
Mathematical
Inequalities

& Applications

Volume 21, Number 3 (2018), 897–909 doi:10.7153/mia-2018-21-61

HIGHER–ORDER QUASIMONOTONICITY
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(Communicated by C. P. Niculescu)

Abstract. The classical Hermite–Hadamard inequality is not merely a consequence of convexity,
but also characterizes convexity. Such inequalities hold in the case of higher-order monotonicity
in sense of Hopf and Popoviciu with the same characteristic feature. The aim of this note is to
extend these results, when the underlying monotonicity is induced by so-called quasipolynomial
Chebyshev systems.

1. Introduction

The motivation of our investigations is the well-known inequality of Hermite [9]
and Hadamard [7]. (For historical comments, see the note of Mitrinović and Lacković
[13].) A converse of their result is also known, and can be found in the books of Hardy,
Littlewood and Pólya [8, p. 98], of Kuczma [12, Exercise 8. p. 205], of Niculescu
and Persson [15, pp. 50–51] or of Roberts and Varberg [17, Problem Q. p. 15]. An
excellent essay on the topic was presented by Niculescu and Persson [14].

The notion of classical convexity can be extended via the next concept. Let I
be a real interval. A continuous mapping ωωω : I → R

n is called a Chebyshev system if
det
(
ωωω(t1) . . .ωωω(tn)

)
> 0 remains true for any elements t1 < · · · < tn of the domain.

Having a Chebyshev system ωωω over I , a function f : I → R is termed monotone
with respect to ωωω (or briefly: ωωω -monotone), if, for all elements t0 � · · · � tn of I , the
next inequality holds:

det

(
ωωω(t0) . . . ωωω(tn)
f (t0) . . . f (tn)

)
� 0.

If f satisfies the aboves with equality, then it is called ωωω -affine. One of the most
important example for a Chebyshev system is the polynomial system πππ , defined by
πππ(t) = (1, t, . . . ,tn−1) . In this case, ωωω -monotonicity is also called as nth order mono-
tonicity. The particular settings of n = 1 and n = 2 correspond to the usual notions of
monotonicity and convexity, respectively.
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The book of Karlin and Studden [11] gives an excellent overview of the theory of
Chebyshev systems. The polynomial system seems to appear first in the dissertation of
Hopf [10], and was studied intensively by Popoviciu [16].

Hermite–Hadamard-type inequalities (that is, estimations for the integral average
involving the values of a function) can be achieved in the case of higher-order mono-
tonicity [3] or, in more general, when the monotonicity notion is induced by an arbitrary
Chebyshev system [4]. For details, we refer to the papers [1] and [2]. Therefore the
question arises, whether the obtained inequalities characterize the underlying mono-
tonicity notion or not. In the particular settings when the monotonicity is induced by a
two dimensional Chebyshev system [5] or a polynomial one [6], the answer is positive.
However, the general case still remains an open problem.

The aim of this paper is to make further steps towards this problem, extending
the results of [6] for a wider class of Chebyshev systems then the polynomial. These
Chebyshev systems are obtained by transforming the polynomial system with a strictly
monotone increasing and continuous function. The characteristic inequalities, in this
so-called higher-order quasimonotone case, involve certain weighted quasiarithmetic
means and Riemann–Stieltjes integral means.

2. The motivating results

Recalling the corresponding part of [2], first we subsume the most important prop-
erties of some distinguished orthogonal polynomial system. For further details, see
[19]. Consider the polynomials Gm , Lm−1 and Rm , named after Gauss, Lobatto and
Radau, defined by the next formula:

Gm(t) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
m

t 1
2 · · · 1

m+1
...

...
. . .

...

tm 1
m+1 · · · 1

2m

∣∣∣∣∣∣∣∣∣∣∣
(1)

Lm−1(t) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1
2·3 · · · 1

m(m+1)

t 1
3·4 · · · 1

(m+1)(m+2)
...

...
. . .

