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ON THE BANACH–MAZUR DISTANCE BETWEEN

THE CUBE AND THE CROSSPOLYTOPE

FEI XUE

(Communicated by M. A. Hernandez Cifre)

Abstract. In this note we study the Banach-Mazur distance between the n -dimensional cube and
the crosspolytope. Previous work shows that the distance has order

√
n , and here we will prove

some explicit bounds improving on former results. Even in dimension 3 the exact distance is not
known, and based on computational results it is conjectured to be 9

5 . Here we will also present
computer based potentially optimal results in dimension 4 to 8 .

1. Introduction

Let R
n be the n -dimensional Euclidean space, and in this paper an n -dimensional

vector x ∈ R
n is always treated as a column vector. We call K ⊂ R

n an n -dimensional
convex body, if K is compact, and for any x,y ∈ K and λ ∈ [0,1] , it holds λx+(1−
λ )y ∈ K . The set of all n -dimensional convex bodies is denoted by K

n . The set of
n -dimensional 0-symmetric convex bodies is denoted by K

n
o . A convex polytope P is

defined as the convex hull of finitely many points

P = conv{u1, . . . ,uk},

and the set of all n -dimensional convex polytopes is denoted by P
n .

The Hausdorff distance between two convex bodies K and L is defined as:

dH(K,L) = max{sup
x∈K

inf
y∈L

d(x,y),sup
y∈L

inf
x∈K

d(x,y)},

where d(x,y) is the usual Euclidean distance.
For a real number p � 1, the p -norm of x ∈ R

n is defined by

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p .

The maximum norm is the limit of the p -norm for p → ∞ . It is equivalent to

‖x‖∞ = max{|x1|, |x2|, . . . , |xn|}.
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Denote by
Cn = {x ∈ R

n : ‖x‖∞ � 1} = [−1,1]n

the n -dimensional unit cube, and denote the vertices of the n -dimensional unit cube by
{−1,1}n . Denote by

C�
n = {x ∈ R

n : ‖x‖1 � 1}
the n -dimensional unit crosspolytope. Denote by

Bn = {x ∈ R
n : ‖x‖2 � 1}

the n -dimensional unit ball. For example, the Hausdorff distance between Cn and C�
n

is n−1√
n , and the Hausdorff distance between Cn and Bn is

√
n−1.

The Banach-Mazur distance between two 0-symmetric convex bodies K and L is
defined as:

dBM(K,L) = min{r > 0 : K ⊂ gL ⊂ rK,g ∈ GL(n,R)}
where GL(n,R) is the group of invertible linear operators. It can be deduced that

dBM(K1,K3) � dBM(K1,K2)dBM(K2,K3).

There are some results on the Banach-Mazur distance for some special convex
bodies. John’s theorem on the maximal volume ellipsoid contained in a convex body
gives the estimate:

THEOREM 1.1. (John’s theorem [5]) The Banach-Mazur distance between an n-
dimensional 0-symmetric convex body K and the n-dimensional ball is at most

√
n.

As a corollary, for any two 0-symmetric convex bodies K and L ,

dBM(K,L) � dBM(K,Bn)dBM(Bn,L) � n.

As a matter of fact, the diameter of (Kn
o,dBM) is still unknown, but E. Gluskin [3]

proved that the diameter is bounded from below by cn for some universal constant
c > 0.

Exploiting the symmetries of the �p norms, one can easily prove that:

THEOREM 1.2. ([8]) The Banach-Mazur distance between Bn and Cn is
√

n.
The Banach-Mazur distance between Bn and C�

n is
√

n.

There are also some results on the Banach-Mazur distance from any convex body
to the cube [1, 2].

We are interested in the Banach-Mazur distance between Cn and C�
n . There are

results in [7, 8] showing that the distance has order
√

n :

THEOREM 1.3. ([7, 8]) There exist constants c,C > 0 such that

c
√

n � dBM(Cn,C
�
n) � C

√
n.
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To be exact, for the upper bound one can get

C =
1

4
√

2−1
= 5.2852 · · ·

from Proposition 37.6 in [7]. For the lower bound, the constant c is not explicitly stated
in [7].

