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Abstract. Amongst N -dimenstional rectangular parallelepipeds (boxes) of a given volume, that
which has the smallest fundamental Robin eigenvalue for the Laplacian is the N -cube. We give
an elementary proof of this isoperimetric inequality based on the well-known formulae for the
eigenvalues. Also treated are various related inequalities which are amenable to investigation
using the formulae for the eigenvalues.

1. Introduction

1.1. Overview

This paper has its origins in earlier papers by the authors. In the more recent
of these, in the microfluidics section of an engineering conference [20] (with detailed
proofs and related items in a supplement in arXiv [18]), the application led us to prove
the N = 2 case of Theorem 1 in this paper. The main physical application in the older
paper [29], heat flow, required N = 3 but the paper often considered general values of
N � 2. In the general setting, Ω is a bounded simply-connected domain in RN , with
piecewise C1 boundary. We will soon study the special case when Ω is a rectangular
parallelepiped, here called a box. (Other words for the same shape include rectangular
cuboid, hyper-rectangle, N -interval and N -orthotope.)

Let Δu = ∑N
j=1

∂ 2u
∂x2

j
denote the N -dimensional Laplacian. We are concerned with

the fundamental eigenvalue λ1 and corresponding positive eigenfunction u1 satisfying

Δu1 + λ1u1 = 0 and u1 > 0 in Ω, β
∂u1

∂n
+u1 = 0 on ∂Ω . (1.1)

Here n is the outward normal, β � 0, and the second equation is called a ‘Robin
boundary condition’. (In the context of fluid flows with slip at the boundary it is called
Navier’s boundary condion. In elasticity, it arises with boundaries that are elastically
supported, see e.g. [35]. In the context of heat diffusion it is sometimes called Newton’s
law of cooling. See [13].)
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The domains Ω we treat are the boxes

Ω = (−a1,a1)× (−a2,a2)× . . .× (−aN,aN).

We sometimes indicate the dependence on the list of a j by writing Ω(a) . Some of our
results, e.g. Theorem 1, (but not Theorems 2, 3 or 4 or Corollary 2) require the volume
to be fixed. Then we consider the family of boxes, with volume (2h)N , with a j = r jh
with all r j > 0 and the product of the r j equal to 1. We denote the volume of Ω by
|Ω| , so that

|Ω(a)| = 2N
N

∏
j=1

a j = (2h)N . (1.2)

Our goal throughout the paper is to present results which are valid for β � 0, and it is
usually the situation that the β = 0 case is well known. Of our results the easiest to
state is the following isoperimetric inequality.

THEOREM 1. Faber-Krahn for boxes with β � 0. Amongst all boxes with a given
volume, that which has the smallest fundamental Robin eigenvalue is the cube.

The classical geometric isoperimetric inequality relating volume and ‘perimeter’
for boxes, is that there is a C�(N) > 0 (whose numeric value is unimportant here) such
that

C�(N)|Ω|N−1 � |∂Ω|N , and C�(2) = 16, C�(3) = 36.

This combines with the domain monotonicity for boxes, Theorem 2, to yield the follow-
ing Corollary. With β > 0 and N = 2 we will see (in §1.2) another proof as a corollary
of Theorem 4.

COROLLARY 1. Amongst all boxes with a given ‘perimeter’, that which has the
smallest eigenvalue is the cube.

Our proofs of Theorem 1 when β > 0 (including those based on separable convex
optimization methods given in our arXiv supplements) are elementary. However our
search of the literature has failed to find the result, even with other proofs (and we
know that many alternative proofs are possible). We are aware that results can be hard to
locate in older literature. Indeed in §3 of [29] we unwittingly rediscovered the formulae
for the fundamental Robin eigenfunction for the equilateral triangle, a century and a
half after Lamé, and only learnt that it was a rediscovery a decade after our paper.
Lamé’s work is referenced in this journal in [21].

When β = 0, the result of Theorem 1 is well-known, and very elementary. Then
one has the volume fixed |Ω| = 2N ∏N

j=1 a j and minimizes the fundamental Dirichlet
eigenvalue

λ1(β = 0) =
π2

4

N

∑
j=1

1

a2
j

. (1.3)

Fixing the volume is equivalent to fixing the product ∏N
j=1 1/a2

j , and with this obser-
vation, we see that the β = 0 case is equivalent to the equality case of the AM�GM
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inequality. (See [14] §2.5 p. 17.) AM abbreviates ‘Arithmetic Mean’, GM, ‘Geometric
Mean’. The minimization problem for λ1 , when β = 0, is similar to that in which
one seeks, instead, to minimize the perimeter (again with a constant C(N) which is
unimportant here)

|∂Ω| = C(N)|Ω|
N

∑
j=1

1
a j

.

(Another similar optimization problem solved by the cube is minimizing the polar mo-
ment of inertia, Ic , over boxes with given volume.)

Return now to the situation where β � 0. The fundamental eigenvalue is given by
a formula

λ1(Ω(a)) =
N

∑
j=1

μ(a j)2.

The function μ , as given in the transcendental equation (2.2), also depends on β , but
in contexts where β is fixed we omit it. When the value of β needs to be indicated,
we write μ(β ,a) as, for example, μ(0,a) = π/(2a) . Our proofs of the isoperimetric
result of Theorem 1 follow from properties of the positive, decreasing, convex function
μ , or of its inverse. The inverse of μ is an elementary function, denoted φ1 (see
equation (3.4), and we have chosen to first establish properties of φ and from these
properties of μ . See §3. Using only that μ(a) is convex, indeed log-convex (also called
AG-convex), is, by itself, insufficient to establish that the separable convex optimization
problem, minimize λ1(Ω(a)) subject to the volume constraint (1.2), has as its solution
that all a j are equal with 2a j = |Ω|1/N for all j . For the proof of Theorem 1 additional
properties of μ – or of its inverse – are needed. What is actually needed is clear from
the following definition and restatement of the theorem.

