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ON THE PTOLEMY CONSTANT OF SOME CONCRETE BANACH SPACES

ZHAN-FEI ZUO

(Communicated by S. Varošanec)

Abstract. In this paper, we firstly consider the relations involving the Ptolemy constant of the
norms ‖.‖ψ and ‖.‖φ , where the convex functions and ψ and φ are comparable. Secondly, we
determine this constant when norm is a mean of two norms. Finally, the constant was calculated
for some concrete Banach spaces.

1. Introduction

Let X be a Banach space, and SX = {x ∈ X : ‖x‖ = 1} , BX = {x ∈ X : ‖x‖ �
1} be the unit sphere and unit ball of X , respectively. Many geometric constants for
a Banach space X have been investigated, such as the James constant J(X)[3], von
Neumann-Jordan constants CNJ(X)[9] and Ptolemy constant Cp(X) (cf. [10, 18, 23–
24]). These constants are important due to its strong connection with some useful
geometric properties, such as uniformly nonsquareness and uniform normal structure
(cf. [3, 5, 9–10, 19, 22, 25]). Moreover, the Ptolemy constant Cp(X) turns out to
be useful in the study of the equivalence of Green’s functions of second-order linear
elliptic operators [17]. It is also a useful tool in the study of the existence of positive
solutions of certain nonlinear equations [6]. As mentioned above, it is thus meaningful
to calculate the exact value of some constants in some concrete spaces (cf. [3–5, 7–9,
12–14, 20–21, 23–24]).

So far, the exact value of the von Neumann-Jordan constants CNJ(X) and James
constant J(X) have been calculated for many classical spaces, such as the Lebesgue
space, the Lebesgue-Bochner spaces [7], the Lortenze sequence space [8] and the
Bynum space [5]. Naturally, one hope to know the exact value of the Ptolemy con-
stant Cp(X) for these spaces. E. Llorens-Fuster [10] study the relationships between
the Ptolemy constant Cp(X) and several other geometric properties of normed spaces
X . They also use renorming to calculate the precise values of the Ptolemy constant
Cp(X) for several normed spaces. In [23], we give a simple method to determine the
Ptolemy constant Cp(X) of absolute normalized norms on R

2 , which are complemen-
tary to the Llorens’s results in [10]. Moreover, the exact values of the Ptolemy constant
Cp(X) were calculated in some classical Banach spaces, such as the space �p , Ces à ro

space ces(2)
p , Lorentz sequence spaces d(2)(ω ,2) etc (cf. [23–24]). However, the ex-

actly values for the Ptolemy constant Cp(X) remain undiscovered in some concrete
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Banach spaces. In the present paper, we are interested in determining the Ptolemy
constant Cp(X) for some more concrete Banach spaces.

The remaining part of this paper is organized as follows. In Section 2, we recall
some definitions and well known results, which shall be used in an essential way in the
proofs of the main results. In Section 3, the relations involving the Ptolemy constant
of the norms ‖.‖ψ and ‖.‖φ were considered, where the convex functions and ψ and
φ are comparable. As an application, in Section 4, we can compute the value of the
Ptolemy constant Cp(X) for more concrete Banach spaces. The new results which
not only contain some previous results in [23], but also give the exactly values for the
Ptolemy constant Cp(X) in some more concrete Banach spaces.

2. Preliminaries

Let us first recall some definitions of some canstants:

J(X) = sup{min{‖x+ y‖,‖x− y‖} : x,y ∈ SX}

Cp(X) := sup

{ ‖x− y‖‖z‖
‖x− z‖‖y‖+‖z− y‖‖x‖ : x,y,z ∈ X \ {0}, x �= y �= z �= x

}
It is well known that 1 � Cp(X) � 2 for all normed spaces X . The Ptolemy inequal-
ity shows that Cp(H) = 1, whenever (H,‖.‖) is an inner product space. In fact, the
Ptolemy inequality and the Ptolemy constant Cp(X) are meaningful in metric spaces
too (see [10]). Recall that a norm on R

2 is called absolute if ‖(z,w)‖ = ‖(|z|, |w|)‖ for
all z,w ∈ R and normalized if ‖(1,0)‖ = ‖(0,1)‖ = 1. Let Nα denote the family of
all absolute normalized norms on R

2 , and let Ψ denote the family of all continuous
convex functions on [0,1] such that ψ(1) = ψ(0) = 1 and max{1− t,t} � ψ(t) � 1
(0 � t � 1) . It has been shown that Nα and Ψ are one-to-one correspondence in view
of the following theorem (see [2]).

