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REARRANGEMENTS OF GENERAL MONOTONE

FUNCTIONS AND OF THEIR FOURIER TRANSFORMS

BARRY BOOTON

(Communicated by S. Varošanec)

Abstract. We extend further Boas’ conjecture concerning functions nonincreasing on (0,∞) and
their Fourier transforms by considering rearrangements of general monotone functions and of
their Fourier transforms. These results are similar those of Sagher in proving Boas’ conjecture,
and follow up on recent work of Liflyand and Tikhonov in this area.

1. Notation

Let μ denote the Lebesgue measure. Let E ⊂ C be measurable. For f (x) , ω(x)
measurable on E , with ω(x) > 0 for x ∈ E , for 0 < q < ∞ , we denote

‖ f‖Lq
ω (E) =

(∫
E
(ω(x)| f (x)|)q dx

) 1
q

and for q = ∞ , we denote

‖ f‖L∞
ω (E) = esssup

x∈E
ω(x)| f (x)|.

For 1 � q � ∞ , these define norms. For 0 < q < 1, these define quasinorms; by abuse
of language, we refer to them as norms. The weighted Lq -spaces are defined for 0 <
q � ∞ :

Lq
ω (E) = { f : ‖ f‖Lq

ω (E) < ∞}.
For E ⊂ (0,∞) , we are particularly interested in

ω(x) = x
1
p− 1

q

and with this weight, we denote for 0 < p < ∞ , 0 < q < ∞ :

‖ f‖Lq
ω(p,q)(E) =

(∫
E

(
x

1
p− 1

q | f (x)|
)q

dx

) 1
q

=
(∫

E

(
x

1
p | f (x)|

)q dx
x

) 1
q
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while for 0 < p < ∞ , q = ∞ , we denote

‖ f‖L∞
ω(p,∞)(E) = esssup

x∈E
x

1
p | f (x)|.

For p = q = ∞ , we let
‖ f‖L∞

ω(∞,∞)(E)

denote the usual L∞ -norm of f on E . The Lq
ω(p,q) -spaces are defined for 0 < p < ∞ ,

0 < q � ∞ , or p = q = ∞ :

Lq
ω(p,q)(E) = { f : ‖ f‖Lq

ω(p,q)(E) < ∞}.

For a function f measurable and finite a.e. on E ⊂ C , let f ∗ denote the nonin-
creasing rearrangement of | f | ; that is, f ∗ is nonincreasing on (0,μ(E)) , and for all
α > 0,

μ{ f ∗ > α} = μ{| f | > α}.
Denote for 0 < p < ∞ , 0 < q < ∞ :

‖ f‖L(p,q)(E) =
(∫ μ(E)

0

(
x

1
p− 1

q f ∗(x)
)q

dx

) 1
q

=
(∫ μ(E)

0

(
x

1
p f ∗(x)

)q dx
x

) 1
q

and for 0 < p < ∞ , q = ∞ :

‖ f‖L(p,∞)(E) = esssup
0<x<μ(E)

x
1
p f ∗(x).

In fact, it can be shown that

‖ f‖L(p,∞)(E) = sup
0<x<μ(E)

x
1
p f ∗(x).

For p = q = ∞ , we let
‖ f‖L(∞,∞)(E)

denote the usual L∞ -norm of f on E . For 0 < p < ∞ , 0 < q � ∞ , these define quasi-
norms; by abuse of language, we refer to them as norms. The Lorentz spaces L(p,q)
are defined for 0 < p < ∞ , 0 < q � ∞ , or p = q = ∞ :

L(p,q)(E) = { f : ‖ f‖L(p,q)(E) < ∞}.
In the sequel, for all spaces and norms above, if E does not appear in the notation,

then it is assumed that E = (0,∞) .
We also have the following lemma; see p. 278 in [5]:

LEMMA 1. Let E ⊂ C be measurable, and let f ,g be measurable on E . Then

∫
E
| f g| �

∫ μ(E)

0
f ∗g∗.
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As a consequence,
‖ f‖Lq

ω(p,q)(E) � ‖ f‖L(p,q)(E)

for q � p , and
‖ f‖L(p,q)(E) � ‖ f‖Lq

ω(p,q)(E)

for q � p . Of course, if p = q , then

‖ f‖Lq
ω(p,q)(E) = ‖ f‖L(p,q)(E).

