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BASIS PROPERTIES OF p–EXPONENTIAL

FUNCTION OF LINDQVIST AND PEETRE TYPE

ÖZLEM BAKŞI, PETR GURKA, JAN LANG AND OSVALDO MÉNDEZ

(Communicated by I. Perić)

Abstract. We show that a p -exponential function defined by the p -trigonometric functions of
Lindqvist and Peetre form a basis in the Lebesgue space Lr

(
(−1,1)n

)
for any r ∈ (1,∞) , pro-

vided n � 3 and p > pn � 1 .

1. History, introduction and preliminaries

A history of generalized trigonometric functions, which is now quite long, goes
back at least to the year 1879. In that year E. Lundberg in his thesis studied functions
which are related to today’s generalized trigonometric functions sinp,q (see [17], where
a nice historic review can be found). His work was then forgotten and rediscovered
much later by J. Peetre. In 1938 V. I. Levin (see [13]) found the exact value of the norm
of the Hardy operator (H f )(x) =

∫ x
0 f (t) dt on Lp

(
(0,1)

)
and described the extremal

functions explicitly. Notice that his extremal functions correspond to sinp -functions in
the first quadrant. In 1940 E. Schmidt obtained independently (see [21]) the exact value
for norm of the Hardy operator H from Lp

(
(0,1)

)
into Lq

(
(0,1)

)
and described the

extremal functions which, in the first quadrant, correspond to sinp,q -functions.
Then, in 1979, Á. Elbert in [11] began to study properties of non-linear equations

which might be rewritten to the form

(y′)p + yp = 1 on (0,∞) .

(Let us note that the solutions of these equations on (0,∞) are just the generalized
trigonometric functions sinp and cosp .) He fully described solutions of the above
equation and studied their properties in detail. This paper, which was the first mathe-
matical work devoted to such a detailed study of generalized trigonometric functions,
can thus be considered as a gateway to the topic.
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Just a few years after Elbert’s paper the generalized trigonometric functions were
studied independently in the same context by J. Peetre ([19]). In the context of eigen-
functions of the p -Laplacian these functions were later studied and independently in-
troduced by M. Ôtani ([18]) and P. Lindqvist ([15]). Let us mention that these func-
tions appeared also in connection with the approximation theory (see [6], [7] and [20]),
the theory of nonlinear operators ([8], [14]), later they were intensively studied by
P. Lindqvist and J. Peetre ([16]) and others (see e.g. [5] and [12] for more informa-
tion).

The main purpose of this paper is to continue the study of generalized trigonomet-
ric functions, related to a differential equation

(y′)p′ + yp = 1 on (0,∞) ,

and show that they can be used to introduce Fourier type analysis by observing that
a suitable p -exponential function can be defined as a generalization of the standard
exponential function via use of generalized trigonometric functions. This note is a
continuation of [1], where similar questions were studied in the context of generalized
p -exponential functions of Lindqvist and Peetre.

We open the discussion by recalling some well-known facts. For a complex func-
tion f ∈ L1

(
(−1,1)

)
its k -th Fourier coefficient, k ∈ Z , is defined by

f̂ (k) =
1
2

∫ 1

−1
f (t)e−ikπt dt

( i denotes the imaginary unit). The formal trigonometric series

∞

∑
k=−∞

f̂ (k)eikπt (1)

is called the Fourier series of the function f . By a result of M. Riesz (see e.g. [10,
Section 10 of Chapter 12]), the sequence {eikπx}k∈Z is a basis of any Lr

(
(−1,1)

)
,

r ∈ (1,∞) , that is, for all f ∈ Lr
(
(−1,1)

)
, one has

lim
N→∞

∥∥∥ f − ∑
|k|�N

f̂ (k)eikπx
∥∥∥

r
= 0,

which means that the series (1) converges to the function f in the Lebesgue space
Lr

(
(−1,1)

)
for any r ∈ (1,∞) .

In a recent paper by Boulton and Melkonian [4] it was shown that a similar result
holds when we consider the p -exponential function (with p > p0 for some p0 > 1)

expp(iy) = cosp(y)+ isinp(y), y ∈ R,

instead of exp(iy) = eiy , y ∈ R . Here cosp = cosp,p , sinp = sinp,p are the p -trigono-
metric functions (see Subsection 1.1 below). The aim of this note is to derive a mul-
tidimensional analogue of this result with a p -exponential function made from the p -
trigonometric functions of Lindqvist and Peetre C1/p = (cosp,p′ )p−1 and S1/p = sinp,p′
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(where p′ = p/(p−1)). It will be seen that these functions are more suitable than the
functions cosp , sinp , considered by Boulton and Melkonian, for obtaining such a re-
sult.