...

tm−1 1
(m+1)(m+2) · · · 1

(2m−1)2m

∣∣∣∣∣∣∣∣∣∣∣
(2)

Rm(t) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1
2 · · · 1

m+1

t 1
3 · · · 1

m+2
...

...
. . .

...

tm 1
m+2 · · · 1

2m+1

∣∣∣∣∣∣∣∣∣∣∣
. (3)



HIGHER-ORDER QUASIMONOTONICITY AND INTEGRAL INEQUALITIES 899

It is well-known, that each sequence (Gm) , (Lm−1) , and (Rm) is an orthogonal poly-
nomial system on [0,1] with respect to a suitable weight function. On this right, Gm ,
Lm−1 , and Rm has, in turn, m , m−1, and m pairwise distinct zeros in ]0,1[ .

Denote the zeros of Gm by ν1, . . . ,νm and define the coefficient αk via the repre-
sentation

αk :=
∫ 1

0

Gm(t)
(t −νk)G′

m(νk)
dt. (4)

Similarly, take the zeros μ1, . . . ,μm−1 of the polynomial Lm−1 and define the coeffi-
cients βk by

β0 :=
1

L2
m−1(0)

∫ 1

0
(1− t)L2

m−1(t)dt,

βk :=
1

(1− μk)μk

∫ 1

0

t(1− t)Lm−1(t)
(t− μk)L′

m−1(μk)
dt,

βm :=
1

L2
m−1(1)

∫ 1

0
tL2

m−1(t)dt.

(5)

Finally, using now the zeros λ1, . . . ,λm of Rm , introduce the coefficients γk in the
following way:

γ0 :=
1

R2
m(0)

∫ 1

0
R2

m(t)dt,

γk :=
1
λk

∫ 1

0

tRm(t)
(t −λk)R′

m(λk)
dt.

(6)

Fix an open interval I and set T = {(x,y) ∈ I2 | x < y} , the upper open triangle of
I2 . Take the zeros of the orthogonal polynomials (1), (2) and (3), further the coefficients
(4), (5) and (6). Define the mappings Gm,Lm−1,Rm;l,Rm;r : C (I,R) → C (T,R) by

Gm( f )(x,y) :=
m

∑
k=1

αk f
(
(1−νk)x+ νky

)
,

Lm−1( f )(x,y) := β0 f (x)+
m−1

∑
k=1

βk f
(
(1− μk)x+ μky

)
+ βm f (y),

Rm;l( f )(x,y) := γ0 f (x)+
m

∑
k=1

γk f
(
(1−λk)x+ λky

)
,

Rm;r( f )(x,y) :=
m

∑
k=1

γk f
(
λkx+(1−λk)y

)
+ γ0 f (y).

These mappings are bounded linear ones, and are stemming from the quadrature rules
of Gauss, Lobatto and Radau. Using the integral average as a mapping A : C (I,R) →
C (T,R) turns out to be quite convenient:

A ( f )(x,y) :=
1

y− x

∫ y

x
f (t)dt.
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Now we can recall, in a slightly modified but still equivalent form, the main results of
[6]. The results are split into two theorems, according to the parity of the order of the
underlying polynomial system.

THEOREM A. If I is an open interval and f : I → R is 2m-monotone, then it
fulfills the inequalities

Gm( f ) � A ( f ) � Lm−1( f )

on T . Conversely, if a continuous function f : I →R satisfies any part of these inequal-
ities on T , then it is 2m-monotone. For continuous functions, equality occurs exactly
when the function is 2m-affine.

THEOREM B. If I is an open interval and f : I → R is (2m+1)-monotone, then
it fulfills the inequalities

Rm;l( f ) � A ( f ) � Rm;r( f )

on T . Conversely, if a continuous function f : I → R satisfies any part of these in-
equalities on T , then it is (2m + 1)-monotone. For continuous functions, equality
occurs exactly when the function is (2m+1)-affine.