We let C denote a generic constant. Also, we shall say that two variable quantities
D1,D2 are equivalent, and denote

D1 ∼ D2

if there exists a constant C > 0, independent of the variables of D1 and D2 , such that

1
C

D2 � D1 � CD2.

Finally, for 1 < p < ∞ , define p′ so that 1
p + 1

p′ = 1.

2. Introduction

Consider a function f ∈ L1(R) . The odd and even parts of f may then be consid-
ered with their domains restricted to (0,∞) . Thus, we define the Fourier sine transform
of f as

f̂s(ξ ) =
∫ ∞

0
f (t)sinξ t dt

and the Fourier cosine transform of f as

f̂c(ξ ) =
∫ ∞

0
f (t)cosξ t dt.

Throughout this paper we shall let f̂ (ξ ) denote the Fourier sine or cosine transform, as
appropriate.

Boas’ conjecture (see [2]) can be stated using the above notation as follows:

THEOREM 1. Let f ∈ L1 , and let f̂ be the Fourier sine or cosine transform of f ,
with f � 0 and f ↘ , or f̂ � 0 and f̂ ↘ , on (0,∞) . Let 1 < p < ∞ and 1 < q < ∞ .
Then f̂ ∈ Lq

ω(p′,q) if and only if f ∈ Lq
ω(p,q) .

This was eventually proven by Sagher in [11] using interpolation theory. Specifically,
he showed that for such f and f̂ , with 1 < p < ∞ and 0 < q � ∞ ,

f̂ ∈ L(p′,q) ⇔ f ∈ L(p,q)

and if these conditions hold, then

‖ f̂‖L(p′,q) ∼ ‖ f‖L(p,q).
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He also showed using the Stein-Weiss interpolation theorem that for such f and f̂ ,
with 1 < p < ∞ and 1 � q � ∞ ,

f̂ ∈ Lq
ω(p′,q) ⇔ f ∈ Lq

ω(p,q)

and if these conditions hold, then

‖ f̂‖Lq
ω(p′ ,q)

∼ ‖ f‖Lq
ω(p,q)

.

The general monotone sequences were introduced by Tikhonov in [12]; related
sequences were considered earlier by Belov in [1]. Liflyand and Tikhonov extended
the concept of general monotonicity to functions in [9] in multiple ways. In [7], [8],
[9], and [10], Liflyand and Tikhonov examined extensively integrability conditions for
the Fourier transforms of functions general monotone in some sense. Of particular
interest was extending Boas’ conjecture on the Fourier transform f̂ of a function f �
0 nonincreasing on (0,∞) . In [8] Liflyand and Tikhonov proved a generalization of
Boas’s conjecture to functions defined to be general monotone in the following way: a
function f defined on (0,∞) is said to be general monotone if f is locally of bounded
variation on (0,∞) , limx→∞ f (x) = 0, and there exist constants c > 1 and C such that
for x ∈ (0,∞) , ∫ 2x

x
|d f (t)| � C

∫ cx

x
c

| f (t)|dt
t

. (1)

In [10] Liflyand and Tikhonov considered weights other than just power functions on
these general monotone functions and their Fourier transforms, including weights sat-
isfying a Muckenhoupt condition. Thus, the usefulness in harmonic analysis of the
general monotone functions is well-established.

In this paper, we use the definition of a general monotone function that appears in
(1). We use the notation GM to denote this class of general monotone functions. In [8]
Liflyand and Tikhonov described essential properties of general monotone functions.
One of these is that if f ∈ GM , then the following two conditions are satisfied:

1. There exist constants c > 1 and A such that for x ∈ (0,∞) ,

| f (x)| � A
∫ cx

x
c

| f (t)|dt
t

.

2. There exist constants c > 1 and B such that for x,y ∈ (0,∞) , with x < y ,

∫ y

x
|d f (t)| � B

∫ cy

x
c

| f (t)|dt
t

.

This is the property of which we take advantage to obtain the results of this paper. In
the sequel, these conditions will be referred to as Condition 1 and Condition 2, and
the constants obtained from assuming these conditions are satisfied will be referred to
as A and c , and B and c , respectively. We shall assume throughout that any function
referred to in the hypothesis of any result is not identically equal to 0; otherwise, such
result becomes trivial. Such an assumption leads to A > 0 or B > 0, as appropriate.
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It has been shown that Boas’ conjecture applies to a class of functions broader
than originally described. In [8] Liflyand and Tikhonov considered functions general
monotone on (0,∞) not necessarily integrable on (0,∞) , but at least integrable in a
neighborhood of zero. For such a function f , the Fourier sine and cosine transforms
f̂s and f̂c are considered in at least a distributional sense. It follows from Theorem 2.l
in [8] that if f � 0, f ∈ GM , 1 < p < ∞ , 1 � q < ∞ , then f̂ ∈ Lq

ω(p′,q) if and only if

f ∈ Lq
ω(p,q) , and

‖ f̂‖Lq
ω(p′ ,q)

∼ ‖ f‖Lq
ω(p,q)

.