We underline the fact that Boulton and Lord [3], after making certain numerical
computations, observed that the numerical solutions for some non-linear problems (like
p -Poisson boundary value problem with non-smooth right hand side) are sometimes
obtained faster by using bases created from generalized trigonometric functions than
by bases generated by classical trigonometric functions. This, perhaps, suggests that
the Gibbs phenomenon for Fourier type series based on the generalized trigonometric
functions could be mitigated, and so, to investigate these types of Fourier series in
dimension 2 might be of some interest for the image processing.

In what follows we recall basic definitions and introduce notation and properties
of generalized trigonometric functions. Since the approach is an analogue of that used
in [1] we do not repeat all the proofs here.

1.1. Generalized sine and cosine functions

Let 1 < p,q < ∞ . Define the function

Fp,q(x) =
∫ x

0
(1− tq)−1/p dt, x ∈ [0,1].

Since this is strictly increasing it has an inverse, which we denote by sinp,q ,

sinp,q = (Fp,q)−1,

to emphasize the connection with the usual sine function (note that F2,2 = sin−1 ). The
function sinp,q is defined on the interval [0,π p,q/2] , where

π p,q = 2
∫ 1

0
(1− tq)−1/p dt.

The constants π p,q can be evaluated by means of the Beta or Gamma functions

π p,q =
2B(1/p′,1/q)

q
=

2Γ(1/p′)Γ(1/q)
qΓ(1/p′ +1/q)

. (2)

Observing that sinp,q0 = 0 and sinp,q (π p,q/2) = 1, we can extend sinp,q to [0,π p,q]
by defining

sinp,q x = sinp,q (π p,q− x) for x ∈ [π p,q/2,π p,q] ; (3)

a further extension to [−π p,q,π p,q] is made by oddness and finally sinp,q is extended
to the whole real line by 2π p,q -periodicity. It is easy to see that this extension is con-
tinuously differentiable on R and infinitely differentiable everywhere except possibly
at the points {kπ p,q/2;k ∈ Z} .

Define cosp,q : R → R by

cosp,q x =
d
dx

sinp,q x, x ∈ R.
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Clearly, cosp,q is even, 2π p,q -periodic and odd about π p,q/2. If x ∈ [0,π p,q/2] and
we put y = sinp,q x , then

cosp,q x = (1− yq)1/p = (1− (sinp,q x)q)1/p.

Hence, cosp,q is strictly decreasing on [0,π p,q/2] , cosp,q0 = 1, cosp,q (π p,q/2) = 0
and

|sinp,q x|q + |cosp,q x|p = 1, x ∈ R. (4)

For the first derivative of the cosine function we have the following formula (see [9,
Proposition 3.1])

d
dx

(cosp,q x)p−1 = −q(p−1)
p

(sinp,q x)q−1, x ∈ [
0, 1

2 π p,q
)
. (5)

1.2. Trigonometric p -functions of Lindqvist and Peetre and their properties

Lindqvist and Peetre introduced in [16] and [15] a generalized sine S1/p and gen-
eralized cosine C1/p functions which are related to the above functions as shown be-
low:

S1/p (x) = sinp,p′ (x), C1/p (x) =
(
cosp,p′ (x)

)p−1
, x ∈ R,

where, for the sake of simplicity, we use the notation(
cosp,p′ (x)

)p−1 =
∣∣cosp,p′ (x)

∣∣p−2
cosp,p′ (x).

Next we present some basic properties of these functions (cf. (5) and (4)). For all x∈R :

d
dx

C1/p′ (x) = −(
S1/p′ (x)

)p−1
,

d
dx

S1/p′ (x) =
(
C1/p′ (x)

)p−1
,(

S1/p′ (x)
)p +

(
C1/p′ (x)

)p = 1.

Another useful relation between S1/p and C1/p is given by

C1/p

(
π p,p′ t

)
= S1/p

(
π p,p′( 1

2 − t)
)
, t ∈ [0, 1

2 ]. (6)

Observing that π p,p′ , 1 < p < ∞ , is equal to the area of the set Sp′ enclosed by the
p′ -circle, that is,

Sp′ = {(x,y) ∈ R
2; |x|p′ + |y|p′ � 1},

we obtain the estimate
2 � π p,p′ � 4 (7)

(cf. [9, Lemma 2.4]), moreover, the function

p �→ π p,p′ is decreasing on (1,∞) . (8)

We finally present another essential property to be referred to in the sequel:

2
π p,p′

�
S1/p (x)

x
� 1, x ∈ (0, 1

2 π p,p′), (9)

(see e.g. [9, Proposition 3.3]).
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1.3. Generalized p -exponential function of Lindqvist and Peetre type

We introduce the p -exponential function E1/p as

E1/p(iy) = C1/p(y)+ iS1/p(y), y ∈ R.