THEOREM 1. If ‖.‖ ∈ Nα , then ψ(t) = ‖(1− t,t)‖ ∈ Ψ . On the other hand, if
ψ(t) ∈ Ψ , defined a norm ‖.‖ψ as

‖(z,ω)‖ψ :=

⎧⎨
⎩ (|z|+ |ω |)ψ

(
|ω|

|z|+|ω|

)
, (z,ω) �= (0,0);

0, (z,ω) = (0,0).

then the norm ‖.‖ψ ∈ Nα .

A simple example of absolute normalized norm is usual lp (1 � p � ∞) norm.
From Theorem 1, one can easily get the corresponding function of the lp norm:

ψp(t) =
{ {(1− t)p + t p}1/p, 1 � p < ∞,

max{1− t,t}, p = ∞.

Also, the above correspondence enable us to get many non- lp norms on R
2 , such

as the below Examples 1–4. One of the properties of these norms is stated in the fol-
lowing result.
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THEOREM 2. Let ψ ,φ ∈ Ψ and φ � ψ . Put M = max0�t�1
ψ(t)
φ(t) , then

‖.‖φ � ‖.‖ψ � M‖.‖φ .

In the paper [12], Mitani and Saito showed a practical calculation method for
James constant J(X) of an absolute norm on R

2 and gave the following theorem.

THEOREM 3. Let ψ ∈ Ψ , then

J(‖.‖ψ) = max
0�t�1/2

2−2t
ψ(t)

ψ
(

1
2−2t

)
. (1)

Throughout this paper, we will use notation fψ (t) for the function on the right-
hand side of (1) i.e.

fψ (t) =
2−2t
ψ(t)

ψ
(

1
2−2t

)

As a consequence of the above Theorem, they obtained the exact value of J(‖.‖ψ ) for
function ψ which is comparable with ψ2 . In [23], we consider the Ptolemy constant
Cp(X) of absolute normalized norms on R

2 and get the following Lemma.

LEMMA 1. Let ‖.‖ and |.| be two equivalent norms on X , namely for b � a > 0 ,
a|.| � ‖.‖ � b|.| , then

a2Cp(|.|)
b2 � Cp(‖.‖) � b2Cp(|.|)

a2

Moreover, if ‖x‖ = a|x| , then Cp(‖.‖) = Cp(|.|).

3. Main results

In this section, we obtain some Theorems which give the relations involving the
Ptolemy constant in the case when ψ � φ or ψ � φ . Now, let us put

M1 = max
0�t�1

φ(t)
ψ(t)

and M2 = max
0�t�1

ψ(t)
φ(t)

.

For a norm ‖.‖ on R
2 , we write Cp(‖.‖) for Cp(R2,‖.‖) .

THEOREM 4. Let ψ ,φ ∈ Ψ and ψ � φ , if the function φ(t)
ψ(t) attains its maximum

at t = 1
2 and Cp(‖.‖φ ) = 1

2φ2( 1
2 )

, then

Cp(‖.‖ψ) =
1

2ψ2( 1
2 )

.
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Proof. By Theorem 2, we have 1
M1

‖.‖φ � ‖.‖ψ � ‖.‖φ . Using Lemma 1 with

a = 1
M1

and b = 1, we get the following inequality.

Cp(‖.‖ψ) � M2
1Cp(‖.‖φ ).

Note that the function φ(t)
ψ(t) attains its maximumat t = 1

2 , i.e.,M1 = φ( 1
2 )

ψ( 1
2 )

and Cp(‖.‖φ )=
1

2φ2( 1
2 )

, then

Cp(‖.‖ψ) � M2
1Cp(‖.‖φ ) =

1

2ψ2( 1
2 )

. (2)

On the other hand, let us put x = ( 1
2 , 1

2),y = ( 1
2 , −1

2 ),z = (1,0) , then

‖x− y‖ψ‖z‖ψ

‖x− z‖ψ‖y‖ψ +‖z− y‖ψ‖x‖ψ
=

‖(0,1)‖ψ‖(1,0)‖ψ

‖(−1
2 , 1

2)‖ψ‖( 1
2 , −1

2 )‖ψ +‖( 1
2 ,

1
2)‖ψ‖( 1

2 , 1
2 )‖ψ

=
1

2ψ2( 1
2 )

= M2
1Cp(‖.‖φ ).

