent to

−1
2 (a+ t) < x < 1

2 (a− t).It is easy to see that if | x |< √
a2−4a, then (x , y) ∈ intD.

Now, let (x′,y′) be a minimal point of D. It is clear that x′, y′ � 0 and x′+y′ =−a.
A simple calculation show that, (10) implies the following inequality.

∫
D

f (x,y)dxdy � 2a2 f (x′,y′)+2a3−2ax′y′.

5. Topical cost functions in mass transportation problems

In this section we are going to study Kantorovich duality whenever the cost func-
tion is a specific topical function defined (analogously) by the formula (5). More pre-
cisely we assume that

c(x,y) := −φ(x,−y) := max
1�i�n

(−xi + yi). (15)

We denote the set of all topical function f : R
n → R by Ξ ; and the abstract conjugate

function of f with respect to −c is denoted by f−c ([18]), which is

f−c(y) := sup
x∈Rn

[−c(x,y)− f (x)].

THEOREM 2. Let μ and ν be two positive finite Borel measures on R
n . Assume

that ‖.‖ is a norm defined on R
n such that ‖.‖ ∈ L1(μ)∩L1(ν) . Then

min
π∈Π(μ,ν)

∫
Rn×Rn

max
1�i�n

(−xi + yi)dπ(x,y)

= sup
f∈Ξ∩L1(μ)∩L1(ν)

(
∫

Rn
f (y)dν(y)−

∫
Rn

f (x)dμ(x)).

Proof. Let f0(x) :=−max1�i�n xi and g0(x) := min1�i�n xi , for all x∈R
n . Since

‖.‖∈ L1(μ)∩L1(ν) , f0,g0 ∈ L1(μ)∩L1(ν) . Clearly, f0(x)+g0(x) � max1�i�n(−xi +
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yi) . Therefore, according to Kantorovich duality, the equality of (4) fulfills. Now we
are going to show that if g(y)− f (x) � c(x,y) for all x,y ∈ R

n , then

g(y)− f (x) � − f−c(y)− f (x) � − f−c(y)− f (−c)(−c)(x) � c(x,y). (16)

Since −c(x,y)− f (x) � −g(y) for all x,y ∈ R
n , g(y) � − f−c(y) for all y ∈ R

n . On
the other hand it is easy to see that f (−c)(−c)(x) � f (x) for all x ∈ R

n . Indeed,

f (−c)(−c)(x) = sup
z

inf
w

[φ(x,−z)−φ(w,−z)+ f (w)] � f (x).

This shows that the inequalities of (16) hold. We need also to prove that f (−c)(−c)

is topical and f−c(y) = − f (y) . Since f (−c)(−c)(x) = supy∈Rn φ(x,−y)− f−c(y) , it

follows from Proposition 2 that f (−c)(−c) is topical. Now assume that f is a topical
function and 1 is a vector whose components are all 1 . Since φ(x,−y)1 � x−y for all
x,y ∈ R

n , one has

f (y) � f (x−φ(x,−y)1) = f (x)−φ(x,−y).

This implies that
f−c(y) = sup

x∈Rn
−c(x,y)− f (x) � − f (y).

On the other hand − f (y) = −c(y,y)− f (y) � f−c(y) . Therefore, − f−c(y) = f (y) .
Moreover,

f (−c)(−c)(−c)(y) = sup
x

inf
w

sup
z

[φ(x,−y)−φ(x,−w)+ φ(z,−w)− f (z)].

Letting w := y , one has f (−c)(−c)(−c)(y) � f−c(y) , while letting z := x , one has

f (−c)(−c)(−c)(y) � f−c(y).

This completes the proof.

COROLLARY 1. Suppose that μ = ν and ‖.‖ ∈ L1(μ)∩L1(ν) for some norm ‖.‖
defined on R

n . Then the optimal plan π ∈ Π(μ ,ν) is concentrated on the graph of the
identity mapping I : R

n → R
n defined by I(x) := x for all x ∈ R

n . In this case

min
π∈Π(μ,ν)

∫
Rn×Rn

max
1�i�n

(−xi + yi)dπ(x,y) = 0.