We will only need to use definitions such as that for GA-convex functions below
for positive decreasing convex functions, which, in our application, are C∞ . We remark
that in this setting, if inequality (1.4) is satisfied with k = 2 it is satisfied for all positive
integer k ,

DEFINITION 1.

g is GA-convex ⇐⇒ g

⎛
⎝( k

∏
j=1

a j

)1/k
⎞
⎠� 1

k

k

∑
j=1

g(a j), (1.4)

for all positive integers k .

THEOREM 1. (Restated) The function μ(2) , where μ(2)(c) = μ(c)2 , is GA-convex.

The equation expressing this is that of (1.4), with k = N and with the function g
there being replaced by μ(2) .

Other forms of generalised convexity used in this paper, along with GA-convexity,
are defined (using k = 2 in the definitions, but knowing that they extend to other k )
are given in Appendix A. The notation μ(2) is introduced as, amongst other reasons,
differentiation with respect to it is easier to read than attempting to use μ2 .

The same GA-convexity of μ(2) as in Theorem 1 Restated leads to the following:
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COROLLARY 2. The fundamental eigenvalue λ1(Ω(a)) = ∑N
j=1 μ(a j)2 as given

in §2 equation (2.1), is a convex function of the � j = log(a j) .
Equivalently, with a(t) = (a j(0)1−ta j(1)t) , then λ1(a(t)) satisfies the inequality

λ1(a(t)) � (1− t)λ1(a(0)+ tλ1(a(1)) for 0 < t < 1.

As mentioned above, when β = 0, the μ(a j) = π/(2a j) . Once again the corollary
is trivial to prove directly when β = 0 as then

λ1(β = 0) =
π2

4

N

∑
j=1

exp(−2� j). (1.5)

An outline of our paper is as follows. In §1.2 we note some other results which are
familiar in the case β = 0, and which extend to our boxes with β > 0. For domains
more generally much more has been established when β = 0, and there are proof tech-
niques which are not available for β > 0, e.g.Steiner symmetrisation for which [33]
will serve as a reference. See §1.3.

The main subject of this paper is the box domain, and we return to this in all
subsequent sections. In §2 we give the exact solution for the eigenfunction, and the
implicit equation for its eigenvalue. This is developed in §3. We conclude that section
with the very short proof of Theorem 1. Further inequalities on the fundamental Robin
eigenvalue for boxes we treat are summarised immediately below in §1.2. Their proofs
are in §5. In the discussion in §6 we mention some open questions.

For domains more generally, much is known about the fundamental Robin eigen-
value. The corresponding eigenfunction can be taken to be positive, and will be in this
paper. The generalization of the original Faber-Krahn inequality is given in [10]. In that
context one has an isoperimetric result associated with varying over all bounded do-
mains with a given volume, with the N -dimensional ball as the optimizer. In this paper
we vary over boxes with a given volume, again obtaining, in Theorem 1, an ‘isoperi-
metric’ inequality, and explaining our description of the theorem as ‘Faber-Krahn for
rectanges’.

1.2. Other ways the geometry of boxes affects λ1

In dimensions N � 2, general domain monotonicity, true for β = 0, isn’t true
when β > 0. Rectangles, boxes, however, behave nicely, as noted in the following.

THEOREM 2. When β � 0 , boxes inherit domain monotonicity from the domain
monotonicity that is present when N = 1 as given by the formula (2.1). That is, if
Ω1 ⊆ Ω2 then λ1 satisfies the inequality λ1(Ω1) � λ1(Ω2) .

Some of the behaviour as one scales the domain is given in the following:

THEOREM 3. (i) Let Ω1 be a box. Define Ωt = tΩ1 . Then λ1(Ωt) is decreasing
in t , convex in t and further, AG-convex and HA-convex.

(ii) For β = 0 , for any Ω1 , not merely for boxes λ1(Ωt) is completely monotone.
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Item (i) follows from the corresponding properties for μ(2) given in Lemma 3. By
taking Ω0 = {0} one may see some similar results, concerning μ rather than μ(2) .

Item (ii) is trivial as it is merely the statement that 1/t2 is completely monotone
on t > 0. We emphasise this statement concerning changes of scale is, when β = 0,
true for any domain Ω . We have included it here to assist in exposition in §6.

When β = 0 there are many further results for convex domains. Consider the
Minkowski sum, defining a Ωt = (1− t)Ω0 + tΩ1 . Then, when β = 0, λ1(Ωt)−1/2 is
a concave function of t . Equation (5) of [8] gives

λ1(Ωt)−1/2 � (1− t)λ1(Ω0)−1/2 + tλ1(Ω1)−1/2 when β = 0. (1.6)

While we do not know if there is any result, when β > 0 for general convex domains,
for boxes and β � 0 we have a result. Our boxes centred on the origin behave nicely
under Minkowski sums. The set of all our boxes centred at the origin is closed under
Minkowski sums:

Ω(t) := Ω((1− t)a+ tb) = (1− t)Ω(a)+ tΩ(b).

(That when β = 0, λ1(Ωt)−1/2 is a concave function of t is easily checked for our
boxes, When β = 0 using formula (1.3), one verifies inequality (1.6) by using the
r =−2 form of the Minkowski inequality as given in [14], §2.11, p. 30.) If the property
does extend to general convex domains and β > 0, some of the ingredients of the β = 0
proof, e.g. homogeneity of domain functionals, are lost when we fix β > 0.

