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Abstract. Studying the problem about if certain probability measures are determinate by its mo-
ments [4, 8, 10] is useful to know the asymptotic behavior of the probability densities for large
values of argument. This requires, previously, the knowledge of the asymptotic expansion of
reciprocal Gamma function 1/Γ(z) when ℜz is large and ℑz is fixed [8]. Then, the well known
Stirling formula for large |z| of the Gamma function Γ(z) or its reciprocal 1/Γ(z) is not appro-
priate for this problem. So, the main aim of this paper is to obtain a new asymptotic expansion
for reciprocal Gamma function valid for large ℜz and establish a new explicit error bound for
the first term of this expansion, that is, the Stirling formula.

1. Introduction

It’s well known that, when z → ∞ in the sector |argz|< π , the reciprocal Gamma
function has the following asymptotic expansion

1
Γ(z)

∼ 1√
2π

z−z+ 1
2 ez

∞

∑
n=0

γn

zn , (1)

where γ ’s are the Stirling coefficients. This expansion is frequently used in standard
textbooks to illustrate the Saddle Point method (see for example [9, p. 69]). The first
term of this expansion is the well known Stirling formula for reciprocal Gamma func-
tion:

1
Γ(z)

∼ 1√
2π

z−z+ 1
2 ez.

In [3], Boyd derived error bounds for the remainder of expansion (1) by using
a resurgence formula for the Gamma function arising in a general theory for com-
plex Laplace-type integrals developed by Berry and Howls [2]. More recently in [7],
G.Nemes has derived a better error bound for the remainder in (1) when ℜz > 0 that
modifies and improves Boyd’s formula:

1
Γ(z)

=
ezz−z+1/2
√

2π

(
N−1

∑
n=0

γn

zn + R̃N(z)

)
, (2)
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with

|R̃N(z)| �
( |γN |
|z|N +

|γN+1|
|z|N+1

){ csc(2θ ) if π
4 < |θ | < π

2 ,

1 if |θ | � π
4 .

On the other hand, in the study of the problem of whether the random variable

At :=
∫ t

0
e2Bs ds

is determinate by its moments [8, 10] ((Bs , 0 � s) denotes a real valued Brownian mo-
tion starting from 0) is convenient to know the asymptotic behavior of the probability
densities ft (x) of At

ft (x) = P(At ∈ dx) =
e

π2
8t

2π
√

t x3

∫ ∞

−∞
e−

cosh2(u)
2x e−

u2
2t cos

(π u
2t

)
cosh(u)du, x, t > 0,

(3)
for large positive x . The knowledge of the exact behavior of these densities when x→∞
is essential to decide if the measures dτt = ft (x)dx are determinate by its moments. It
is shown in [8] that ft(x) may be written in terms of

Φn(x) :=
∫ ∞

−∞

g(y)
Γ
(
n+ 1

2 + x+ iy
) dy (4)

where n∈N and g(y) verifies certain conditions to allow the integral converges. There-
fore, we need to analyze the asymptotic behavior of Φn(x) when x → ∞ . To this end
we can replace, in the right side of (4), the reciprocal Gamma function by it asymptotic
expansion (or at least the first term) and interchange sum and integral. In order to make
the calculations as simple as possible, we need an asymptotic expansion of reciprocal
Gamma function when real part of argument x → ∞ in inverse powers of x (here, for-
mula (2) does not work). In order to be controlled the error, we also need to know an
explicit expression for the remainder of this asymptotic expansion.

So, this work has two main purposes: on the one hand, in section 2, by using a
modified Saddle Point method [6], we derive a new asymptotic expansion of 1/Γ(z) for
large positive ℜz > 0 with an extra property: the explicit formula for its coefficients.
Although for our purpose (to know the behavior of Φn ) is enough with the first term,
we calculate the complete expansion because is new in the literature. On the other hand,
in section 3, we establish a new error estimate for the first term of this expansion, that
is, the Stirling formula for large positive ℜz > 0

2. An asymptotic expansion of 1/Γ(z) for large ℜz

We start considering the contour integral representation of reciprocal Gamma func-
tion [1, eq. 5.9.2]:

1
Γ(z)

=
1

2π i

∫ (0+)

−∞
ess−zds, (5)
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where the integration contour C begins at −∞ , circles the origin once in the positive
direction, and returns to −∞ as is shown in [1, fig. 5.9.2]. We write z = x+α + iy and
change the integration variable s = xt ; we obtain:

1
Γ(α + x+ iy)

=
ex x1−α−x−i y

2π i

∫ (0+)

−∞
ex f (t) g(t)dt, (6)

with f (t) = t− log(t)−1 and g(t)= t−α−i y . In order to derive an asymptotic expansion
of (6) for large positive x we apply the modified Saddle Point method (see [6, Theorem
1] for more details) instead the standard Saddle Point: unlike the standard method, the
modified provides explicit formulas for the coefficients.