In this paper we discuss the upper and the lower bounds of this distance. Our main
results are:

THEOREM 1.4. (1) There is a maximum absolute constant α , such that for any
x ∈ R

n ,
1
2n ∑

v∈{−1,1}n

|〈x,v〉| � α‖x‖2.

(2) α > 1
1.71881··· ≈ 0.5818 · · · .

THEOREM 1.5. Let α be as above. Then

α
√

n � dBM(Cn,C
�
n) � (

√
2+1)

√
n.

We observe that α � 1√
2

by evaluating the inequality for x = (1,1,0,0, . . . ,0) , and

we conjecture that α can be at most 1√
2
. Furthermore, we show that if the Hadamard

matrix conjecture holds true, then the upper bound can be reduced to
√

n+3.

2. Some computational results

In order to find the Banach-Mazur distance between the cube and the crosspoly-
tope, one needs to find the minimum r > 0 such that there exists g ∈ GL(n,R) with

1
r
Cn ⊂ gC�

n ⊂Cn.

Assume that g is the linear transformation g = (xi j)n×n , then the crosspolytope

gC�
n = conv{±(xi1, . . . ,xin)T : i = 1, . . . ,n},

and gC�
n ⊂Cn implies that |xi j| � 1 for i, j = 1, . . . ,n . The left part 1

rCn ⊂ gC�
n with

miminum r implies that the vertices of the cube 1
rCn are contained in the crosspolytope

gC�
n , which is

max
v∈{−1,1}n

‖g−1v‖1 = r.

Therefore the Banach-Mazur distance is

dBM(Cn,C
�
n) = min

g=(xi j )n×n∈GL(n,R)
|xi j |�1,i, j=1,...,n

max
v∈{−1,1}n

‖g−1v‖1.

An approximate solution can be obtained via a computer program like Wolfram
Mathematica v.11.2.0. We can use the code here on Mathematica:
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dim = 3 ;
T = Array [ Subscr ip t [TT , ## ] &, {dim , dim } ] ;
B1 = Iden t i t yMat r i x [ dim ] ;
B1 = Join[−B1 , B1 ] ;
Bin f = Tup le s [{ − 1 , 1} , dim ] ;
NMinimize [
Join [{Max[ Table [Norm[ Inver se [T ] . Bin f [ [ j ] ] , 1 ] ,
{ j , Length [ Bin f ] } ] ] , Det [T ] != 0} ,
Table [Norm[T . B1 [ [ i ] ] , I n f i n i t y ] <= 1 , { i , Length [B1 ] } ] ] ,
F l a t t e n [T ] ]

where we can change 3 to any dimension we need. Since the computer only gives the
numerical results, we made some adjustment to make them to be the probably optimal
ones. We also need to point out that, for the same code in the same dimension, the
numerical result might change slightly when we run it again.

In dimension 3 the numerical result shows that the distance is at most 9
5 and the

crosspolytope is determined by:⎛
⎝ 1 1 −1/3
−1/3 1 1

1 −1/3 1

⎞
⎠ .

In dimension 4 the numerical result shows that the distance is at most 2.26515
and the crosspolytope is determined by:⎛

⎜⎜⎝
−0.164392 0.902819 1 −1

−1 −0.0286877 −0.999908 −0.760687
0.192848 −1 0.16027 −1

−1 −0.70927 1 0.518805

⎞
⎟⎟⎠ .

But, we know that the distance is at most 2 if we choose the crosspolytope to be deter-
mined by: ⎛

⎜⎜⎝
1 1 1 −1
−1 1 1 1
1 −1 1 1
1 1 −1 1

⎞
⎟⎟⎠ .