From (2) and the above equality, we have

Cp(‖.‖ψ) = M2
1Cp(‖.‖φ ) =

1

2ψ2( 1
2 )

. �

REMARK 1. If φ = ψ2 , then we can get the value of Cp(‖.‖ψ) in [23]. In fact,
we can also get the general result in the following.

COROLLARY 1. Let ψ ∈Ψ and ψ � ψp (2� p< ∞) , if the function ψp(t)
ψ(t) attains

its maximum at t = 1
2 , then

Cp(‖.‖ψ) =
1

2ψ2( 1
2 )

.

Proof. In the case of 2 � p < ∞ , it is well known that Cp(‖.‖p) = 2
2
q−1 = 1

2ψ2
p( 1

2 )
,

where p and q are conjugate exponents. Therefore, we have Cp(‖.‖ψ) = 1
2ψ2( 1

2 )
by

Theorem 4. �

THEOREM 5. Let ψ ,φ ∈ Ψ and ψ � φ , if the function ψ(t)
φ(t) attains its maximum

at t = 1
2 and Cp(‖.‖φ ) = 2φ2( 1

2 ) , then

Cp(‖.‖ψ) = 2ψ2
(

1
2

)
.
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Proof. By Theorem 2, we have ‖.‖φ � ‖.‖ψ � M2‖.‖φ . Using Lemma 1 with
a = 1 and b = M2 , we get the following inequality.

Cp(‖.‖ψ) � M2
2Cp(‖.‖φ ).

Note that the function ψ(t)
φ(t) attains its maximumat t = 1

2 , i.e.,M2 = ψ( 1
2 )

φ( 1
2 )

and Cp(‖.‖φ )=

2φ2( 1
2 ) , then

Cp(‖.‖ψ) � M2
2Cp(‖.‖φ ) = 2ψ2(

1
2
). (3)

On the other hand, let us put x = (1,0) , y = (0,1) , z = (1,1) , then

‖x− y‖ψ‖z‖ψ

‖x− z‖ψ‖y‖ψ +‖z− y‖ψ‖x‖ψ
=

‖(1,−1)‖ψ‖(1,1)‖ψ

‖(0,−1)‖ψ‖(0,1)‖ψ +‖(1,0)‖ψ‖(1,0)‖ψ

= 2ψ2(
1
2
) = M2

2Cp(‖.‖φ )

From (3) and the above equality, we have

Cp(‖.‖ψ) = M2
2Cp(‖.‖φ ) = 2ψ2

(
1
2

)
. �

Using the same idea, we obtain the corresponding results, stated in the following
Remark 2 and Corollary 2, we omit the proofs.

REMARK 2. If φ = ψ2 , then we can get the value of Cp(‖.‖ψ) in [23].

COROLLARY 2. Let ψ ∈Ψ and ψ � ψp (1 � p � 2) , if the function ψ(t)
ψp(t)

attains

its maximum at t = 1
2 , then

Cp(‖.‖ψ) = 2ψ2
(

1
2

)
.

In fact, from Theorem 4 and Theorem 5, we can get some results related to the
general mean. Firstly, we give the definition of general mean. If a and b are real
numbers, then any number m(a,b) is called a mean of numbers a and b if it satisfies

a � m(a,b) � b.

One of the most known mean is the weighted mean of order s defined as

M[s](a,b;ω ,1−ω) =

⎧⎪⎪⎨
⎪⎪⎩

(ωas +(1−ω)bs)1/s, s �= 0,+∞,−∞
aωb1−ω , s = 0

max{a,b}, s = ∞
min{a,b}, s = −∞
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where a,b are positive real numbers, ω ∈ (0,1) . Of course, if s is positive, then a,b
can be non-negative numbers.

Now, let us state a Theorem related to the general mean and then applied it to the
weighted mean of order s , see Example 3.

THEOREM 6. Let ψ ,φ ∈ Ψ and ψ � φ , m(ψ ,φ) be a mean of functions ψ ,φ
and function m(.) be a convex function, then

(i) m
ψ attains its maximum at t = 1

2 and Cp(‖.‖ψ) = 2ψ2( 1
2) , then

Cp(‖.‖m) = 2m2
(

1
2

)
.

(ii) φ
m attains its maximum at t = 1

2 and Cp(‖.‖φ ) = 1
2φ2( 1

2 )
, then

Cp(‖.‖m) =
1

2m2( 1
2 )

.