Observe that Theorem A reduces to the Hermite–Hadamard inequality in the par-
ticular setting m = 1. Indeed, simple calculations yield G1(t) = t−1/2 and L0(t) = 1.
Hence we have α1 = 1 while β0 = β1 = 1/2. Our aim is to extend Theorem A and The-
orem B for Chebyshev systems which are obtained as strictly increasing and continuous
transformations of the polynomial system.

3. The main results

To prove the main results, we shall need two lemmas. The first one presents a
change of variables for the the Riemann–Stieltjes integral. Although it is valid in a
more general form (see the book of Rudin [18, Theorem 6.19.]), we present the proof
of that version which is convenient for us. The second lemma makes possible to modify
Chebyshev systems in order to get adequate new ones.

LEMMA 1. If I and J are real intervals, ϕ : I → J is a continuous, strictly in-
creasing function, and f : I → R is continuous, then

∫
I
f dϕ =

∫
ϕ(I)

f ◦ϕ−1.

Proof. Note first that the integrals above do exist. Indeed, the integrand of the
right-hand side is continuous. On the left-hand side, f is continuous and, in particular,
ϕ is a function of bounded variation. Hence the Riemann–Stieltjes integral exists.
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Let τ = {[tk−1, tk] | k = 1, . . . ,n} be a partition of I and let ξ = {ξk | k = 1, . . .n}
be a selection of τ . Then, ρ = {[sk−1,sk] | k = 1, . . . ,n} is a partition of J and η =
{ηk | k = 1, . . .n} is a selection of ρ , where sk = ϕ(tk) and ηk = ϕ(ξk) . Then,

S( f ,ϕ ,τ,ξ ) =
n

∑
k=1

f (ξk)(ϕ(tk)−ϕ(tk−1))

=
n

∑
k=1

f ◦ϕ−1(ηk)(sk − sk−1) = S( f ◦ϕ−1,ρ ,η).

Applying normal partition sequences, a limiting process completes the proof. �

LEMMA 2. Assume that I and J are real intervals, ϕ : I → J is a continuous,
strictly increasing function, and ωωω : J →R is a continuous mapping. Then ωωω is Cheby-
shev system on J if and only if the mapping ωωωϕ = ωωω ◦ϕ is a Chebyshev system on I .
Moreover, f : I → R is ωωωϕ -monotone if and only if the function g := f ◦ϕ−1 is ωωω -
monotone on J .

Proof. Clearly, ωωωϕ is a continuous mapping. Let t1 < .. . < tn be fixed elements
of I , and define xk = ϕ(tk) for all k = 1, . . . ,n . Then, the strict monotonicity of ϕ
ensures that x1 < .. . < xn . Therefore,

det
(
ωωω(x1) . . .ωωω(xn)

)
= det

(
ωωωϕ(t1) . . .ωωωϕ(tn)

)
.

This identity proves the first statement. For the second one, fix the elements t0 � · · ·� tn
of I . Define again xk = ϕ(tk) for all k = 0, . . . ,n . Then, x0 � . . . � xn and g(xk) = f (tk)
hold. Therefore,

det

(
ωωω(x0) . . . ωωω(xn)
g(x0) . . . g(xn)

)
= det

(
ωωωϕ(t0) . . . ωωωϕ (tn)

f (t0) . . . f (tn)

)
.

This identity completes the proof. �

This lemma enables us to extend the notion of higher-order monotonicity. Let I
and J be real intervals, and consider the polynomial system πππ : J →R

n . If ϕ : I → J is
a strictly increasing, continuous function, then the mapping πππϕ is a Chebyshev system
over I . A function on I is termed to be ϕ -quasimonotone/ϕ -quasiaffine of order n ,
if it is monotone/affine with respect to πππϕ . On the other hand, the function ϕ and a
parameter λ ∈ [0,1] generate a weighted arithmetic mean:

Mϕ,λ (x,y) := ϕ−1((1−λ )ϕ(x)+ λ ϕ(y)
)

(x,y ∈ I).