We shall see that more is true by considering the nonincreasing rearrangements of both
f and f̂ . We assume that for all ξ ∈ (0,∞) , f̂ (ξ ) exists as an improper integral.
Theorem 4 shows that if f � 0 and satisfies Condition 2, 1 < p < ∞ , 1 � q � ∞ ,
and f̂ is the Fourier sine or cosine transform of f , then f ∈ Lq

ω(p,q) ∪L(p,q) implies

f̂ ∈ Lq
ω(p′,q)∩L(p′,q) ,

‖ f̂‖Lq
ω(p′,q)

� C(B,c, p)‖ f‖Lq
ω(p,q)

∼ ‖ f‖L(p,q)

and
‖ f̂‖L(p′,q) � C(B,c, p)‖ f‖Lq

ω(p,q)
∼ ‖ f‖L(p,q).

Theorem 5 addresses the reverse inequality. For this result, a lower bound on the in-
tegral of | f̂ | near zero is needed. We obtain this from Lemma 2.3 in [10], but more
conditions on f and f̂ are required. Here f � 0 on (0,∞) , and for a > 0,

∫ ∞

a
f (t)

dt
t

< ∞.

Also, for all ξ ∈ (0,∞) , f̂ (ξ ) exists as an improper integral, with the convergence
uniform on every compact subinterval of (0,∞) , and f̂ locally integrable on (0,∞) .
Finally, for f̂s , we require t f (t) integrable in a neighborhood of zero, and for f̂c ,
we require f (t) integrable in a such a neighborhood. When f and f̂ satisfy these
conditions, we shall say they satisfy the hypotheses of Lemma 2.3 in [10]. In this case,
Theorem 5 then shows that if also f satisfies Condition 1, 1 < p < ∞ , 1 � q � ∞ , then
f̂ ∈ Lq

ω(p′,q) implies f ∈ Lq
ω(p,q)∩L(p,q) , and

‖ f‖L(p,q) ∼ ‖ f‖Lq
ω(p,q)

� C(A,c, p)‖ f̂ ‖Lq
ω(p′,q)

;

in addition, f̂ ∈ L(p′,q) implies f ∈ Lq
ω(p,q)∩L(p,q) , and

‖ f‖L(p,q) ∼ ‖ f‖Lq
ω(p,q)

� C(A,c, p)‖ f̂‖L(p′,q).

Relatively simple modifications of the proofs of Liflyand and Tikhonov in [8] allow us
to obtain the additional results.
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Combining the results above, if f � 0, f ∈ GM , 1 < p < ∞ , 1 � q � ∞ , and f
and f̂ satisfy the hypotheses of Lemma 2.3 in [10], then

f̂ ∈ L(p′,q) ⇔ f̂ ∈ Lq
ω(p′,q) ⇔ f ∈ Lq

ω(p,q) ⇔ f ∈ L(p,q)

and if these conditions hold, then

‖ f̂‖L(p′,q) ∼ ‖ f̂‖Lq
ω(p′ ,q)

∼ ‖ f‖Lq
ω(p,q)

∼ ‖ f‖L(p,q)

thus generalizing most of the results of Sagher in [11] to general monotone functions.
For f ∈ L1 , many of these results appear in the work of Jurkat and Sampson [6].

Related results involving functions general monotone on (0,π) can be found in
[4]; the duals to those results involving general monotone sequences can be found in
[3].

3. Results

Hardy’s inequalities can be expressed in the following forms:

THEOREM 2. Let f be measurable on (0,a) , 0 < a � ∞ . Then for α > 0 , 1 �
q < ∞ ,

(∫ a

0

(
x−α

∫ x

0
| f (t)|dt

t

)q dx
x

) 1
q

� 1
α

(∫ a

0

(
x−α | f (x)|)q dx

x

) 1
q

and (∫ a

0

(
xα
∫ a

x
| f (t)|dt

t

)q dx
x

) 1
q

� 1
α

(∫ a

0
(xα | f (x)|)q dx

x

) 1
q

The following theorem appears in [4] as two separate theorems.