In dimension 5 the numerical result shows that the distance is at most 2.32871
and the crosspolytope is determined by:⎛

⎜⎜⎜⎜⎝
0.792559 1 0.0387439 −1 −0.704555

1 0.792092 0.999411 0.855944 1
−1 −0.0773263 1 −1 0.888962

0.925403 −1 1 −0.115724 −0.822648
1 −0.79255 −0.999989 −0.856439 1

⎞
⎟⎟⎟⎟⎠ .

It seems to be highly irregular.
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In dimension 6 the numerical result shows that the distance is at most 2.45449
and the crosspolytope is determined by:

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0.999902 0.999988 −0.331954 0.436841
0.991908 0.339038 −1 1 −0.454488 1
0.971694 1 −0.319982 0.454287 1 −1

−1 1 −0.999995 −0.998472 0.976994 0.999489
0.998897 1 0.435783 −1 −1 0.266908

−1 0.429375 −0.999995 0.335729 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It is always appropriate to switch some rows or some columns, as well as to change
the sign of some row or some column. Then, we replace the numbers that are close to
±1, ±0.33, and ±0.45, by ±1, ±x , and ±y , respectively. Finally, we calculate the
minimum value with respect to the variables x,y , and get a probably optimal result: the
distance is at most 2.4488 and the crosspolytope is determined by:

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
−1 x 1 y −1 1
−1 1 x 1 y −1
−1 −1 1 x 1 y
−1 y −1 1 x 1
−1 1 y −1 1 x

⎞
⎟⎟⎟⎟⎟⎟⎠

where x = 0.324842, y = −0.434446.
In dimension 7 the numerical result shows that the distance is at most 2.6 and the

crosspolytope is determined by:

⎛
⎜⎜⎜⎝

1 1 0.736632 1 −1 3.22206×10−7 −0.903055
−0.763516 0.763516 −1 0.763516 0.763516 −0.763516 −1

−1 2.60819×10−7 0.736632 −1 −1 −1 −0.903054
1 1 −0.736632 −1 8.08984×10−8 −1 0.903055
1 −1 0.736632 −3.02552×10−7 1 −1 −0.903055

−3.25631×10−7 −1 −0.736632 1 −1 −1 0.903054
0.833018 −0.833018 −1 −0.833019 −0.833019 0.833018 −1

⎞
⎟⎟⎟⎠ .

We replace the numbers that are close to 0, ±0.73, ±0.76, ±0.83, and ±0.90, by 0,
±x , ±y , ±z , and ±w , respectively. Up to a change of rows and columns, we find that
by simply changing these variables to 1 or −1 we can get a beautiful matrix, whereas
the distance does not change. Therefore, we get a probably optimal result: the distance
is at most 2.6 and the crosspolytope is determined by:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
1 0 1 −1 −1 1 −1
1 1 0 1 −1 −1 −1
1 −1 1 0 1 −1 −1
1 −1 −1 1 0 1 −1
1 1 −1 −1 1 0 −1
1 −1 −1 −1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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In dimension 8 we are not sure how long it takes to wait for the numerical result.
However, we find an example with a Hadamard matrix, showing that the distance is at
most 2.5, smaller than in dimension 7, and the crosspolytope is determined by:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
−1 −1 −1 1 −1 1 1 1
−1 1 −1 −1 1 −1 1 1
−1 1 1 −1 −1 1 −1 1
−1 1 1 1 −1 −1 1 −1
−1 −1 1 1 1 −1 −1 1
−1 1 −1 1 1 1 −1 −1
−1 −1 1 −1 1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3. Upper bound

Recall that the Banach-Mazur distance between the cube and the crosspolytope is

dBM(Cn,C
�
n) = min

g
max

v∈{−1,1}n
‖g−1v‖1

where g = (xi j)n×n with |xi j| � 1. By giving a special g one can get an upper bound
of the distance.

3.1. Hadamard matrix

A Hadamard matrix is a square matrix whose entries are either +1 or −1, whose
rows are mutually orthogonal and has maximal determinant among matrices with en-
tries of absolute value less than or equal to 1.