Using the zeros of the polynomials (1), (2) and (3) as weights, and the coefficients (4),
(5), (6), define the mappings Gϕ;m,Lϕ;m−1,Rϕ;m;l ,Rϕ;m;r,Aϕ : C (I,R) → C (T,R) as
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follows (here we keep the notation T for the upper open triangle).

Gϕ;m( f )(x,y) :=
m

∑
k=1

αk f
(
Mϕ,νk (x,y)

)
,

Lϕ;m−1( f )(x,y) := β0 f (x)+
m−1

∑
k=1

βk f
(
Mϕ,μk(x,y)

)
+ βm f (y),

Rϕ;m;l( f )(x,y) := γ0 f (x)+
m

∑
k=1

γk f
(
Mϕ,λk

(x,y)
)
,

Rϕ;m;r( f )(x,y) :=
m

∑
k=1

γk f
(
Mϕ,λk

(y,x)
)
+ γ0 f (y).

and

Aϕ( f )(x,y) :=
1

ϕ(y)−ϕ(x)

∫ y

x
f (t)dϕ(t).

Distinguishing the parity of the order of the quasimonotonicity, we can present our
main results. We shall focus only on the proof of the first theorem.

THEOREM 1. If I and J are open intervals, ϕ : I → J is strictly increasing and
continuous, and f : I →R is ϕ -quasimonotone of order 2m, then it fulfills the inequal-
ities

Gϕ;m( f ) � Aϕ( f ) � Lϕ;m−1( f )

on T . Conversely, if a continuous function f : I → R satisfies any part of these in-
equalities on T , then it is ϕ -quasimonotone of order 2m. For continuous functions,
equality occurs exactly when the function ϕ -quasiaffine of order 2m.

Proof. For arbitrary x,y ∈ I , consider the elements u,v ∈ J given by ϕ(x) = u
and ϕ(y) = v . Furthermore, define g : J → R by the formula g = f ◦ϕ−1 . Then,

Gϕ;m( f )(x,y) =
m

∑
k=1

αk f
(

ϕ−1((1−νk)ϕ(x)+ νkϕ(y)
))

=
m

∑
k=1

αkg
(
(1−νk)u+ νkv

)
= Gm(g)(u,v).

Similar calculations provide that Lϕ;m−1( f )(x,y) = Lm−1(g)(u,v) also holds. The
change of variable low of Lemma 1 yields

Aϕ( f )(x,y) =
1

ϕ(y)−ϕ(x)

∫ y

x
f dϕ =

1
ϕ(y)−ϕ(x)

∫ ϕ(y)

ϕ(x)
f ◦ϕ−1 = A (g)(u,v).

Thus, we have

Gϕ;m( f ) = Gm(g)◦Φ, Aϕ( f ) = A (g)◦Φ, Lϕ;m−1( f ) = Lm−1(g)◦Φ

where Φ : I2 → J2 stands for the coordinate-wise substitution Φ(x,y) =
(
ϕ(x),ϕ(y)

)
.

These identities, taking into consideration the statements of Theorem A and Lemma 2,
complete the proof. �
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THEOREM 2. If I and J are open intervals, ϕ : I → J is strictly increasing and
continuous, and f : I → R is ϕ -quasimonotone of order (2m+ 1) , then it fulfills the
inequalities

Rϕ;m;l( f ) � Aϕ( f ) � Rϕ;m;r( f )

on T . Conversely, if a continuous function f : I →R satisfies any part of these inequal-
ities on T , then it is ϕ -quasimonotone of order (2m+ 1) . For continuous functions,
equality occurs if and only if the function ϕ -quasiaffine of order (2m+1) .

The main results formally covers the motivating ones, as well. However, they are
not proper generalization of Theorem A and Theorem B, as their proofs depend on
these motivating theorems.