THEOREM 3. Let f be measurable on (0,a) , 0 < a � ∞ , and satisfy Condition 1
or Condition 2. For 1 < p < ∞ , 1 � q � ∞ , or p = q = ∞ , if f ∈ L(p,q)(0,a) , then
f ∈ Lq

ω(p,q)(0,a) , and

‖ f‖Lq
ω(p,q)(0,a) � C(D,c, p)‖ f‖L(p,q)(0,a).

Likewise, for 0 < p < ∞ , 1 � q � ∞ , or p = q = ∞ , if f ∈ Lq
ω(p,q)(0,a) , then f ∈

L(p,q)(0,a) , and
‖ f‖L(p,q)(0,a) � C(D,c, p)‖ f‖Lq

ω(p,q)(0,a).

In both inequalities, D = A if f satisfies Condition 1, and D = B if f satisfies Condi-
tion 2.

We come to the first main result of this paper.
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THEOREM 4. Let f � 0 on (0,∞) and satisfy Condition 2. Let 1 < p < ∞ , 1 �
q � ∞ , and let f̂ (ξ ) be the Fourier sine or cosine transform of f , for all ξ ∈ (0,∞)
existing as an improper integral. If f ∈ Lq

ω(p,q)∪L(p,q) , then f̂ ∈ Lq
ω(p′,q)∩L(p′,q) ,

‖ f̂‖Lq
ω(p′,q)

� C(B,c, p)‖ f‖Lq
ω(p,q)

∼ ‖ f‖L(p,q) (2)

and

‖ f̂‖L(p′,q) � C(B,c, p)‖ f‖Lq
ω(p,q)

∼ ‖ f‖L(p,q). (3)

Proof. The equivalences in (2) and (3) follow from Theorem 3, so we show the
remaining inequalities. We modify the proof of Theorem 2.1(A) in [8] as necessary.
Assume first that f̂ is the Fourier sine transform of f . For x ∈ (0,∞) , N > x ,

∣∣∣∣
∫ N

0
f (t)sinξ t dt

∣∣∣∣�
∫ x

0
f (t)dt +

∣∣∣∣
∫ N

x
f (t)sinξ t dt

∣∣∣∣ .
For ξ ∈ (0,∞) , let hξ (t) = − cosξ t

ξ . Then

∣∣∣∣
∫ N

x
f (t)sinξ t dt

∣∣∣∣=
∣∣∣∣
∫ N

x
f (t)h′ξ (t)dt

∣∣∣∣=
∣∣∣∣
∫ N

x
f (t)dhξ (t)

∣∣∣∣ .
Using integration by parts,

∣∣∣∣
∫ N

x
f (t)dhξ (t)

∣∣∣∣ =
∣∣∣∣ f (N)hξ (N)− f (x)hξ (x)−

∫ N

x
hξ (t)d f (t)

∣∣∣∣
� f (N)

ξ
+

f (x)
ξ

+
1
ξ

∫ N

x
|d f (t)|

� f (N)
ξ

+
f (x)
ξ

+
B
ξ

∫ cN

x
c

f (t)
dt
t

.

Thus,

| f̂ (ξ )| = lim
N→∞

∣∣∣∣
∫ N

0
f (t)sinξ t dt

∣∣∣∣�
∫ x

0
f (t)dt +

f (x)
ξ

+
B
ξ

∫ ∞

x
c

f (t)
dt
t

. (4)

Note that given f ∈ Lq
ω(p,q) , 1 < p < ∞ , 1 � q � ∞ , the above quantity is finite by

Hölder’s inequality. Also, the right-hand side of (4) is a nonincreasing function in ξ ,
so that also

f̂ ∗(ξ ) �
∫ x

0
f (t)dt +

f (x)
ξ

+
B
ξ

∫ ∞

x
c

f (t)
dt
t

.