THEOREM 4. Use the notation above for the Minkowski sum of boxes and let the
fundamental eigenvalue λ1(Ω(t)) be as given in §2 equation (2.1). For all β � 0 ,
λ1(Ω(t))−1/2 a concave function of t . That is

1√
λ1(Ω(t))

� 1− t√
λ1(Ω(0))

+
t√

λ1(Ω(1))
for 0 � t � 1.

When N = 2, Corollary 1 to Theorem 1 follows from Theorem 4 and the obser-
vation that if the rectangles Ω0 and Ω1 , Ω1 being obtained by rotating Ω0 through
a right angle, then the perimeter of Ωt is constant in t . Symmetry suggests that the
maximum of the concave function λ1(Ω(t))−1/2 will occur at t = 1/2, i.e. the square.

For the next theorem, though results in N dimensions are available, for ease of
exposition, results presented here and in subsection §5.3 are, unless otherwise indicated,
for N = 2. Part (ii) of the theorem is not proved in this paper: see [22]. The theorem
presents interesting results involving, as well as λ1(Ω) , the polar moment of inertia
about the centroid, Ic(Ω) . For our rectangles (−rh,rh)× (−h/r,h/r),the area is 4h2 ,
and

Ic(r) =
4
3
h4
(

r2 +
1
r2

)
while λ1(β = 0) =

π2

4h2

(
r2 +

1
r2

)
.

THEOREM 5. Define

R(Ω) :=
λ1(Ω)|Ω|3

Ic(Ω)
.
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(i) R(Ω) is maximal among rectangles for the square.
(ii) R(Ω) is maximal among triangles for the equilateral triangle, maximal among

parallelograms for the square, and maximal among ellipses for the disk.

If we choose to consider families of shapes with the same volume, the results
involve the ratio λ1(Ω)/Ic(Ω) .

This theorem (and more) is proved in [22]. Our inequality (5.1) establishes the
β > 0 version of Theorem 5(i): see §5.3.

Some of the history is given in [23]. In [33] it is noted that, when β = 0, R = 12π2

is constant for rectangles, which, however, renders the β = 0 case of Theorem 5(i)
somewhat trivial. Tables of R(Ω) for various plane shapes, and β = 0, are given
in [33] p. 257. Parallelograms are considered in [32]. Also Hersch [15], equation
(5), establishes the result for β = 0 and N = 2, and states it as Of all parallelograms
having given distances between their parallel sides, the rectangle has the largest λ1 . A
variational proof of the result, with N = 2 and β = 0 is straightforward.

There are some subtleties when β is nonzero. We will not be proving (ii) in this
paper: see [22].

1.3. A famous question of Polya and Szego [33]

There is a famous question of Polya and Szego [33], p. 159. Amongst all n-gons of
given area, does the regular n-gon have the smallest λ1 ? Symmetrization techniques
are used, when β = 0 and N = 2 in [33] pp. 158–159 to establish this to the case when
n = 3 and n = 4 (but the answer is unknown for n > 4). Consider n = 4. A proof of
the Faber-Krahn for quadrilaterals of a give area, that the square minimizes λ1 has the
following steps

(i) Symmetrise the initial quadrilatera with respect to the perpendicular to a diag-
onal to a kite, symmetric about diagonal d .

Symmetrise the kite about a line perpendicular to d , producing a rhombus.
Symmetrise the rhombus with respect to a perpendicular to one of its sides, pro-

ducing a rectangle.
(ii) Use the Faber-Krahn for rectangles to show that the square is the minimizer of

λ1 .
Our Theorem 1 concerns β > 0 and, at least is not inconsistent with the possibility

that, as is the case with β = 0, the square is the optimizer over all quadrilaterals with
the given area. It provides step (ii) for the case β > 0.

Consider next N � 2. Symmetrization can be applied when β = 0 and N �
2 considering all (i.e. not necessarily rectangular) parallelepipeds: see [33] p. 159
item (d). Item (d) states that for any prism (right or oblique) with a given volume and
a quadrilateral base, there is a set of successive Steiner symmetrizations which will
transform the prism to a cube.

Symmetrization techniques are not directly applicable when β > 0, and in this
paper we restrict our study to rectangular parallelopipeds, here called boxes.
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2. The explicit formulae for λ1 for a box

The function u = ∏N
j=1 cos(μ(a j)x j) satisfies

Δu+ λu = 0, with λ =
N

∑
j=1

μ(a j)2. (2.1)

(Here we have chosen to look for modes which are symmetric about the axes, which
is appropriate for the fundamental mode. In other applications, this need not be appro-
priate. The general setting is given in [12]§3.1.) The Robin boundary conditions are
satisfied if, for all j ,

μ(a j) tan(a jμ(a j)) =
1
β

. (2.2)

The function μ(c) and the geometry determine λ1 : Another organization of the
equation is

μ(c) tan(cμ(c)) =
1
β

, or equivalently μ̂ tan(ĉμ̂) = 1, where μ̂ = β μ , ĉ =
c
β

.

(2.3)
The transcendental equations have been widely studied, e.g. [7, 28, 27]. Numerical
values, often used for checks, are given in Table 4.20 of [1]. Amongst the various
applications are (i) the energy spectrum for the one-dimensional quantum mechanical
finite square well, and (though with c < 0) (ii) (though with c < 0) zeros of the spher-
ical Bessel function y1(x) = j−2(x) .

We have an interest in the smallest positive solutions,

0 < μ(a j) < π/(2a j), 0 < μ̂ < π/(2ĉ).

As an aside we remark that λ1(Ω(a)) for the boxis the arithmetic mean of the
fundamental eigenvalues of the cubes, i.e. of λ1(Ω(a j1)) where 1 is the N -vector of
1s.