As is customary, for any complex number in binomial form z = a+ bi , we denote its
conjugate by z = a−bi .

1.4. Basis in Lr
(
(a,b)n

)
generated by a function ϕ

We introduce the following notation. Let n ∈ N , a,b ∈ R , a < b and 1 < r < ∞ .
By Lr

(
(a,b)n

)
we denote the Banach space of all complex Lebesgue measurable func-

tions f on the rectangle (a,b)n with the finite norm ‖ f‖r =
(∫

(a,b)n | f (x)|r dx
)1/r

.
Let a∈R , m = (m1, . . . ,mn)∈Zn , k = (k1 . . . ,kn) ∈ Zn and x = (x1, . . . ,xn) ∈ Rn ,

we write

am = (am1, . . . ,amn), mx = (m1x1, . . . ,mnxn), mk = (m1k1, . . . ,mnkn)

and
|k| � m if |ki| � mi for each i ∈ {1, . . . ,n} .

We also use the notation
1 = (1, . . . ,1).

For a given function ϕ : (a,b) → C , k ∈ Zn , and x ∈ Rn , we write

ϕk(x) = ϕ(k1x1) · · ·ϕ(knxn). (10)

DEFINITION 1.1. We say that the system {ϕk}k∈Zn is a basis in Lr
(
(a,b)n

)
, r ∈

(1,∞) , a,b ∈ R , a < b , if, given any f ∈ Lr
(
(a,b)n

)
, there is a unique sequence

{ak}k∈Zn of scalars such that

f = ∑
k∈Zn

ak ϕk in Lr(a,b)n . (11)

The above convergence is considered in the Pringsheim sense, that is,

lim
min{m1,...,mn}→∞

∥∥∥ f − ∑
|k|�m

akϕk

∥∥∥
Lr(a,b)n

= 0.

2. Basis generated by E1/p

NOTATION 2.1. Let e(t) = 1√
2
exp(iπt) , t ∈ R . We denote by

ek(t) = e(kt) =
1√
2

exp(iπkt), t ∈ R, k ∈ Z,
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the family of complex functions which form an orthonormal basis in the complex
Lebesgue space L2

(
(−1,1)

)
. Analogously, an orthonormal basis in the complex Lebes-

gue space L2
(
(−1,1)n

)
consists of the functions

em(x) = em1(x1) · · ·emn(xn) = 2−n/2 exp(iπm1x1) · · ·exp(iπmnxn), x ∈ R
n, m ∈ Z

n.

REMARK 2.2. The fact that the sequence {em}m∈Zn is orthonormal in L2
(
(−1,1)n

)
is easy to verify, that is,

∫
(−1,1)n

em(x)em(x) dx = 1 and
∫

(−1,1)n
em(x)ek(x) dx = 0 if m �= k .

PROPOSITION 2.3. Let f ∈ Lr
(
(−1,1)n

)
, where r ∈ (1,∞) . Denote

f̂ (k) =
∫

(−1,1)n
f (x)ek(x) dx, k = (k1, . . . ,kn) ∈ Z

n. (12)

Then
f = ∑

k∈Zn

f̂ (k)ek (13)

in the sense of (11).

Proof. See Weisz [22]. �

Throughout this section assume that 1 < p < ∞ and put

ϕ(x) = E1/p (iπ p,p′ x), x ∈ R. (14)

Since each ϕn , n ∈ Zn , is continuous, it has a Fourier expansion (13) with coeffi-
cients (12), that is,

ϕn(x) = ∑
k∈Zn

ϕ̂n(k)ek(x), where ϕ̂n(k) =
∫

(−1,1)n
ϕn(x)ek(x) dx.

Due to the symmetry (3) of ϕ = S1/p (π p,p′ ·) = sinp,p′ (π p,p′ ·) about t = 1/2, for
every k = (k1, . . . ,kn) with some even ki , i ∈ {1, . . . ,n} , we have ϕ̂1(k) = 0, and (see
also Remark 2.2)

ϕ̂n(k) =
∫

(−1,1)n
ϕn(x)ek(x) dx

= ∑
m∈Zn

ϕ̂1(m)
∫

(−1,1)n
emn(x)ek(x) dx

=
{ ϕ̂1(m) if ki = mini and mi is odd for all i = 1, . . . ,n;

0 otherwise.
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Let us put, for m = (m1, . . . ,mn) ∈ Zn ,