The prototype of our investigations was originally the exponential system defined
by ωωω(t) = (1,et , . . . ,e(n−1)t) . Note that many Chebyshev systems can be obtained in an
analogous way. For example, the system ωωω(t) = (1,sinh t, . . . ,sinh(n−1)t) reflects the
same feature. Therefore, the next conspicuous question arises: Does there exist other
quasipolynomial system, besides the exponential one, sharing a similar property? To
give the astonishing answer, we need the next concept. A sequence of functions (ψk)
is a Chebyshev sequence, if its any finite section (ψ1, . . . ,ψn) generates a Chebyshev
system.

THEOREM 3. A function ψ : R+ → R generates a quasipolynomial Chebyshev
sequence

(
ψ(kt)

)∞
k=0 if and only if there exists α > 0 such that ψ(t) = eαt .

Proof. Assume that
(
ψ(kt)

)∞
k=0 is ϕ -quasipolynomial where ϕ : R+ → R is a

strictly increasing, continuous function. Then, for all t � 0 and k ∈ N∪{0} , we have

ψ(kt) = ϕk(t).

The particular choice k = 1 shows that ψ = ϕ and hence ψ is continuous and strictly
increasing. The case k = 2 yields ψ(2t) = ϕ2(t) � 0. That is, the range of ψ is
contained by the nonnegative reals. On the other hand, ψ cannot have a zero: In the
opposite case, it would also take negative values by the strict increasing property. Hence
we can write ψ instead of ϕ in the equation above, and then we can take the logarithm
of both sides. Then the equation obtained shows that h = log◦ψ is homogeneous for
all k ∈ N . Using standard arguments, one can easily conclude that h is homogeneous
for all positive rationals. Finally, applying the continuity of h ,

h(ct) = ch(t)

follows whenever c > 0 and t � 0. Therefore, h(t) = th(1) and hence ψ(t) = eαt

follows, where α = h(1) . Taking into account the addition rules of the exponential
function, the converse statement is obvious. �
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4. Examples and remarks

Let us present here two specific cases of the main results. Firstly, let α > 0 be a
positive parameter and consider the function ϕ(t) := eαt . Then, ϕ : R → R is strictly
monotone increasing and continuous. Therefore, the system πππϕ given in Lemma 2 is
a Chebyshev system, indeed. With this particular setting, Theorem 1 and Theorem 2
reduce to the corollaries below. The quasiarithmetic mean induced by ϕ can be easily
expressed in the explicit forms involved. The proofs are omitted.

COROLLARY 1. If α > 0 , then ωωω(t) = (1,eαt , . . . ,e(2m−1)αt) is a Chebyshev sys-
tem on any subinterval I of R . Furthermore, the next statements are equivalent:

(i) f : I → R quasimonotone with respect to ωωω ;

(ii) f is continuous and, for all x,y ∈ I with x < y,

m

∑
k=1

αk f
(
log α
√

(1−νk)eαx +νk eαy
)

� 1
eαy−eαx

∫ y

x
f (t)d eαt ;

(iii) f is continuous and, for all x,y ∈ I with x < y,

1
eαy−eαx

∫ y

x
f (t)d eαt �

β0 f (x)+
m−1

∑
k=1

βk f
(
log α
√

μk eαx +(1− μk)eαy
)
+ βm f (y);

(iv) f is continuous and, for all x,y ∈ I with x < y,

m

∑
k=1

αk f
(
log α
√

(1−νk)eαx +νk eαy
)

� β0 f (x)+
m−1

∑
k=1

βk f
(
log α
√

μk eαx +(1− μk)eαy
)
+ βm f (y).

Finally, a continuous function is ωωω -affine if and only if it fulfills one of the cases with
equality.