3. The one-dimensional problem

Determining properties of μ(c) directly involves some implicit differentiation.
For example,

dμ
dc

= − μ(1+ β 2μ2)
β + c(1+ β 2μ2)

,
dμ(2)

dc
= − 2μ(2)(1+ β 2μ(2))

β + c(1+ β 2μ(2))
. (3.1)

so that, at fixed β > 0, μ decreases as c increases. Also μ(c) is convex in c :

d2μ
dc2 =

2μ(1+ β 2μ2)(2β 3μ2 + cβ 4μ4 +2cβ 2μ2 + β + c)
(β + c(1+ β 2μ2))3 .
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One can proceed directly to determine further convexity properties: the first such we
found was that μ is log-convex (AG-convex). Of course this implies that μ(2) is also
log-convex (and hence convex).

The function μ has a simple inverse function φ1 ,

c
β

= φ1(β μ) =
1

β μ
arctan

(
1

β μ

)
.

Also define φ2(z) = φ1(
√

z)). The positive, decreasing functions φ are convex, and
formulae corresponding to those immediately above for μ are:

dφ1

dz
= − φ1

z
− 1

z(1+ z2)
,

dφ2

dc
= − φ2

2z
− 1

2z(1+ z)
. (3.2)

In notation compatible with that of Appendix B,

d2φ2

dz2 =
Q2(φ2(z))

φ2(z)(2z(1+ z))2 , with Q2(Φ2,z) = Φ2
(
3(1+ z)2Φ2 +5z+3

)
. (3.3)

The numeric details are unimportant here: the notable fact is that φ2 is convex. Indeed,
similar calculations can be used to establish further convexity properties – and are indi-
cated in Appendix B. Perhaps it is appropriate to mention the log-convexity of φ2 here
as that is the property needed to prove the Faber-Krahn result, Theorem 1.

We chose to obtain properties of φ1 and of φ2 and from these deduce properties
of μ using (rather elementary) results from Appendix A. The main results relevant to
this paper, and proved in the appendices are given in the next Lemmas. (Shorter and
neater proofs of some of the properties, proofs associated with the φ functions being
completely monotone, and φ2 being Stieltjes, are given in [19].)

LEMMA 1. Let

φ1(z) =
1
z

arctan

(
1
z

)
, φ2(z) =

1√
z

arctan

(
1√
z

)
. (3.4)

Then both φ1(z) and φ2(z) are positive, monotonic decreasing, convex functions on
0 < z < ∞ . Both φ1 and φ2 are log-convex (AG-convex), and, even stronger, both are
completely monotone.

φ2 is a Stieltjes function so AH-convex (as well as AG-convex) while HA-concave.
φ1 is HA-convex, AG-convex and AH-concave.

COROLLARY 3. Let μ , μ(2) , φ1 and φ2 be as above.
The inverse of φ1 is μ and 1/μ is concave (i.e. μ is AH-convex and hence, also,

log(μ) is convex, μ is AG-convex). μ is aso HA-concave.
The inverse of φ2 is μ(2) which is log-convex – AG-convex, and HA-convex (hence

also GA-convex, i.e. is such that μ(2)(exp(�)) is convex in � ). μ(2) is also AH-concave.
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Theorem 1 Restated is included in the latter item in the preceding corollary.
The preceding lemma and corollary are required for several other results of this

paper. Definitions are given systematically in Appendix A, but sometimes, as immedi-
ately below, repeated in this paper. Further results follow from additional properties of
μ , e.g. Theorem 7 follows from properties in Lemma 2.

DEFINITION 2. A function f : (0,∞) → (0,∞) is said to be GG-convex iff

f (
√

x0 x1) �
√

f (x0) f (x1).

With the inequality reversed it is GG-concave.

LEMMA 2. The functions φ2 and μ(2) (and φ1 and μ ) are GG-concave.

The convexity properties of the φ and of the μ are summarised in the following
diagrams. For ‘vex’ read ‘convex’: for ‘ave’ read ‘concave’. The diagram for φ2 and
μ(2) is as follows.

AH−vex =⇒ AG−vex =⇒ AA−vex
⇑

GH− ave ⇐= GG− ave GA−vex
⇓ ⇓

HH− ave ⇐= HG− ave ⇐= HA− ave

φ2

HA−vex =⇒ GA−vex =⇒ AA−vex
⇑

HG− ave ⇐= GG− ave AG−vex
⇓ ⇓

HH− ave ⇐= GH− ave ⇐= AH− ave

μ(2)

The corresponding results for φ1 and μ are:

AH− ave AG−vex =⇒ AA−vex
⇓ ⇑

GH− ave ⇐= GG− ave GA−vex
⇓ ⇓ ⇑

HH− ave ⇐= HG− ave HA−vex

φ1

HA− ave GA−vex =⇒ AA−vex
⇓ ⇑

HG− ave ⇐= GG− ave AG−vex
⇓ ⇓ ⇑

HH− ave ⇐= GH− ave AH−vex

μ

From the diagrams above one expects (correctly) that the hardest results to es-
tablish by direct calculation would be GA-convexity, GG-concavity and HA-concavity.
(We remark, though, that any Stieltjes function is GA-convex and HA-concave, and this
applies to φ2 .)

• We remark that the properties of μ are the same as in the corresponding dia-
gram for the Stieltjes function φ2 . We have no information yet to preclude the
possibility that μ is Stieltjes, but as we have no proof that it is even completely
monotone, it is too early to speculate.



920 G. KEADY AND B. WIWATANAPATAPHEE

• Clearly μ(2) is not Stieltjes. If μ were to be shown to be completely monotone,
then so is its square, μ(2) .