It is worthy saying that since μ and ν are finite measures on R
n , their supports

are both σ -compact. In addition, if the supports of μ and ν are compact, then the as-
sumption ‖.‖ ∈ L1(μ)∩L1(ν) is redundant and may be eliminated from both Theorem
2 and Corollary 1.

In the sequel we present a perspective on establishing of pricing functions. Let
M : R

n ⇒ R
n be a set valued mapping and /0 
= S ⊆ dom(M) := {x ∈ Rn|M(x) 
= /0} .

Assume that we have an optimal plan π concentrated on the graph(M) := {(x,y) ∈
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R
n ×R

n|y ∈ M(x)} . Then it is well-known that M must be −c-cyclically monotone
[20]. Indeed, let ( f ,g) be the the pair of pricing functions solving the right-hand side
of (4). Assume that there are some x,y ∈ R

n for which g(y)− f (x) < c(x,y) . Then, if
a nonzero mass is transported from x to y , the equality of (4) does not hold. Therefore,
π is concentrated on the set

{(x,y) ∈ R
n×R

n : g(y)− f (x) = c(x,y)}.

Using a similar argument of the proof of Theorem 2, one could replace the function g
by − f−c . On the other hand ∂−c f defined by

∂−c f (x) := {y ∈ R
n| f−c(y)+ f (x) = −c(x,y)}

= {y ∈ R
n|c(x,y)− c(z,y) � f (z)− f (x), ∀z ∈ R

n}

is −c-cyclically monotone. Since graph(M)⊆ graph(∂−c f ) , graph(M) is −c-cyclically
monotone.

Now assume that we already have a pricing function f which solves the right-
hand side of the equality (4) and an optimal plan π concentrated on a −c-cyclically
monotone operator M is at hand. Suppose that we are going to adjust a new pricing
function in such a way that the new function is −c-convex and coincides with the old
pricing function f over a nonempty subset S of dom(M) . The set of all such functions
is denoted by A[−c, f |S,S] . Recall that a function h : R

n → (−∞,+∞] is called −c-
convex, if there exist a function g : R

n → (−∞,+∞] such that h(x) = g−c(x) for all
x ∈ R

n . We denote by H−c the set of all −c-convex functions. Therefore,

A[−c, f |S,S] := {h ∈ H−c : graph(M) ⊂ graph(∂−ch), h|S = f |S}.

The set A[−c, f |S,S] is well-studied in [2, 3]. Concerning the aforementioned pricing
argument, a natural task is to seek the infimum and supremum of A . Let

α[−c, f |S,M](x) := inf
h∈A[−c, f |S,M]

h(x), γ[−c, f |S,M](x) := sup
h∈A[−c, f |S,M]

h(x). (17)

Taking in to account the above argument, α[−c, f |S,M] is the best new pricing function
for the end customers while γ[−c, f |S,M] is the best one for the producer in such a way
that both of them coincide with the old pricing function f over S . We are going to
characterize functions α[−c, f |S,M] and γ[−c, f |S,M] whenever the cost function is defined
by (15). To do this, analogously to Proposition 1, we present the following proposition.

PROPOSITION 7. Let f be an arbitrary function defined on R
n and Δ⊂R

n. Then
the function

f Δ(x) := inf
y∈Δ

( f (y)−ϕ(−x,y)), (x ∈ R
n)

is topical. Moreover if f is topical then:
(i) f Δ(x) � f (x) for all x ∈ R

n.
(ii) f Δ(x) = f (x) for all x ∈ Δ.
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Proof. The results follow from the fact that

y−φ(−x,y)1 � x, ∀x,y ∈ R
n,

where 1 ∈ R
n is a vector whose components are all 1 . �

The following observation adjusts the new pricing function whenever the old pric-
ing function is topical. For the set valued mapping M , we mean by Im(M) , the well-
known image space of M , i.e.

Im(M) = {y ∈ R
n : (x,y) ∈ graph(M) for some x ∈ dom(M)}.