COROLLARY 2. If α > 0 , then ωωω(t) = (1,eαt , . . . ,e2mαt) is a Chebyshev system
on any subinterval I of R . Furthermore, the next statements are equivalent:

(i) f : I → R quasimonotone with respect to ωωω ;

(ii) f is continuous and, for all x,y ∈ I with x < y,

γ0 f (x)+
m

∑
k=1

γk f
(
log α
√

(1−λk)eαx +λk eαy
)

� 1
eαy−eαx

∫ y

x
f (t)d eαt ;
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(iii) f is continuous and, for all x,y ∈ I with x < y,

1
eαy−eαx

∫ y

x
f (t)d eαt �

m

∑
k=1

γk f
(
log α
√

λk eαx +(1−λk)eαy
)
+ γ0 f (y);

(iv) f is continuous and, for all x,y ∈ I with x < y,

γ0 f (x)+
m

∑
k=1

γk f
(
log α
√

(1−λk)eαx +λk eαy
)

�
m

∑
k=1

γk f
(
log α
√

λk eαx +(1−λk)eαy
)
+ γ0 f (y).

Finally, a continuous function is ωωω -affine if and only if it fulfills one of the cases with
equality.

The second example is the modified polynomial system. Let α > 0 be a positive
parameter and define the function ϕ : R → R by ϕ(t) := tα . Then, as direct calcula-
tions show, Theorem 1 and Theorem 2 take the next forms:

COROLLARY 3. If α > 0 , then ωωω(t) = (1,tα , . . . ,t(2m−1)α) is a Chebyshev system
on any subinterval I of the nonnegative reals. Furthermore, the next statements are
equivalent:

(i) f : I → R quasimonotone with respect to ωωω ;

(ii) f is continuous and, for all x,y ∈ I with x < y,

m

∑
k=1

αk f
( α
√

(1−νk)xα + νkyα
)

� 1
yα − xα

∫ y

x
f (t)dtα ;

(iii) f is continuous and, for all x,y ∈ I with x < y,

1
yα − xα

∫ y

x
f (t)dtα �

β0 f (x)+
m−1

∑
k=1

βk f
( α
√

μkxα +(1− μk)yα
)
+ βm f (y);

(iv) f is continuous and, for all x,y ∈ I with x < y,

m

∑
k=1

αk f
( α
√

(1−νk)xα + νkyα
)

� β0 f (x)+
m−1

∑
k=1

βk f
( α
√

μkxα +(1− μk)yα
)
+ βm f (y).
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Finally, a continuous function is ωωω -affine if and only if it fulfills one of the cases with
equality.

COROLLARY 4. If α > 0 , then ωωω(t) = (1,tα , . . . ,t2mα) is a Chebyshev system
on any subinterval I of the nonnegative reals. Furthermore, the next statements are
equivalent:

(i) f : I → R quasimonotone with respect to ωωω ;

(ii) f is continuous and, for all x,y ∈ I with x < y,

γ0 f (x)+
m

∑
k=1

γk f
( α
√

(1−λk)xα + λkyα
)

� 1
yα − xα

∫ y

x
f (t)dtα ;

(iii) f is continuous and, for all x,y ∈ I with x < y,

1
yα − xα

∫ y

x
f (t)dtα �

m

∑
k=1

γk f
( α
√

λkxα +(1−λk)yα
)
+ γ0 f (y);

(iv) f is continuous and, for all x,y ∈ I with x < y,

γ0 f (x)+
m

∑
k=1

γk f
( α
√

(1−λk)xα + λkyα
)

�
m

∑
k=1

γk f
( α
√

λkxα +(1−λk)yα
)
+ γ0 f (y).

Finally, a continuous function is ωωω -affine if and only if it fulfills one of the cases with
equality.

The main results may also have some impact in Numerical Analysis. Now we
focus to applications in the field of Functional Equations. We present the proof only of
the first Corollary.

COROLLARY 5. Assume that I is an open interval, and ϕ : I → R a continuously
differentiable function with ϕ ′ > 0 . Let further ν1, . . . ,νm be the zeros of (1) and
let α1, . . . ,αm be given by (4). Then a continuous function f : I → R and a function
F : I → R are the solutions of the functional equation

(
ϕ(y)−ϕ(x)

) m

∑
k=1

αk f
(
Mϕ,νk(x,y)

)
= F(y)−F(x)

for all elements x < y of I if and only if f is ϕ -quasiaffine of order 2m, and F is the
antiderivative of f ·ϕ ′ .
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Proof. Evidently, ϕ is continuous and strictly monotone. Observe also, that the
functional equation above can be written into the equivalent form

ϕ(y)−ϕ(x)
y− x

·Gϕ;m( f )(x,y) =
F(y)−F(x)

y− x
.