As μ(2) = μ2 there are some obvious checks. For example, it is clear that the AG,
GG- and HG-convexity properties of μ(2) and of μ must be the same. The convexity
properties that differ are AH and HA.

In our proof of Theorem 5(i) we use that cμ(c) is increasing in c . This is easy to
establish. To connect it with earlier papers, we note that [28] defines the function Wt to
satisfy Wt tan(Wt) = x and we have

cμ = Wt

(
c
β

)
.

Routine calculation gives

dWt

dx
=

Wt

x+ x2 +W2
t

,
d2Wt

dx2 = − 2(1+ x)(x2 +Wt(x)2)
Wt(x)2

(
dWt

dx

)3

.

Thus Wt is increasing, concave. (This could be obtained with less calculation by noting
that w tan(w) is increasing and convex for w ∈ (0,π/2) , and then using properties of
inverses similar to that given for decreasing convex functions in Appendix A.)

4. λ1 for boxes with |Ω| fixed

4.1. Consequences of μ and μ(2) being GA-convex

Allowing ourselves some repetition, we believe our neatest proof of Theorem 1 is
as follows.

(i) Use the representation (2.1) of λ1 in terms of μ(2)(a j)
(ii) Note that φ2 is Stieltjes, and hence AG-convex (or get this directly) and thus

μ(2) is GA-convex. (This is Theorem 1 Restated.)
(iii) Combine the preceding to yield Theorem 1.
Corollary 2 is just another way of describing GA-convexity. If one were to choose

this as a starting point it is easy to derive Theorem 1. From the table in Appendix A.1,
μ(2)(r) is GA-convex iff μ(2)(exp(t)) is convex in t . Define M(t) = μ(2)(exp(t)) .
We now illustrate the connection with the Faber-Krahn result with N = 2. With the
earlier notation where r is related to the aspect ratio of the rectangle (with r = 1 for
the square),

λ1 = μ(2)(r)+ μ(2)

(1
r

)
= M(log(r))+M(− log(r)).

As each of the M terms is convex, λ1 is a convex function of log(r) . Also λ1 is an
even function of log(r) . Hence the minimum of λ1 occurs at r = 1, log(r) = 0.

Stronger results than Corollary 2 follow from using the HA-convexity of μ(2) .
When N = 2 this is indicated in §4.2.



FUNDAMENTAL ROBIN EIGENVALUE 921

4.2. Simplifications and further results when N = 2 and |Ω| fixed

Define, for r > 0, Ω(rh,h/r) = (−rh,rh)× (−h/r,h/r) . Write λ1(rh,h/r) =
λ1(Ω(rh,h/r)) . When the orientaion of the rectangle is unimportant, abbreviate these
to Ω(r) and λ1(r) . Clearly λ1(1/r) = λ1(r) .

Theorem 1 when N = 2, that μ(2) is GA-convex, is that, for r > 0,

μ(2)(h) = μ(2)(

√
rh

h
r
) �

μ(2)(rh)+ μ(2)( h
r )

2
.

Corollary 2, another result from μ(2) being GA-convex, gives that λ1 is a convex
function of log(r) , and, clearly, an even function of log(r) . So, again, we see that the
minimum of λ1(r) is at r = 1 as stated in Theorem 1.

The slightly stronger result that 2μ(h) � μ(rh)+ μ(h/r) follows from φ1 being
AG-convex, so μ is GA-convex. This is the N = 2, the inequality ∑N

j=1 μ̂a j > Nμ̂�
from the end of the preceding subsection: it trivially rewrites to

λ1 � λ1� +
1
2

(μ(rh)− μ(h/r))2 .

HA-convexity is a stronger result than GA-convexity, and yields the following, a
result that was originally conjectured from the plots of λ1(r) given in [18].

THEOREM 6. λ1(r) is a convex function of r .

Proof. The positive, decreasing, convex function μ(2) is HA-convex, so μ(2)(1/c)
is convex in c . In an obvious notation λ1(r) = μ(2)(r)+ μ(2)(1/r) , and, as both func-
tions on the right are convex, λ1(r) is convex. �

We remark, but do not use, that the convex function μ is HA-concave, so the
function μ(r)− μ(1/r) is convex.

Additional results can be found from further properties of φ and/or of μ , e.g. μ
– and μ(2) – are GG-concave.

Suppose now that the rectangle Ω(rh,h/r) has 0 < r � 1. We now need to con-
sider the orientation of the rectangle, so now denote its fundamental Robin eigenvalue
by λ1(rh,h/r) . Consider the largest square which can be inscribed in the rectangle (the
square Ω(hr,hr)and the smallest square in which the rectangle can be inscribed (the
square Ω(h/r,h/r) . The isoperimetric inequality is that λ1(h,h) is bounded above by
λ1(hr,h/r) which is the arithmetic mean of λ1(rh,rh) and λ1(h/r,h/r) . (This is our
old result Theorem 1,)

The GG-concavity of (μ and) μ(2) yields the following:

THEOREM 7. λ1(h,h) is bounded from below by the geometric mean of λ1(rh,rh)
and λ1(h/r,h/r) .
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The key point in the proof is that each of the three terms concerns a λ1 for a square,
and λ1(c,c) = 2μ(2) . Thus the theorem is merely a restatement of the GG-concavity of
μ(2) :

2
√

μ(2)(rh)μ(2)(h/r) =
√

λ1(rh,rh)λ1(h/r,h/r) � λ1(h,h) = 2μ(2)(h).