Proof. Any mean m(ψ ,φ) has the property

ψ � m(ψ ,φ) � φ .

Since ψ ,ϕ ∈ Ψ and after the assumption m(.) is convex, it is easy to check that m(.) ∈
Ψ . Now, statements of this Theorem follow by results of Theorems 4 and Theorems
5. �

Moreover, when the function ψ is symmetric with respect to 1
2 , we have the

following general results.

THEOREM 7. Let ψ ,φ ∈ Ψ and ψ � φ , if ψ(t) = ψ(1− t) for all t ∈ [0,1] and√
2M1

√
Cp(‖.‖φ ) ∈ fψ ([0, 1

2 ]) , then Cp(‖.‖ψ) = M2
1Cp(‖.‖φ ) .

Proof. Let t0 ∈ [0, 1
2 ] be a number such that

√
2M1

√
Cp(‖.‖φ ) = fψ (t0) , let us

put x = 1
ψ(t0) (1− t0,t0) , y = 1

ψ(t0) (−t0,1− t0) , z = 1
ψ(t0) (1− 2t0,1) , note that ψ is

symmetric with respect to 1
2 , then

‖x‖ψ =
1

ψ(t0)
ψ

( t0
ψ(t0)

1
ψ(t0)

)
=

1
ψ(t0)

ψ(t0) = 1,

‖y‖ψ =
1

ψ(t0)
ψ

( 1−t0
ψ(t0)

1
ψ(t0)

)
=

1
ψ(t0)

ψ(1− t0) = 1,

‖z‖ψ =
2−2t0
ψ(t0)

ψ
(

1
2−2t0

)
= fψ (t0),
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‖x− y‖ψ =
2−2t0
ψ(t0)

ψ
(

1−2t0
2−2t0

)
=

2−2t0
ψ(t0)

ψ
(

1
2−2t0

)
= fψ (t0).

Consequently, we have

‖x− y‖ψ‖z‖ψ

‖x− z‖ψ‖y‖ψ +‖z− y‖ψ‖x‖ψ
=

f 2
ψ (t0)
2

= M2
1Cp(‖.‖φ ).

From the definition of Cp(X) , implies that

Cp(‖.‖ψ) � M2
1Cp(‖.‖φ ). (4)

Combining this result (4) with the inequality from Theorem 4 that

Cp(‖.‖ψ) � M2
1Cp(‖.‖φ ),

we have the equality
Cp(‖.‖ψ) = M2

1Cp(‖.‖φ ). �

Similar proofs hold for the following Theorem 8, we omit it.

THEOREM 8. Let ψ ,φ ∈ Ψ and ψ � φ , if ψ(t) = ψ(1− t) for all t ∈ [0,1] and√
2M2

√
Cp(‖.‖φ ) ∈ fψ ([0, 1

2 ]) , then Cp(‖.‖ψ) = M2
2Cp(‖.‖φ ) .

4. Some Examples

As the application of the above Theorems, we will calculate the exactly values
of Cp(X) for some concrete Banach space. These results which not only contain the
previous results in [23], but also give some new supplement results.

EXAMPLE 1. Let X = R
2 with the norm ‖.‖p,q,λ = max{‖.‖p,λ‖.‖q} , where

1 � q � p � ∞ and λ ∈ [2
1
p− 1

q ,1] , then

Cp(‖.‖p,q,λ ) =

⎧⎪⎪⎨
⎪⎪⎩

λ 22
2
q−1 if 1 � q < p � 2

λ 22
2
q−1 if 1 � q < 2 < p � ∞ and λ ∈ (2

1
2− 1

q ,1)
21− 2

q

λ 2 if 2 � q < p � ∞

Proof. It is very easy to check that ‖.‖p,q,λ = max{‖.‖p,λ‖.‖q} ∈ Nα and its
corresponding function is

ψ(t) = ‖(1− t,t)‖= max{ψp(t),λ ψq(t)}.
Let t0 ∈ [0, 1

2 ] be a point such that ψp(t0) = λ ψq(t0) , then we have

ψ(t) =
{

ψp(t) t ∈ [0, t0]
λ ψq(t) t ∈ [

t0, 1
2

]
In fact, ψ(t) is symmetric with respect to t = 1

2 , which is expanded to the whole
interval [0,1] .