The limit of the first term in the left-hand side exists if y→ x and is equal to ϕ ′(x) . On
the other hand, f and the quasiarithmetic means Mϕ,νk are continuous, therefore

lim
y→x

Gϕ;m( f )(x,y) = lim
y→x

m

∑
k=1

αk f
(
Mϕ,νk (x,y)

)
=

m

∑
k=1

αk f
(
Mϕ,νk (x,x)

)
= f (x),

since the coefficients αk are convex ones. That is, the limit of the right-hand side also
exists, yielding F ′ = fϕ ′ . Rearranging the original functional equation, and using the
Newton–Leibniz Theorem and the well-known connection between the Riemann and
the Riemann–Stieltjes integrals, Gϕ;m( f ) = Aϕ( f ) follows. By Theorem 1, this means
that f is ϕ -quasiaffine. The converse statement is trivial. �

COROLLARY 6. Assume that I is an open interval, and ϕ : I → R a continuously
differentiable function with ϕ ′ > 0 . Let further μ1, . . . ,μm−1 be the zeros of (2) and
let β1, . . . ,βm be given by (5). Then a continuous function f : I → R and a function
F : I → R are the solutions of the functional equation

(
ϕ(y)−ϕ(x)

)(
β0 f (x)+

m−1

∑
k=1

βk f
(
(1− μk)x+ μky

)
+ βm f (y)

)
= F(y)−F(x)

for all elements x < y of I if and only if f is ϕ -quasiaffine of order 2m, and F is the
antiderivative of f ·ϕ ′ .

COROLLARY 7. Assume that I is an open interval, and ϕ : I → R a continuously
differentiable function with ϕ ′ > 0 . Let further λ1, . . . ,λm be the zeros of (3) and let
γ1, . . . ,γm be given by (6). Then a continuous function f : I → R is a solution of the
functional equation

(
ϕ(y)−ϕ(x)

)(
γ0 f (x)+

m

∑
k=1

γk f
(
(1−λk)x+ λky

))
= F(y)−F(x)

for all elements x < y of I if and only if f is ϕ -quasiaffine of order (2m+1) , and F
is the antiderivative of f ·ϕ ′ .

COROLLARY 8. Assume that I is an open interval, and ϕ : I → R a continuously
differentiable function with ϕ ′ > 0 . Let further λ1, . . . ,λm be the zeros of (3) and
let γ1, . . . ,γm be given by (6). Then a continuous function f : I → R and a function
F : I → R are the solutions of the functional equation

(
ϕ(y)−ϕ(x)

)( m

∑
k=1

γk f
(
λkx+(1−λk)y

)
+ γ0 f (y)

)
= F(y)−F(x)

for all elements x < y of I if and only if f is ϕ -quasiaffine of order (2m+1) , and F
is the antiderivative of f ·ϕ ′ .
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To illustrate the aboves, consider the special case m = 1 of Corollary 1 and Corol-
lary 5. Then, it turns out that a continuous functions f and a function F fulfills the
functional equation

(
eαy−eαx) f

(
log α

√
eαx +eαy

2

)
= F(y)−F(x)

for all elements x < y of an open interval I if and only if

f (t) = c1 eαt +c2, F(t) = α eαt(c1 eαt +c2).

To summarize very briefly, higher-order quasimonotonicity can be characterized
via integral inequalities of Hermite–Hadamard types. However, the question still re-
mains open: What other kind of Chebyshev systems enjoy this property? Finding the
proper answer might be the topic of further research.
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[4] M. BESSENYEI AND ZS. PÁLES, Hermite–Hadamard inequalities for generalized convex functions,
Aequationes Math. 69 (2005), 32–40.
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