878 B. BOOTON

Let g(ξ ) = | f̂ (ξ )| or f̂ ∗(ξ ) . For 1 � q < ∞ , using Minkowski’s inequality,

‖g‖Lq
ω(p′,q)

=
(∫ ∞

0

(
ξ

1
p′ g(ξ )

)q dξ
ξ

) 1
q

=
(
1− 1

2p′
)(∫ ∞

0

(
ξ 1+ 1

2p′
∫ 1

ξ

0
x
1− 1

2p′ g(ξ )
dx
x

)q
dξ
ξ

) 1
q

�
(
1− 1

2p′
)(∫ ∞

0

(
ξ 1+ 1

2p′
∫ 1

ξ

0
x
1− 1

2p′
(∫ x

0
f (t)dt

)
dx
x

)q
dξ
ξ

) 1
q

(5)

+
(
1− 1

2p′
)(∫ ∞

0

(
ξ

1
2p′
∫ 1

ξ

0
x
1− 1

2p′ f (x)
dx
x

)q
dξ
ξ

) 1
q

+B
(
1− 1

2p′
)(∫ ∞

0

(
ξ

1
2p′
∫ 1

ξ

0
x
1− 1

2p′
(∫ ∞

x
c

f (t)
dt
t

)
dx
x

)q
dξ
ξ

) 1
q

.

We estimate each term in (5) separately. For the first, changing variables on the outer
integral and then using Hardy’s inequality twice,

(∫ ∞

0

(
ξ 1+ 1

2p′
∫ 1

ξ

0
x
1− 1

2p′
(∫ x

0
f (t)dt

)
dx
x

)q
dξ
ξ

) 1
q

=
(∫ ∞

0

(
u
−1− 1

2p′
∫ u

0
x
1− 1

2p′
(∫ x

0
t f (t)

dt
t

)
dx
x

)q du
u

) 1
q

� 2p′

2p′ +1

(∫ ∞

0

(
u
− 1

p′
∫ u

0
t f (t)

dt
t

)q du
u

) 1
q

� 2(p′)2

2p′ +1

(∫ ∞

0

(
u

1
p f (u)

)q du
u

) 1
q

=
2(p′)2

2p′ +1
‖ f‖Lq

ω(p,q)
.

For the second, changing variables on the outer integral and then using Hardy’s inequal-
ity,

(∫ ∞

0

(
ξ

1
2p′
∫ 1

ξ

0
x
1− 1

2p′ f (x)
dx
x

)q
dξ
ξ

) 1
q

=
(∫ ∞

0

(
u
− 1

2p′
∫ u

0
x
1− 1

2p′ f (x)
dx
x

)q du
u

) 1
q

� 2p′
(∫ ∞

0

(
u

1
p f (u)

)q du
u

) 1
q

= 2p′‖ f‖Lq
ω(p,q)

.
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For the third, changing variables on the outer two integrals and then using Hardy’s
inequality twice,

(∫ ∞

0

(
ξ

1
2p′
∫ 1

ξ

0
x
1− 1

2p′
(∫ ∞

x
c

f (t)
dt
t

)
dx
x

)q
dξ
ξ

) 1
q

= c
1− 1

2p′

(∫ ∞

0

(
ξ

1
2p′
∫ 1

cξ

0
y
1− 1

2p′
(∫ ∞

y
f (t)

dt
t

)
dy
y

)q
dξ
ξ

) 1
q

= c
1
p

(∫ ∞

0

(
u
− 1

2p′
∫ u

0
y
1− 1

2p′
(∫ ∞

y
f (t)

dt
t

)
dy
y

)q du
u

) 1
q

� 2p′c
1
p

(∫ ∞

0

(
u

1
p

∫ ∞

u
f (t)

dt
t

)q du
u

) 1
q

� 2pp′c
1
p

(∫ ∞

0

(
u

1
p f (u)

)q du
u

) 1
q

= 2pp′c
1
p ‖ f‖Lq

ω(p,q)
.

Therefore,

‖g‖Lq
ω(p′,q)

� C(B,c, p)‖ f‖Lq
ω(p,q)

.

The proof in the case q = ∞ is similar.

If f̂ is the Fourier cosine transform of f , let hξ (t) = sinξ t
ξ , and the proof proceeds

in an identical fashion. �

The second main result of this paper is Theorem 5. We first require a lemma,
which appears as Lemma 2.3 in [10].

LEMMA 2. Let f � 0 on (0,∞) be such that for a > 0 ,

∫ ∞

a
f (t)

dt
t

< ∞.