We also state this in terms of the a j which is suggestive of how it might generalize
to N > 2:

√
λ1(a1,a1)λ1(a2,a2) � λ1(

√
a1a2,

√
a1a2)

(
� 1

2
(λ1(a1,a1)+ λ1(a2,a2))

)
. (4.1)

(The right-hand inequality, in parentheses, is our Faber-Krahn result.) When β = 0,
the left-hand inequality becomes an equality.

5. Proofs of Theorems stated in §1.2

5.1. Proof of Theorem 3, scaling

Part (i) is merely a collection of some of the properties of μ(2) which are closed
under addition. Part (ii) is a consequence of λ1(Ωt) = λ1(Ω1)/t2.

5.2. Proof of Theorem 4, Minkowski sums

Consider the Minkowski sum

Ωt = (1− t)Ω0 + tΩ1.

As stated in §1, when β = 0 it is known that λ1(Ωt)−1/2 is a concave function of t .
The result at N = 1, that 1/μ is concave, μ is AH-convex, is given in Corollary 3.
Results more general than the following lemma are proved in [26].

LEMMA 3. Let the real-valued functions f and g have the same domain of defi-
nition D ⊂ RN with (i) D convex, (ii) f and g positive and twice continuously differ-
entiable in D, and (iii), with −1 < α < 0 both f α and gα concave. Then ( f +g)α is
concave.

Proof. Denote the column vector gradient with a D , and the hessian by D2 , and
transpose with a superscript T . Define, for any f which is positive and C2 ,

M( f ,α) = f D2 f +(α −1)Df (Df )T .

Note that
hessian( f α ) = α f α−2 M( f ,α).
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To establish the result we need to prove that M( f + g,α) is positive (semi-)definite,
given M( f ,α) and M(g,α) both positive semidefinite.

M( f +g,α) = ( f +g)D2( f +g)+ (α −1)D( f +g)(D( f +g))T ,

= ( f +g)
(

1
f
M( f ,α)+

1
g
M(g,α)

)
+(1−α)WWT ,

with W =
√

g/ f D f −√ f/gDg . The first two terms of the preceding equation are
positive (semi-)definite by the hypotheses of the lemma, and the last is positive semi-
definite. Hence M( f +g,α) is positive (semi-)definite, completing the proof. �

Proof of Theorem 4. Since μ(2)(a) is positive, decreasing with 1/
√

μ(2)(a) con-

cave, we have, by Lemma 3 with α = −1/2, that Λ(a) = ∑N
j=1 μ(2)(a j) is such that

1/
√

Λ(a) is concave in the (convex) positive orthant, {a|a j > 0} . �

5.3. Proof of Theorem 5(i)

Our original proof of this result was via variationalmethods and details are in [18], [19].
We then found a slightly stronger (but uglier) inequality than:

λ1(β ,r) := λ1(Ω(r)) � λ1�
2

(
r2 +

1
r2

)
where λ1�(β ) = λ1(Ω(1)). (5.1)

We remark there is equality in this when β = 0.
We remark that inequality (5.1) can be viewed as comparing values for functionals

at β > 0 with those for β = 0. With the notation λ1(β ,r) as above, inequality (5.1) is

λ1(β ,r) � λ1(β ,1)
λ1(0,r)
λ1(0,1)

. (5.2)

In terms of μ inequality (5.1) (and other inequalities established earlier) is(
2

√
μ(2)(hr)+ μ(2)

(h
r

)
� 2μ(2)(h) �

)
μ(2)(hr)+ μ(2)(

h
r
) � μ(2)(h)

(
r2 +

1
r2

)
.

(5.3)
(The left-most inequality is Theorem 7, and the inequality next to it in parentheses is
our Faber-Krahn result.)

We will establish Theorem 5(i) for β > 0, i.e. will establish inequality (5.3), as a
consequence of the GG-concavity of μ (inequality (4.1), Theorem 7) and the inequality
in the following lemma.

LEMMA 4.

μ(2)(hr)+ μ(2)

(h
r

)
�
√

μ(2)(rh)μ(2)(h/r)
(

r2 +
1
r2

)
. (5.4)
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Proof. Inequality (5.4) is

E(r)= E−E+ � 0 where E− =
(

r μ(hr)− 1
r

μ
(h

r

))
, E+ =

(
1
r

μ(hr)− r μ
(h

r

))
.

(5.5)
Since E(1/r) = E(r) it suffices to establish the inequality for the case 0 < r < 1,

which we now do.

• Since cμ(c) is increasing in c , for 0 < r < 1, rμ(hr) < μ(h) < μ(h/r)/r , so
the E− factor of inequality (5.5) is negative.

• Since μ(c) is decreasing in c , for 0 < r < 1, μ(hr) > μ(h/r) and the factor E+
of inequality (5.5) is positive.

This proves the lemma. �
For more general Ω , e.g. parallelograms, Theorem 5(i) is easier to prove when

β = 0. It is generalized to Robin boundary conditions (and sums of consecutive eigen-
values) in [22], and further generalized to higher dimensions in [24]. We remark that
the rectangle version of their result is the same as our inequality (5.1) (and we note that
we have not considered parallelograms in our variational calculations for β > 0). For
details and further results see [11, 25].

6. Conclusion – and open questions

We have, in Theorem 1, established an isoperimetic inequality for the fundamen-
tal Robin eigenvalue for boxes. We have also reviewed some related inequalities. In
the process we found that working with the explicitly defined Stieltjes function φ2 is
overwhelmingly neater than the elementary, but detailed, calculations that arise when
working with μ(2) , the inverse of φ . Many other inequalities on λ1 , and related func-
tionals, for domains more general than boxes, have been proved and others have been
conjectured: see, for example, [11, 25] and the long arXiv article [18].