Sylvester [6] provided one way to construct Hadamard matrices. Let

H1 = (1)

H2 =
(

1 1
1 −1

)

and

H2k =
(

H2k−1 H2k−1

H2k−1 −H2k−1

)

for k � 2, then H2k are all Hadamard matrices.
The Hadamard conjecture proposes that a Hadamard matrix of order 4k exists

for every positive integer k . Sylvester’s construction yields Hadamard matrices of or-
der 2k . A generalization of Sylvester’s construction proves that if Hn and Hm are
Hadamard matrices of orders n and m respectively, then there exists a Hadamard ma-
trix of order nm [6]. So far the Hadamard conjecture is still open.
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3.2. Proof of the upper bound in Theorem 1.5

In dimension n = 2k , there exists a Hadamard matrix Hn . Choose the matrix gn =
Hn , then g−1

n = 1
ngT

n where gT
n is still a Hadamard matrix with row vectors r1, . . . ,rn .

So

max
v∈{−1,1}n

‖g−1
n v‖1

=
1
n

max
v∈{−1,1}n

(|〈r1,v〉|+ · · ·+ |〈rn,v〉|)

� 1
n

max
v∈{−1,1}n

√
n(〈r1,v〉2 + · · ·+ 〈rn,v〉2)

= max
v∈{−1,1}n

1
n

√
n ·n · ‖v‖2

2

=
√

n.

By induction, assume that in dimension t � 2k the upper bound is not bigger than
(
√

2+1)
√

t with crosspolytope determined by gt . Then in dimension n = 2k + t where
t � 2k , let

g2k+t =
(

g2k 0
0 gt

)
.

The distance is therefore

max
v∈{−1,1}n

‖g−1
2k+t

v‖1

= max
v∈{−1,1}2k

‖g−1
2k v‖1 + max

v∈{−1,1}t
‖g−1

t v‖1

�
√

2k +(
√

2+1)
√

t

� (
√

2+1)
√

2k + t

= (
√

2+1)
√

n.

The proof for the upper bound is finished.
The Hadamard conjecture predicts the existence of a Hadamard matrix in dimen-

sion n = 4k . When the Hadamard matrix exists in dimension n = 4k , denoted by Hn ,
the distance between Cn and the crosspolytope determined by Hn will be

√
n .

When n = 4k+ j , j < 4, let the crosspolytope be determined by

g4k+ j =
(

I j 0
0 H4k

)
.

Then the distance is

max
v∈{−1,1}n

‖g−1
4k+ jv‖1

= max
v∈{−1,1}4k

‖H−1
4k v‖1 + max

v∈{−1,1} j
‖I−1

j v‖1

�
√

4k+ j <
√

n+3.



938 F. XUE

Therefore the upper bound will be
√

n+3 for all n .

4. The proof of the lower bound in Theorem 1.5

The Banach-Mazur distance of the cube and the crosspolytope is the minimum
value of

max
v∈{−1,1}n

‖g−1v‖1

with respect to g . Without loss of generality, consider only det(g) > 0. Write g−1 =
det(g−1)1/nN , where N ∈ SL(n,R) , the group of special linear operators. Let the row
vectors of N be Nj , i.e. N =

(
Nj

)
n×1 , then we have

‖Nv‖1 = |〈N1,v〉|+ · · ·+ |〈Nn,v〉|.
Also, since det(N) = 1, by the definition of determinant we have:

n

∏
j=1

‖Nj‖2 � 1

and by the arithmetic-geometric mean inequality

n

∑
j=1

‖Nj‖2 � n(
n

∏
j=1

‖Nj‖2)1/n � n.

Based on this result, we can infer that:

max
v∈{−1,1}n

‖g−1v‖1

= det(g−1)1/n max
v∈{−1,1}n

‖Nv‖1

= det(g−1)1/n max
v∈{−1,1}n

n

∑
j=1

|〈Nj,v〉|

� det(g−1)1/n 1
2n ∑

v∈{−1,1}n

n

∑
j=1

|〈Nj,v〉|

= det(g−1)1/n 1
2n

n

∑
j=1

∑
v∈{−1,1}n

|〈Nj,v〉|

� α det(g−1)1/n
n

∑
j=1

‖Nj‖2

� α det(g−1)1/nn(
n

∏
j=1

‖Nj‖2)1/n

� α det(g−1)1/nn

� α
√

n.
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The last inequality comes from
det(g) � nn/2

since |xi j| � 1.