For all ξ ∈ (0,∞) , let f̂s(ξ ) and f̂c(ξ ) exist as improper integrals, converging uni-
formly on every compact set away from zero, and be locally integrable on (0,∞) . Let
c > 1 . If t f (t) is integrable near zero, then there exists a constant C1(c) such that

∫ cx

x
c

f (t)
dt
t

� C1(c)
∫ 1

x

0
| f̂s(ξ )|dξ

and if f (t) is integrable near zero, then there exists a constant C2(c) such that

∫ cx

x
c

f (t)
dt
t

� C2(c)
∫ 1

x

0
| f̂c(ξ )|dξ
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THEOREM 5. Let f satisfy Condition 1. Let 1 < p < ∞ , 1 � q � ∞ , and let f and
f̂ satisfy the hypotheses of Lemma 2.3 in [10]. If f̂ ∈Lq

ω(p′,q) , then f ∈ Lq
ω(p,q)∩L(p,q) ,

and
‖ f‖L(p,q) ∼ ‖ f‖Lq

ω(p,q)
� C(A,c, p)‖ f̂ ‖Lq

ω(p′,q)
. (6)

Similarly, if f̂ ∈ L(p′,q) , then f ∈ Lq
ω(p,q)∩L(p,q) , and

‖ f‖L(p,q) ∼ ‖ f‖Lq
ω(p,q)

� C(A,c, p)‖ f̂‖L(p′,q). (7)

Proof. The equivalences in (6) and (7) follow from Theorem 3, so we show the
remaining inequalities. We modify the proof of Theorem 2.1(B) in [8] as necessary.
First let f̂ denote the Fourier sine transform of f . From the proof of Lemma 2.3 in
[10], for x ∈ (0,∞) ,

∫ π
cx

0
f̂ (ξ )dξ = 2

∫ ∞

0
f (t)sin2 πt

2cx
dt
t

.

Thus,

∫ π
cx

0
| f̂ (ξ )|dξ �

∣∣∣∣
∫ π

cx

0
f̂ (ξ )dξ

∣∣∣∣= 2
∫ ∞

0
f (t)sin2 πt

2cx
dt
t

� 2
∫ cx

x
c

f (t)sin2 πt
2cx

dt
t

� 2
∫ cx

x
c

f (t)
t2

c2x2

dt
t

� 2
c4

∫ cx

x
c

f (t)
dt
t

.

By Lemma 1, ∫ π
cx

0
f̂ ∗(ξ )dξ �

∫ π
cx

0
| f̂ (ξ )|dξ

so that also ∫ π
cx

0
f̂ ∗(ξ )dξ � 2

c4

∫ cx

x
c

f (t)
dt
t

.

Therefore, for 1 � q < ∞ , letting g(ξ ) = | f̂ (ξ )| or f̂ ∗(ξ ) , and using a change of
variables and Hardy’s inequality,

‖ f‖Lq
ω(p,q)

=
(∫ ∞

0

(
x

1
p | f (x)|

)q dx
x

) 1
q

� A

(∫ ∞

0

(
x

1
p

∫ cx

x
c

f (t)
dt
t

)q dx
x

) 1
q

� 1
2
Ac4

(∫ ∞

0

(
x

1
p

∫ π
cx

0
g(ξ )dξ

)q
dx
x

) 1
q

=
1
2
Ac4

(π
c

) 1
p
(∫ ∞

0

(
u−

1
p

∫ u

0
ξg(ξ )

dξ
ξ

)q du
u

) 1
q

� π
1
p p
2

Ac4− 1
p

(∫ ∞

0

(
u

1
p′ g(u)

)q du
u

) 1
q

=
π

1
p p
2

Ac4− 1
p ‖g‖Lq

ω(p′,q)
.
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The proof in the case q = ∞ is similar.

Next let f̂ denote the Fourier cosine transform of f . For 0 < ε < u < ∞ , using
the Uniform Convergence theorem,

∫ u

ε
f̂ (ξ )dξ =

∫ u

ε

(
lim
N→∞

∫ N

0
f (t)cosξ t dt

)
dξ

= lim
N→∞

∫ u

ε

(∫ N

0
f (t)cosξ t dt

)
dξ = lim

N→∞

∫ N

0

(∫ u

ε
costξ dξ

)
f (t)dt

= lim
N→∞

∫ N

0
(sinut− sinεt) f (t)

dt
t

=
∫ ∞

0
(sinut− sinεt) f (t)

dt
t

.

Letting ε → 0, by the Dominated Convergence Theorem,

∫ u

0
f̂ (ξ )dξ =

∫ ∞

0
f (t)sinut

dt
t

.