In [33] it is asked if, amongst all n-gons of given area, that which has the least λ1

is the regular n-gon. When β = 0 this is, in [33] page 158, proved to be the case, using
symmetrisation, when n = 3 and n = 4. See earlier in this paper, at the end of §1.3. For
β > 0, the question for triangles, n = 3, is noted as Open Problem 1 in [25]. Assuming
this is found to be true, it would make sense to ask which classes of quadrilaterals have
the property that, at given area, the square has the least λ1 . Our little result, Theorem 1,
is that it is true for rectangles, but it is open as to whether it is true for some larger class,
e.g. parallelograms or trapeziums.

Returning to boxes we note some open questions. There are indications, men-
tioned in [18] that μ̂(ĉ) might be completely monotone, and the first question is, is it,
and, if so, how might it be used. We merely used the log-convexity of φ2 in our proof
of Theorem 1, and various other convexity properties in other theorems. However we
have the stronger property that φ2 is a Stieltjes function, so completely monotone, and
it is reasonable to ask what further properties of λ1(Ω) can be obtained from this. We
have already commented (in Theorem 3(ii)) that when β = 0, under the scale change,
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for any Ω1 . λ1(tΩ1) is completely monotone. It is an open question as to whether this
is true when β > 0, even for Ω1 a rectangle.

A. On inverses of positive, decreasing, convex functions

In our application we deal with positive, decreasing convex functions from (0,∞)
onto (0,∞) , An elementary fact that is well-known, and even an example in beginning
calculus teaching in connection with implicit differentiation and inverse functions is the
following (for which we reference [30] and Proposition 1 of [16]):

FACT. The inverse of a positive, decreasing convex function is positive, decreasing
and convex.

In our application μ is defined implicitly through a transcendental equation. The
inverse of μ is an elementary function denoted φ1 . In this appendix we indicate how
further convexity properties of φ1 enable one to obtain corresponding convexity prop-
erties of μ . As our φ1 and φ2 are completely monotone, and φ2 is Stieltjes some of the
convextiy properties follow immediately. For those properties that do not follow from
this, ultimately the calculations to determine the further convexity properties of μ are
equivalent to those for φ .

A.1. Mean convex functions, (p,q)-convex functions

Define, for positive numbers x , y the means

Mp(x,y) =
(

xp + yp

2

)1/p

and M0(x,y) =
√

xy.

DEFINITION 3. The function f is (p,q)-convex ((p,q)-concave) if and only if
f (Mp(x,y)) � Mq( f (x), f (y)) . When (as in our application) f is differentiable, an
equivalent definition is that

x �→ x1−p f ′(x)( f (x))q−1

is increasing (decreasing). See [3], [4].

Special cases arise sufficiently frequently that there are other notations. There is
some literature, notably [2], in connection with ‘convexity with respect to means’, and
the letters A for ‘arithmetic’, G for ‘geometric’, and H for ‘harmonic’ are used to label
these. For example, AA-convex is ordinary convexity, AG-convex means log-convex,
etc. The following table is standard in the area (but included here for readers with pde
specialization)

The set of (p,1)-convex functions is obviously closed under addition. (1,q)-
convexity is related to power-convexity defined and discussed below.
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(p,q) MN

(1,1) AA
f (t) convex in t

f
( x0+x1

2

)
� f (x0)+ f (x1)

2decreasing in t

(1,0) AG
log( f (t)) convex in t

f
( x0+x1

2

)
�
√

f (x0) f (x1)decreasing in t

(1,−1) AH
1/ f (t) concave in t

f
( x0+x1

2

)
� 2 f (x0) f (x1)

f (x0)+ f (x1)increasing in t

(0,1) GA
f (exp(t)) convex in t

f (
√

x0x1) � f (x0)+ f (x1)
2decreasing in t

(0,0) GG
log( f (exp(t))) convex in t

f (
√

x0x1) �
√

f (x0) f (x1)decreasing in t

(0,−1) GH
1/ f (exp(t)) is concave in t

f (
√

x0x1) � 2 f (x0) f (x1)
f (x0)+ f (x1)increasing in t

(−1,1) HA
f (1/t) convex in t

f ( 2x0 x1
x0+x1

) � f (x0)+ f (x1)
2increasing in t

(−1,0) HG
log( f (1/t)) is convex in t

f ( 2x0 x1
x0+x1

) �
√

f (x0) f (x1)increasing in t

(−1,−1) HH
1/ f (1/t) concave in t

f ( 2x0 x1
x0+x1

) � 2 f (x0) f (x1)
f (x0)+ f (x1)decreasing in t

Inclusions of these sets of MN-convex (MN-concave) functions are well estab-
lished. See [2]. The arrows are to be read, as for example from the entry at right: f
AG-convex (log-convex) implies f is AA-convex (ordinarily convex).

The vertical arrows require of the function f that it be positive, decreasing.

AH =⇒ AG =⇒ AA
⇑ ⇑ ⇑

GH =⇒ GG =⇒ GA
⇑ ⇑ ⇑

HH =⇒ HG =⇒ HA

convex

AH ⇐= AG ⇐= AA
⇓ ⇓ ⇓

GH ⇐= GG ⇐= GA
⇓ ⇓ ⇓

HH ⇐= HG ⇐= HA

concave

A few remarks on the cases whenMN -convexity is closed under addition are in
order.

• It is clear from the Definition 3 that when q = 1, the set of (p,1)-convex (con-
cave) functions is closed under addition, and obviously remains so when the func-
tions are also positive and decreasing. Thus the AA, GA and HA entries above
form (convex) cones.

• There are other sets which form cones, notably the positive decreasing AH-
convex functions and AG-convex functions. This case, p = 1 , and q � 1 is
often treated in its own right as power-convex functions: see Definition 4 below.