We have that the unique saddle point of the phase function f (t) is t0 = 1 and
f (1) = 0, f ′(1) = 0, f ′′(1) = 1 and f ′′′(1) �= 0; also g(1) = 1. Then, following
the idea introduced in [6], we rewrite the phase function f (t) in the form of a Taylor
polynomial at the saddle point t0 = 1

f (t) =
(t −1)2

2
+ f1(t).

From [6], we know that it is not necessary to compute the steepest descent paths
of f (t) at t0 , but only the steepest descent paths of the quadratic part of f (t) at those
points, that are simpler: they are nothing but straight lines. In this case, the steepest
descent path of the quadratic part of f (t) at t0 is the straight line Γ̃ = {1 + i z |z ∈
(−∞,∞)} .

From [6] we also know that it is not necessary to deform the path C into Γ̃ . It
is enough to deform C into a new integration Γ path that contains a portion of Γ̃ that
includes t0 . In this case we define Γ = Γε ∪Γt0 with

Γε = {z± iπ |z ∈ (−∞,1]} and Γt0 = {1+ i z |z ∈ [−π ,π ]}
In order to apply the method introduced in [6], we need to show that the contribu-

tion of the integral on the paths Γε is negligible compared with the contribution of Γt0 .
We have that R( f (t)) = t− 1

2 ln(t2 +π2)−1 is increasing on (−∞,1] and then attains
its maximum at t = 1, that is, R( f (t)) � −M0 with M0 = 1

2 ln(1+π2) > 0. Therefore∫
Γε

ex f (t) g(t)dt = O(e−xM0). (7)

On the other hand, and using the standar Saddle Point method, it’s also easy to
prove that ∫

Γt0

ex f (t) g(t)dt ∼ g(t0)

√
2π

− f ′′(t0)x
ex f (t0) = O

(
1√
x

)
. (8)

Therefore, apart from the exponentially negligible term (7), the integral (6) over
the path C equals the integral over the path Γt0 :∫ (0+)

−∞
ex f (t) g(t)dt ∼

∫
Γt0

ex f (t) g(t)dt =
∫ π

−π
ex f (1+it) g(1+ i t)dt
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Now, we can split the integrand

ex f (t) g(t) = e
x
2 (t−1)2 ex f1(t)g(t)

with f1(t) = f (t)− (t−1)2x
2 . Putting the Taylor expansion of ex f1(t)g(t) at t0 into above

integral and interchanging sum by integral we can obtain the desired asymptotic expan-
sion (see [6] for more details):

1
Γ(α + x+ iy)

∼ ex x1/2−α−x−i y
√

2π

∞

∑
n=0

2n

∑
k=2n−2

(−1)k+n a2(n+k)(x)
Γ(k+n+1/2)

Γ(1/2)

(
2
x

)k+n

(9)
with

a2n(x) :=
n

∑
k=0

(−1)kxk

k!2k

2n−2k

∑
j=0

(−x−α − iy
2n−2k− j

)
x j

j!
.

Remark that, in the second sumatory of (9), when k takes the value of −n with n
natural must be understood as zero (k = 0).

The following tables illustrate the approximation of 1/Γ(α + x+ iy) supplied by
the expansions given by formula (9) for diferents values of α ,x and y

x n
0 2 4 6

125 0.0162002 0.0002263 0.0000377 0.0000304
250 0.008133 0.0000284 8.495 ·10−7 9.344 ·10−8

500 0.004074 3.567 ·10−6 2.236 ·10−8 3.935 ·10−10

1000 0.002039 4.468 ·10−7 6.414 ·10−10 2.417 ·10−12

2000 0.001021 5.591 ·10−8 2.136 ·10−11 2.690 ·10−13

Table 1: Relative error for y = 2 , α = 1/2 and several values of x and the number of terms n
of the approximation given by (9).

x n
0 2 4 6

125 0.020026 0.000377 0.0000715 0.0000639
250 0.010056 0.0000454 1.396 ·10−6 1.667 ·10−7

500 0.005039 5.591 ·10−6 3.337 ·10−8 6.177 ·10−10

1000 0.002522 6.936 ·10−7 9.053 ·10−10 3.517 ·10−12

2000 0.001261 8.639 ·10−8 2.728 ·10−11 1.152 ·10−12

Table 2: Relative error for y = −2 , α = 3/2 and several values of x and the number of terms
n of the approximation given by (9).
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3. Error bound for Stirling formula

We start with the following lemma such will be usefull later.