5. The proof of Theorem 1.4

We are looking for the maximal absolute constant α such that

1
2n ∑

v∈{−1,1}n

|〈x,v〉| � α‖x‖2

holds for all x ∈ R
n and all dimension n .

A convex polytope may be defined as a bounded intersection of a finite number
of half-spaces. That is, for any convex polytope P , there exist vectors u j (1 � j � k )
such that

P = {x ∈ R
n : 〈x,u j〉 � 1;1 � j � k}.

For the same reason, for any symmetric convex polytope C , there exist vectors u j

(1 � j � k ) such that

C = {x ∈ R
n : |〈x,u j〉| � 1;1 � j � k}.

Consider the set

K = {x ∈ R
n :

k

∑
j=1

|〈x,u j〉| � 1}

where u j (1 � j � k ) are non-zero vectors such that K is bounded. As the intersection
of 2k halfspaces K is a convex polytope.

For general dimension n , the problem is equivalent to find a point x with the
maximal value of ‖x‖2 in the polytope{

x ∈ R
n : Fn(x) =

1
2n ∑

v∈{−1,1}n

|〈x,v〉| � 1

}
.

The maximal value is attained at a special vertex of this polytope. Moreover, if x is a
vertex of this convex polytope, then it is the intersection of at least n facets.

First we prove that, for any vertex x , there are n−1 linearly independent vectors
v ∈ {−1,1}n such that 〈x,v〉 = 0.

For any x,y ∈ R
n and ε > 0 small enough,

Fn(x+ εy)+Fn(x− εy)−2Fn(x) = 2 ∑
v∈{−1,1}n
〈x,v〉=0

|〈εy,v〉|.

Notice that if 〈y,v〉 = 0 for all v such that 〈x,v〉 = 0, and if Fn(x) = Fn(x+ εy) = 1,
then we have Fn(x− εy) = 1, which means that x is not a vertex of the polytope.



940 F. XUE

If there are at most n−2 linearly independent v ∈ {−1,1}n such that 〈x,v〉 = 0,
then there exists y not linear to x , such that 〈y,v〉 = 0 whenever 〈x,v〉 = 0, meaning
that

Fn(x+ εy)+Fn(x− εy)−2 = 0

for ε > 0 small enough. Now we choose ε to be arbitrarily small, and let y = y′ + y′′ ,
where x+ εy′ lies on some facet of the polytope containing x , whereas y′′ is propor-
tional to x . Since 〈y′′,v〉 = 0 whenever 〈x,v〉 = 0, we also have 〈y′,v〉 = 0 and hence

Fn(x− εy′) = 2−Fn(x+ εy′) = 1.

Thus x− εy′ lies also on some facet of the polytope. Therefore x is not a vertex of the
polytope.

With this observation, we can find out the vertices of the convex polytope with
Fn(x) � 1.

In dimension 2, F2(x) = |x1+x2|+|x1−x2|
2 � 1 is the cube C2 , and the maximal value

of ‖x‖2 is
√

2.
In dimension 3, without loss of generality, we assume that x = (x1,x2,x3) , where

x1 � x2 � x3 � 0. When x2 + x3 � x1 , we have

F3(x) =
1
4
(|x1 + x2 + x3|+ |x1 + x2− x3|+ |x2 + x3− x1|+ |x3 + x1− x2|)

=
x1 + x2 + x3

2
� 1.

When x1 � x2 + x3 , we have

F3(x) =
1
4
(|x1 + x2 + x3|+ |x1 + x2− x3|+ |x2 + x3− x1|+ |x3 + x1− x2|)

= x1 � 1.

So the convex polytope is

conv{(±1,±1,0),(±1,0,±1),(0,±1,±1)}
and the maximum value of ‖x‖2 is

√
2.