952 Z.-F. ZUO

(i) Suppose that 1 � q < p � 2, from the definition it is obvious that ψ(t) � ψp(t)
and the function

ψ(t)
ψp(t)

=

{
1 t ∈ [0,t0]∪ [1− t0,1]

λ ψq(t)
ψp(t)

t ∈ [t0,1− t0]

attains its maximum at t = 1
2 . Hence, from Corollary 2, we have

Cp(‖.‖) = λ 22
2
q−1.

(ii) Suppose that 1 � q < 2 < p � ∞ , note that ψ(t) � ψ2(t) if and only if λ ∈
[2

1
2− 1

q ,1) , and it turns out that ψ(t)
ψ2(t)

takes the maximum at t = 1
2 . By Corollary

2, we get that

Cp(‖.‖) = λ 22
2
q−1.

(iii) Suppose that 2 � q < p � ∞ , since ψp(t) � ψq(t) and λ ψq(t) � ψq(t) , then
ψ(t) � ψq(t) , it is easy check that the function

ψq(t)
ψ(t)

=

{
ψq(t)
ψp(t)

t ∈ [0,t0]∪ [1− t0,1]
1
λ t ∈ [t0,1− t0]

attains its maximum at t = 1
2 . By Corollary 1, we get that

Cp(‖.‖) =
21− 2

q

λ 2 . �

REMARK 3. In fact, let us take p = 2, q = 1, we can get the results of Example
2.6 in [23]. Suppose that p = ∞ , q = 2, we obtain the Example 2.7 in [23] by a simple
transform. However, there are some problems which remain unsolved; the exact values

of Cp(‖.‖p,q,λ) for the case 1 � q < 2 < p � ∞ and λ ∈ (2
1
p− 1

q ,2
1
2− 1

q ) .

In [23], the exact values of Cp(d(2)(ω ,2)) were calculated. In the following,
we can compute the Ptolemy constant of two-dimensional Lorentz sequence spaces
d(2)(ω ,q)(2 � q < ∞) by Corollary 1.

EXAMPLE 2. Let 0 < ω < 1 and 2 � q < ∞ . The two-dimensional Lorentz se-
quence space d(2)(ω ,q) is R

2 with the norm

‖(x,y)‖ω,q = ((x∗)q + ω(y∗)q)1/q,

where (x∗,y∗) is the rearrangement of (|x|, |y|) satisfying x∗ � y∗ . Then

Cp(‖.‖) = 2(
1

1+ ω
)2/q.
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Proof. It is well known that ‖(x,y)‖ω,q is a symmetric absolute normalized norm
on R

2 , and the corresponding convex function is

ψω,q(t) =
{

((1− t)q + ωtq)1/q, if 0 � t � 1/2,

(tq + ω(1− t)q)1/q, if 1/2 � t � 1.

It is check that ψω,q(t) � ψq(t) . Repeating the similar arguments in the proof of Ex-

ample 2.8 in [23], we can get that ψq(t)
ψω,q(t)

attains its maximum at t = 1
2 . By Corollary

1, we have

Cp(‖.‖) = 2

(
1

1+ ω

)2/q

. �

REMARK 4. In fact, since ψω,q(t) is symmetric to 1
2 , take φ = ψ2 in Theorem 7,

we can find a number t0 = 1
2 such that

√
2M1

√
Cp(‖.‖φ ) = fψ (t0) , from Theorem 7,

we can also get the above result. Similarly, we can also obtain the results in Example
2.9 in [23] by Theorem 7, and Example 2.6 in [23] by Theorem 8.

EXAMPLE 3. Let 1 � p < q � ∞ , 1 � s < ∞ and λ > 0, the convex function
ψλ ,p,q,s(t) is defined on [0,1] as

ψλ ,p,q,s(t) = (1+ λ )−
1
s (ψs

p(t)+ λ ψs
q(t))

1
s .

i.e. ψλ ,p,q,s(t) is a weighted mean of order s of functions ψp and ψq with weights
1

1+λ and λ
1+λ . The corresponding norm is

‖.‖λ ,p,q,s = (1+ λ )−
1
s (‖.‖s

p + λ‖.‖s
q)

1
s .

Then

(i) If 1 � p < q � 2, then Cp(‖.‖λ ,p,q,s) = 1
2 (1+ λ )

−2
s (2

s
p + λ2

s
q )

2
s .

(ii) If 2 � p < q � ∞ , then Cp(‖.‖λ ,p,q,s) = 2(1+ λ )
2
s (2

s
q + λ2

s
q )

−2
s .

Proof. Since ψλ ,p,q,s(t) is a weighted mean of order s of functions ψp and ψq ,
then

ψq(t) � ψλ ,p,q,s(t) � ψp(t).