LEMMA 1. Let f : R −→ C be a twice diferentiable function in (a,b)⊆ R . Then
there exist c1,c2 ∈ (a,b) such that

| f (b)− f (a)| � (b−a)| f ′(c1)| (10)

| f (b)− f (a)| � (b−a)| f ′(a)|+ (b−a)2

2
| f ′′(c2)| (11)

Proof. Put z := f (b)− f (a) and define

ϕ(t) = z• f (t) (a � t � b)

where • denotes the scalar product in the Hilbert space structure of C . Clearly ϕ(t) is
a real-valued function on [a,b] which is two times differentiable in (a,b) . Using the
Taylor’s theorem with Lagrangian remainder

(a) 1 degree Taylor polynomial

ϕ(b) = ϕ(a)+ (b−a)ϕ ′(c) −→ ϕ(b)−ϕ(a) = (b−a)z• f ′(c)

for some c ∈ (a,b) . On the other hand

ϕ(b)−ϕ(a) = z• f (b)− z• f (a) = z• z = |z|2

The Cauchy Schwarz inequality gives

|z|2 = (b−a)|z• f ′(c)| � (b−a)|z|| f ′(c)|

Henze |z| � (b−a)| f ′(c)| , the (10) inequality desired.

(b) 2 degree Taylor polynomial

ϕ(b) = ϕ(a)+ (b−a)ϕ ′(a)+
(b−a)2

2
ϕ ′′(c) −→

ϕ(b)−ϕ(a) = (b−a)z• f ′(a)+
(b−a)2

2
z• f ′′(c)

for some c ∈ (a,b) . The Cauchy Schwarz inequality now gives

|z|2 � (b−a)|z• f ′(a)|+ (b−a)2

2
|z• f ′′(c)|

� (b−a)|z|| f ′(a)|+ (b−a)2

2
|z|| f ′′(c)|

Henze |z| � (b−a)| f ′(a)|+ (b−a)2

2
| f ′′(c)| , the (11) inequality desired. �
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We are now ready to state the main result of this section

THEOREM 1. (Main) Let x > 0 , α � 0 , y ∈ R . Then:

1
Γ(x+ α + iy)

=
ex x−α−x−i y+1/2

√
2π

(
1+ R̃(α,x,y)

)
(12)

where the remainder R̃(α,x,y) verifies:

| R̃(α,x,y) | � H(α,y)
x

with H(α,y) := e
|y|π
2 +α

( |α + iy|
2

+ |α + iy|2 +
1
12

)
. (13)

Proof. Our starting point is the Binet representation [9, eq. 3.22] of the reciprocal
Gamma function:

1
Γ(z)

=
z−z+1/2 ez
√

2π
e−μ(z),

where μ(z) can be expressed:

μ(z) :=
∫ ∞

0

1
t2

(
t

et −1
−1+

t
2

)
e−ztdt. (14)

A first substitution z = α + x+ iy gives (12):

1
Γ(α + x+ iy)

=
ex x−α−x−i y+1/2

√
2π

[
1+ R̃(α,x,y)

]
, (15)

with

R̃(α,x,y) =
(

1+
α + iy

x

)−α−x−i y+1/2

eα+i ye−μ(α+x+i y) −1.

Defining X := 1/x we have

R(α,X ,y) ≡ R̃(α,1/X ,y)

= (1+X(α + iy))−α− 1
X −i y+1/2 eα+i ye−μ( 1

X +α+i y) −1.
(16)

In order to derive (13) we apply the property (10) to the function R(α,X ,y)
in the range [0,X ] , considering α and y fixed and R(α,0,y) = lim

X→0+
R(α,X ,y) =

e−α−i yeα+i ye0−1 = 0, to find:

|R(α,X ,y) | � X ·
∣∣∣∣ ∂ R
∂ X

(α,X ,y)
∣∣∣∣
X=C

with C ∈ (0,X) (17)

Now, we write
∂ R
∂ X

(α,X ,y) in the form

∂ R
∂ X

(α,X ,y) = (1+X(α + iy))−α− 1
X −i y−1/2 eα+i ye−μ( 1

X +α+i y)

×
[

α + iy
2

+(1+X(α + iy))
log(1+X(α + iy))−X(α + iy)

X2

+(1+X(α + iy))μ ′
(

α +
1
X

+ iy

)]
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and finally, we are going to find a bound for the modulus of each factor in the above
expression for X > 0:

(a)
∣∣∣(1+X(α + iy))−α− 1

X −i y−1/2
∣∣∣= ((1+Xα)2 +(Xy)2 )− 1

2X − 2α+1
4 e−yθ with θ =

Arg(1+X(α + iy)) ∈ (− π
2 , π

2

)
.