In dimension 4, consider the vertex x = (x1,x2,x3,x4) . We know that there are
three linearly independent v ∈ {−1,1}4 such that 〈x,v〉 = 0, denoted by v1,v2,v3 ,
then:

(1) if vi and v j have 1 or 3 coordinate(s) in common, for example v1 = (1,1,1,1)
and v2 = (1,1,1,−1) , then x4 = 0, and (x1,x2,x3) is a vertex of the polytope F3(x) �
1.

(2) if all pairs of vi and v j have 2 coordinates in common, then x has the form
(±t,±t,±t,±t) , with (by calculation) t = 2

3 .
Therefore the convex polytope contains only one more set of vertices:(

±2
3
,±2

3
,±2

3
,±2

3

)
.
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The maximal value of ‖x‖2 is still
√

2.
According to the results in dimension 2, 3, 4, we conjecture that:

CONJECTURE 5.1.

1
2n ∑

v∈{−1,1}n

|〈x,v〉| � 1√
2
‖x‖2,

i.e., α = 1/
√

2 .

Finally we prove Theorem 1.4. Let αn be such that, for any z ∈ R
n ,

‖z‖2

Fn(z)
� αn.

Let x = (x1, . . . ,xn,xn+1) ∈ R
n+1 be such that

‖x‖2

Fn+1(x)
= αn+1.

Without loss of generality, we assume that x1 � x2 � · · · � xn+1 � 0. Let y(1) =
(x1, . . . ,xn + xn+1) , y(2) = (x1, . . . ,xn − xn+1) . By definition we have

Fn+1(x) =
Fn(y(1))+Fn(y(2))

2

and

‖x‖2
2 =

‖y(1)‖2
2 +‖y(2)‖2

2

2
.

Therefore

‖x‖2

Fn+1(x)
=

√
2
√
‖y(1)‖2

2 +‖y(2)‖2
2

Fn(y(1))+Fn(y(2))

� αn

√
2
√
‖y(1)‖2

2 +‖y(2)‖2
2

‖y(1)‖2 +‖y(2)‖2
.

Since x1 � x2 � · · · � xn+1 � 0, we have

‖y(1)‖2
2

‖y(2)‖2
2

= 1+
4xnxn+1

x2
1 + · · ·+ x2

n−1 +(xn− xn+1)2

� 1+
4x2

n

(n−1)x2
n

= 1+
4

n−1
.
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Therefore by monotonicity we have

αn+1 =
‖x‖2

Fn+1(x)
� αn

√
2
√

2+ 4
n−1

1+
√

1+ 4
n−1

� αn

(
1+

1
2(n−1)2

)
.

Since we already know that α4 =
√

2, by recurrence we have:

αn �
√

2
n−1

∏
j=4

(
1+

1
2( j−1)2

)

<
√

2
∞

∏
j=4

(
1+

1
2( j−1)2

)

≈ 1.71881.

This concludes the proof of Theorem 1.4.

REMARK 1. We can also use

αn+1 � αn

√
2
√

2+ 4
n−1

1+
√

1+ 4
n−1

to get a better bound:

αn �
√

2
n−1

∏
j=4

√
2
√

2+ 4
j−1

1+
√

1+ 4
j−1

<
√

2
∞

∏
j=4

√
2
√

2+ 4
j−1

1+
√

1+ 4
j−1

.

From the inequalities above, we already know that this infinite product converges, but
so far we cannot get the exact value of this infinite product. A reference value is:

√
2

10000

∏
j=4

√
2
√

2+ 4
j−1

1+
√

1+ 4
j−1

≈
√

2∗ 1.120166 . . .≈ 1.584154 . . .

REMARK 2. In order to get a better value, if we can prove that αk =
√

2 for some
k > 4, then

αn <
√

2
∞

∏
j=k

√
2
√

2+ 4
j−1

1+
√

1+ 4
j−1

.
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So far we still believe that αn =
√

2 for all n .
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