Thus, for x ∈ (0,∞) ,

∫ π
cx

0

(∫ u

0
f̂ (ξ )dξ

)
du =

∫ π
cx

0

(∫ ∞

0
f (t)sinut

dt
t

)
du =

∫ ∞

0
f (t)

(∫ π
cx

0
sin tudu

)
dt
t

=
∫ ∞

0
f (t)

1− cos πt
cx

t
dt
t

= 2
∫ ∞

0
f (t)

sin2 πt
2cx

t
dt
t

.

Thus,

∫ π
cx

0

(∫ u

0
| f̂ (ξ )|dξ

)
du �

∣∣∣∣
∫ π

cx

0

(∫ u

0
f̂ (ξ )dξ

)
du

∣∣∣∣= 2
∫ ∞

0
f (t)

sin2 πt
2cx

t
dt
t

� 2
∫ cx

x
c

f (t)
sin2 πt

2cx

t
dt
t

� 2
∫ cx

x
c

f (t)
t

c2x2

dt
t

� 2
c3x

∫ cx

x
c

f (t)
dt
t

.

By Lemma 1,

∫ π
cx

0

(∫ u

0
f̂ ∗(ξ )dξ

)
du �

∫ π
cx

0

(∫ u

0
| f̂ (ξ )|dξ

)
du

so that also ∫ π
cx

0

(∫ u

0
f̂ ∗(ξ )dξ

)
du � 2

c3x

∫ cx

x
c

f (t)
dt
t

.
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Therefore, for 1 � q < ∞ , letting g(ξ ) = | f̂ (ξ )| or f̂ ∗(ξ ) , and using a change of
variables and Hardy’s inequality twice,

‖ f‖Lq
ω(p,q)

=
(∫ ∞

0

(
x

1
p f (x)

)q dx
x

) 1
q

� A

(∫ ∞

0

(
x

1
p

∫ cx

x
c

f (t)
dt
t

)q dx
x

) 1
q

� 1
2
Ac3

(∫ ∞

0

(
x1+ 1

p

∫ π
cx

0

(∫ u

0
g(ξ )dξ

)
du

)q
dx
x

) 1
q

=
1
2
Ac3

(π
c

)1+ 1
p
(∫ ∞

0

(
v−1− 1

p

∫ v

0
u

(∫ u

0
ξg(ξ )

dξ
ξ

)
du
u

)q dv
v

) 1
q

� π1+ 1
p p

2(p+1)
Ac2− 1

p

(∫ ∞

0

(
v−

1
p

∫ v

0
ξg(ξ )

dξ
ξ

)q dv
v

) 1
q

� π1+ 1
p p2

2(p+1)
Ac2− 1

p

(∫ ∞

0

(
v

1
p′ g(v)

)q dv
v

) 1
q

=
π1+ 1

p p2

2(p+1)
Ac2− 1

p ‖g‖Lq
ω(p′,q)

.

The proof in the case q = ∞ is similar. �
Putting together Theorems 4 and 5, we obtain:

COROLLARY 1. Let f � 0 and f ∈ GM on (0,∞) . Let 1 < p < ∞ , 1 � q � ∞ ,
and let f and f̂ satisfy the hypotheses of Lemma 2.3 in [10]. Then the following
statements are equivalent:

1. f̂ ∈ L(p′,q) .
2. f̂ ∈ Lq

ω(p′,q) .

3. f ∈ Lq
ω(p,q) .

4. f ∈ L(p,q) .
Moreover,

‖ f̂‖L(p′,q) ∼ ‖ f̂‖Lq
ω(p′ ,q)

∼ ‖ f‖Lq
ω(p,q)

∼ ‖ f‖L(p,q). (8)

Proof. The equivalences of the last two statements and of the last two norms in
(8) follow from Theorem 3. For the equivalences of the first and third statements and
the first and third norms in (8), we obtain from Theorem 4 that f ∈ Lq

ω(p,q) implies

f̂ ∈ L(p′,q) , and
‖ f̂‖L(p′,q) � C(B,c, p)‖ f‖Lq

ω(p,q)

and from Theorem 5 that f̂ ∈ L(p′,q) implies f ∈ Lq
ω(p,q) , and

‖ f‖Lq
ω(p,q)

� C(A,c, p)‖ f̂ ‖L(p′,q).

The equivalences of the second and third statements and the second and third norms in
(8) are obtained similarly. �

The author would like to thank the referee and Prof. Elijah Liflyand for sugges-
tions and comments that helped improve the content of this article.
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