We have (1+Xα)2 +(Xy)2 � 1 and − 1
2X

− 2α +1
4

� 0 (α � 0). Then∣∣∣(1+X(α + iy))−α− 1
X −i y−1/2

∣∣∣� eπ |y|/2.

(b)
∣∣eα+i y

∣∣= eα .

(c) We have the inequality
∣∣∣e−μ(α+ 1

X +i y)
∣∣∣� 1 from [7, pp. 8].

(d) We denote G(X) = (1+X(α + iy))(log(1+X(α + iy))−X(α + iy)) and apply-
ing (11) in the range [0,X ]

|G(X)| = |G(X)−G(0)|� X2

2
· |G′′(C)|

=
X2

2
|α + iy|2

∣∣∣∣1+
(α + iy)C

1+(α + iy)C

∣∣∣∣ with C ∈ (0,X)

we obtain∣∣∣∣(1+X(α + iy))
log(1+X(α + iy))−X(α + iy)

X2

∣∣∣∣� |α + iy|2.

(e) Finally ∣∣∣∣(1+X(α + iy))μ ′
(

1
X

+ α + iy

)∣∣∣∣
=

1
X

∣∣∣∣∫ ∞

0

1
t

(
t

et −1
−1+

t
2

) (
1
X

+ α + iy

)
e−(α+ 1

X +i y)t dt

∣∣∣∣
Integrating by parts we find that the above integral reads

1
X

∣∣∣∣∫ ∞

0

(
1
t2

− et

(et −1)2

)
e−(α+ 1

X +i y)t dt

∣∣∣∣� 1
X

∫ ∞

0

∣∣∣∣ 1t2 − et

(et −1)2

∣∣∣∣ e−(α+ 1
X )t dt.

Using the inequality [5, eq. (8)]:

0 � 1
t2

− et

(et −1)2 � 1
12

, ∀t ∈ (0,∞),
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we find

1
X

∫ ∞

0

∣∣∣∣ 1t2 − et

(et −1)2

∣∣∣∣ e−(α+ 1
X )t dt � 1

12X

∫ ∞

0
e−(α+ 1

X )t dt

=
1

12(1+Xα)

(
−e−(α+ 1

X )t
)∣∣∣∣∞

0

=
1

12(1+Xα)
� 1

12
.

Using the bounds (a)–(e) and replacing X by x−1 in (17) we obtain the desired
result (13). �

As a direct consequence of Theorem 1, taking the particular case α = 0, we can
obtain the Stirling formula for reciprocal Gamma function 1/Γ(z) when real part of
z = x+ iy is large and establish a new explicit error bound

COROLLARY 1. For x > 0 ,

1
Γ(x+ iy)

=
ex x−x−i y+1/2

√
2π

(
1+ R̃(x,y)

)
, ∀y ∈ R, (18)

with

| R̃(x,y) | �
e
|y|π
2

( |y|
2 + y2 + 1

12

)
x

. (19)

If we set y = 0 in Corollary 1, that is, the argument of reciprocal Gamma function
is real and positive, we obtain the well known formula

1
Γ(x)

=
ex x−x+1/2

√
2π

(
1+ R̃(x,0)

)
with |R̃(x,0) | � 1

12x
.
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[6] J. L. LÓPEZ, P. J. PAGOLA AND E. PÉREZ SINUSÍA, A systematization of the saddle point method.
Application to the Airy and Hankel functions, J. Math. Anal. Appl. 354, 1 (2009), 347–359.

[7] G. NEMES, Error bounds and exponential improvements for the asymptotic expansions of the Gamma
function and its reciprocal, Proc. Roy. Soc. Edinburgh 145, 3 (2015), 571–596.

[8] P. J. PAGOLA, Asymptotic behaviour of the density function of the integral of a geometric Brownian
motion, Submitted.

[9] N. M. TEMME, Special Functions: an Introduction to the Classical Functions of Mathematical
Physics, John Wiley and Sons, New York, 1996.

[10] M. YOR, On some exponential functionals of Brownian motion, Adv. Appl. Prob. 24, (1992), 509–531.

(Received August 3, 2016) Pedro J. Pagola
Dpto. de Estad´ istica, Informática y Matemáticas
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