(i) Let first 1 � p < q � 2, since ψλ ,p,q,s(t) � ψq(t) and
ψs

λ ,p,q,s(t)
ψs

q(t)
attains its max-

imum at the same point as ψp(t)
ψq(t)

attains its maximum at t = 1
2 from a simple

calculation. Take ψ = ψq and φ = ψp in Theorem 6 (i), we have

Cp(‖.‖λ ,p,q,s) = 2ψ2
λ ,p,q,s

(
1
2

)
= 2(1+ λ )

−2
s (2

s
p + λ2

s
q )

2
s .



954 Z.-F. ZUO

(ii) Suppose that 2 � p < q � ∞ , since ψλ ,p,q,s(t) � ψp(t) and ψp(t)
ψλ ,p,q,s(t)

attains its

maximum at t = 1
2 . Similarly, take ψ = ψq and φ = ψp in Theorem 6 (ii), we

have

Cp(‖.‖λ ,p,q,s) =
1

2ψ2
λ ,p,q,s(

1
2)

= 2(1+ λ )
2
s (2

s
q + λ2

s
q )

−2
s . �

REMARK 5. In particular, take p = 2, q = ∞ , s = 2, we get results of Example
2.8 from [23]. If p,q are numbers from [1,+∞) and s = 2, the Ptolemy constants are
calculated in the paper [24]. However, the exact values of Cp(‖.‖p,q,λ ) for the case
1 � p < 2 < q � ∞ remain undiscovered.

In the following, we will calculate the exact values of Cp(X) for the space X p .
We firstly recall the definition of X p . Let X = R

2 with absolute normalized norm ‖.‖X

and with a function ψX ∈ Ψ , corresponding to this norm. For any p ∈ (1,+∞) , space
X p with the norm

‖x‖ = ‖|x|p‖1/p
X .

COROLLARY 3. Let X p be a two-dimensional Banach spaces with the norm

‖x‖ = ‖|x|p‖1/p
X .

If the corresponding function ψX attains its minimum at the point t = 1
2 . For 2 � p <

∞ , then

Cp(‖.‖) =
1

2ψ2
X p( 1

2 )
.

Proof. From the definition of the norm, it is clear that ‖x‖ = ‖|x|p‖1/p
X ∈ Nα and

its corresponding convex function is

ψX p(t) = ‖(1− t,t)‖X p = [(1− t)p + t p]
1
p ψ

1
p

X

(
t p

(1− t)p + t p

)
.

Since ψX � 1, we firstly have ψX p � ψp , it is evident that

ψp(t)
ψX p(t)

= ψ
−1
p

X

(
t p

(1− t)p + t p

)
.

For arbitrary t ∈ [0,1] , the variable s = t p

(1−t)p+t p also belongs to [0,1] . Since the

function ψX attains its minimum at the point t = 1
2 , then ψX

(
t p

(1−t)p+t p

)
attains its

minimum at t = 1
2 , so the function ψ

−1
p

X

(
t p

(1−t)p+t p

)
attains its maximum at 1

2 . By

Corollary 1, we get that

Cp(‖.‖) =
1

2ψ2
X p( 1

2 )
. �
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REMARK 6. It is proved that if X is a Banach lattice, then X p space is a Banach
lattice for p ∈ (1,+∞) . Some results about X p spaces can be found in [15], [16]. As a
application, we give a concrete Example which satisfy the conditions in Corollary 3.

EXAMPLE 4. Let X = R
2 , the convex function ψ(t) is defined on [0,1] as

ψX(t) = (1− t + t2)
1
2 .

The corresponding norm is

‖(x,y)‖ = ((|x|2 + |x||y|)+ |y|2) 1
2 ,

It is obvious that ‖(x,y)‖ is a absolute normalized norm on R
2 . By a standard

discussion, it is easy to check that the corresponding function ψX (t) =
√

1− t + t2

attains its minimum at the point 1
2 . For p � 2, then the corresponding space X p has

the norm
‖(x,y)‖ = ((|x|2p + |x|p|y|p + |y|2p)

1
2p .

And the corresponding convex function is

ψX p(t) = ‖(1− t,t)‖X p = [(1− t)p + t p]
1
p ψ

1
p

X

(
t p

(1− t)p + t p

)
.

By Corollary 3, we have that

Cp(X p) =
1

2ψ2
X p(1/2)

=
2

3
1
p

.
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