THEOREM 3. Let M : R
n ⇒ R

n be a set valued mapping and /0 
= S ⊆ dom(M) .
Assume that c(x,y) =−φ(x,−y) and f : dom(M)→ (−∞,+∞] is a topical function on
dom(M) such that graph(M) ⊆ graph(∂−c f ) . Let α[−c, f |S,M] and γ[−c, f |S,M] be defined
by (17). Then:

(i) α[−c, f |dom(M),M](x) = fIm(M)(x) for all x ∈ R
n .

(ii) α[−c, f |S,IS](x) = fS(x) and γ[−c, f |S,IS ](x) = f S(x) for all x ∈ R
n , where IS is the

identity mapping defined on S .

Proof. As seen from the proof of Theorem 2, f−c(y) = − f (y) for all y ∈ R
n .

Thus
∂−c f (x) = {y ∈ R

n : f (x) = φ(x,−y)+ f (y)}.
(i): First we show that fIm(M) ∈ A[−c, f |dom(M) ,M] . Applying Proposition 1, f (x) �
fIm(M)(x) for all x ∈ R

n . Let x ∈ dom(M) . Thus there is y ∈ Im(M) such that (x,y) ∈
graph(∂−c f ) . Therefore, fIm(M)(x) � f (y) + φ(x,−y) = f (x) . So, fIm(M)(x) = f (x)
for all x ∈ dom(M) .

Now assume that (x0,y0) ∈ graph(M) and x ∈ R
n . Then

fIm(M)(x0)+ φ(x,−y0)−φ(x0,−y0) = f (x0)+ φ(x,−y0)−φ(x0,−y0)

= f (y0)+ φ(x,−y0)
� fIm(M)(x).

This implies that (x0,y0) ∈ graph(∂−c fIm(M)) . Therefore, fIm(M) ∈ A[−c, f |dom(M),M] . To
complete the proof, let h ∈ A[−c, f |dom(M),M] and x ∈ R

n be arbitrary. Then one has

fIm(M)(x) = sup
y0∈Im(M)

f (y0)+ φ(x,−y0)

= sup
(x0,y0)∈graph(M)

f (x0)−φ(x0,−y0)+ φ(x,−y0)

= sup
(x0,y0)∈graph(M)

h(x0)−φ(x0,−y0)+ φ(x,−y0)

� h(x),
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which the equalities come from the facts that (x0,y0) ∈ graph∂−ch and h(x0) = f (x0) .
This completes the proof of (i).

(ii): The equality α[−c, f |S,IS ](x) = fS(x) is an immediate consequence of (i). There-
fore we only prove the second equality. According to Proposition 7 part (ii), f S(x) =
f (x) for all x ∈ S . Let x ∈ S . Using again Proposition 7 part (i), one has for all w ∈ R

n

f S(x)+ φ(w,−x)−φ(x,−x) = f (x)+ φ(w,−x) = f (w) � f S(w).

This implies that (x,x) ∈ graph(∂−c f S) for all x ∈ S . Hence f S ∈ A[−c, f |S,IS ] . Assume
now that h ∈ A[−c, f |S,IS ] . Applying the fact that h ∈ H−c and Proposition 2, h is
topical. Therefore for all w ∈ R

n

f S(w) = inf
y∈S

( f (y)−ϕ(−w,y)) = inf
y∈S

(h(y)−ϕ(−w,y)) = hS(w) � h(w).

Hence the proof is complete. �
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[7] S. S. DRAGOMIR, J. E. PEČARIĆ AND L. E. PERSSON, Some inequalities of Hadamard type, Journal
of Mathematics 21 (1995), 335–341.

[8] A. FIAGALLI, Y.-H. KIM AND R. J. MCCANN, When is multidimensional screening a convex pro-
gram?, J. Econom. Theory 146 (2011), 454–478.

[9] J. GUNAWARDENA, An Introduction to Idempotency, Cambridge University Press, Cambridge, 1998.
[10] J. HADAMARD, Étude sur les propriétés des fonctions entières et en particulier d’une fonction con-
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