• The proof that the positive log-convex, AG-convex, functions form a cone can
be adapted to the GG-convex and HG-convex functions. The AGM inequality



FUNDAMENTAL ROBIN EIGENVALUE 927

can be used to establish, for positive numbers
√

ab+
√

cd �
√

(a+ c)(b+d).
Applying this in the form√

f0(x) f0(y)+
√

f1(x) f1(y) �
√

( f0 + f1)(x)( f0 + f1)(y),

yields the results.

• See also [31] p. 91 Exercise 2.

DEFINITION 4. A nonnegative function f is said to be q-th power convex if, for
q 
= 0, q f (x)q is convex, and 0 -power convex if log( f ) is convex, also called log-
convex, or as in [2], AG-convex. See [26].

(When q < 0, and f is q -th power convex, then f (x)q is concave.)
If f � 0 is q0 -th power convex then it is q1 -th power convex for q1 � q0 .
Another property, used here and again in our application, is, from p. 159 of [26]:
If q � 1 then the set of positive, decreasing, convex functions which are q-th power

convex is closed under addition. This set is a convex cone in appropriate function
spaces.

A.2. Inverses

THEOREM 8. If a positive, decreasing, convex function f is (p,q)-convex, its
inverse g is (q, p)-convex.

If a positive, decreasing, convex function f is (p,q)-concave, its inverse g is
(q, p)-concave.

The proof is straightforward.
In terms of the named means, the result is that If a positive, decreasing, convex

function f is MN -convex, its inverse g is NM -convex, and similarly for concavity.

B. Calculations of convexity properties of φ1 , φ2 , μ , μ(2)

A calculation gives

d
dx

(
x1−pφ ′

2(x)(φ2(x))q−1)=
x−1−pφq−2

2

4(1+ x)2 Q2(φ2,x),

where

Q2(Φ2,x) = (1+ x)2(2p+q)Φ2
2 +(2(p+q)(1+ x)+ x−1)Φ2+(q−1),

= (2p+q)Φ2
2x

2 +(2(2p+q)(Φ2 +1)+1−2p)Φ2x

+(Φ2 +1)((2p+q)Φ2 +q−1).

We establish the convexity/concavity properties by establishing that Q2(φ2(x),x) does
not change sign. We do this by considering Φ2 as an independent variable in Q2(Φ2,x)
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and investigating this as Φ2 varies between lower and upper bounds of φ2(x) , for which
we use the interval [3/(1+3x),1/x] .

The upper bound is an obvious consequence of arctan(x) < x . Establishing the
lower bound can begin with

d
dx

(
arctan(x)− x

x2

3 +1

)
=

4x4

(1+ x2)(3+ x2)2 � 0.

On integrating the left-hand side from 0 we have

arctan(x) >
x

x2

3 +1
.

From this

φ2(x) >
1

1
3 + x

.

(The weaker inequality φ2(x)> 1/(1+x) suffices for all except for testing AH-convexity.)
The values of Q2 at the end-points of the interval [3/(1+3x),1/x] are

Q2

( 3
1+3x

,x
)

=
4Q2−(p,q)
(1+3x)2 ,

Q2−(p,q) = 9(p+q)x2 +3(5p+4q−1)x+6p+4q−1,

Q2

(1
x
,x
)

=
Q2+(p,q)

x2 ,

Q2+(p,q) = 4(p+q)x2 +(6p+4q−1)x+(2p+q).

(p,q) MN Q2(Φ2,x) Notes [Q2−,Q2+]

(1,1) AA-convex Φ2(3(1+x)2Φ2+5x+3)
all terms in Q2 positive

[18x2+24x+9,8x2+9x+3]

(1,0) AG-convex 2(1+x)2Φ2
2+(3x+1)Φ2−1

Q2 positive for Φ2 > 1/(1+x)
[9x2+12x+5,4x2+5x+2]

(1,−1) AH-convex (1+x)2Φ2
2+(x−1)Φ2−2

sign change below interval
[1,1+x]

(0,1) GA-convex Φ2((1+x)2Φ2+3x+1)
all terms in Q2 positive
[9x2+9x+3,4x2+3x+1]

(0,0) GG-concave xΦ2−Φ2−1
Use φ2 < 1/x in first term

[−3x−1,−x]

(0,−1) GH-concave −(1+x)2Φ2
2−(x+3)Φ2−3

all terms in Q2 negative
[−9x2−15x−5,−(x+1)(4x+1)]

(−1,1) HA-concave −(1+x)2Φ2
2−(x−1)Φ2

Use φ2 > 1/(1+x) in the first term
and φ2 < 1/x in the xΦ2 term

[−6x−3,−3x−1]

(−1,0) HG-concave −2(1+x)2Φ2
2−(x+3)Φ2−1

all terms in Q2 negative
[−9x2−18x−7,−4x2−7x−2]

(−1,−1) HH-concave −3(1+x)2Φ2
2−(3x+5)Φ2−2

all terms in Q2 negative
[−18x2−30x−11,−(x+1)(8x+3)]
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The function φ2 is (p,q) convex (concave) iff Q2(φ2(x),x)> 0 (resp. Q2(φ2(x),x)
< 0). We are able to determine the sign of Q2(Φ2,x) over the interval [3/(1+3x),1/x]
(and often over a much larger interval of Φ2 , which, however, is irrelevant to our needs).
For the sign to remain constant it is, of course, necessary that both Q2− and Q2+ have
the same sign, and we record these in the table above.

The same process can be applied to Φ1 . For details see Part I of [19]. One result
that is used in our application is that φ1 is AH-concave and HA-convex.
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