τm =
n

∏
j=1

τmj = ϕ̂1(m), (15)

where

τmj =
∫ 1

−1
ϕ(x j)e(mjx j) dx j =

1√
2

∫ 1

−1
ϕ(x j) exp(−iπmjx j) dx j, j = 1, . . . ,n. (16)

Given any function f on [−1,1)n , extend it to a function f̃ on Rn by setting
f̃ (x) = f̃ (2k + x) for x = (x1, . . . ,xn) ∈ Rn , k = (k1, . . . ,kn) ∈ Zn , such that
x j ∈ [2k j −1,2k j +1) , j = 1, . . . ,n . Define the mapping Em on Lr

(
(−1,1)n

)
, m∈Zn ,

r ∈ (1,∞) , by
Em f (x) = f̃ (mx) (17)

and note that Em (en) = emn . Just as in [2], we can show that Em is a linear isometry,
‖Em‖ = 1, and that the map T ,

T f (x) = ∑
m∈Zn

τm Em f (x), (18)

(convergence is considered in the sense of (11)) is a bounded linear map of Lr
(
(−1,1)n

)
to itself with the property that, for all n ∈ Zn ,

Ten = ϕn.

It is sufficient to show that T is a homeomorphism, since then it follows that the ϕn ,
n ∈ Zn , inherit from the en the property of forming a basis in Lr

(
(−1,1)n

)
for every

r ∈ (1,∞) . In the following lemma we state a criterion for this operator T to be a
homeomorphism on Lr

(
(−1,1)n

)
.

LEMMA 2.4. The following properties hold:

τ2k = 0, τ2k+1 =
4√
2

∫ 1

0
S1/p (π p,p′t) sin

(
(2k+1)πt

)
dt, τ−k = 0, k ∈ N0.

Proof. For m∈ N we obtain, using the oddness of the functions S1/p and sin , the
eveness of C1/p and cos and the relationship between sine and cosine functions (for
S1/p and C1/p see (6)), that

τm =
1√
2

∫ 1

−1
ϕ(t)exp

(
imπt

)
dt

=
1√
2

∫ 1

−1

(
C1/p (π p,p′t)+ iS1/p (π p,p′t)

)(
cos(mπt)− i sin(mπt)

)
dt

=
1√
2

∫ 1

−1
C1/p (π p,p′t) cos(mπt) dt +

1√
2

∫ 1

−1
S1/p(π p,p′t) sin(mπt) dt

=
4√
2

∫ 1

0
S1/p(π p,p′t) sin(mπt) dt.
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Since the function S1/p is symmetric about t = 1/2, we have

τ2k = 0 for all k ∈ N0 .

Finally, for k ∈ N ,

τ−k =
1√
2

∫ 1

−1
C1/p (π p,p′t) cos(kπt)dt− 1√

2

∫ 1

−1
S1/p (π p,p′t) sin(kπt)dt = 0. �

Observe that, due to Lemma 2.4,

T f (x) = ∑
k∈Nn

τ2k−1 E2k−1 f (x).

LEMMA 2.5. Let

∑
k∈Nn, k�=1

|τ2k−1| < |τ(1,...,1)|. (19)

Then T is a homeomorphism on Lr
(
(−1,1)n

)
.

Proof. A proof is the same as that of [1, Lemma 2.4]. �
Aiming at finding an upper estimate for the left hand side of (19), we start by

providing an upper bound for |τ2k−1| , k ∈ N (cf. (15)).

PROPOSITION 2.6. The following estimate holds:

|τ2k−1| �
8π p,p′√

2π2

1
(2k−1)2 , k ∈ N.

Proof. Using integration by parts, the properties

S1/p(0) = 0, S′
1/p

(
1
2

)
= 0 and S′

1/p is decreasing on
(
0, 1

2

)
,

and the substitution s = S′
1/p (t) we obtain, due to Lemma 2.4 (cf. the proof of [1,

Proposition 2.5]),

τ2k−1 =
8√

2(2k−1)2π2

∫ S′1/p (0)

0
sin

(
(2k−1)π (S′

1/p)−1(s)
)
ds.

Since S′
1/p (x) = π p,p′cosp,p′ (π p,p′ x) , one has S′

1/p (0) = π p,p′ . Consequently,

|τ2k−1| �
8S′

1/p (0)√
2(2k−1)2π2

=
8π p,p′√

2(2k−1)2π2
. �

PROPOSITION 2.7. The following estimate holds

τ1 � 16√
2π2

. (20)
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Proof. Inequality (9) implies that

S1/p (t) � 2t, t ∈ (0, 1
2).

Thus, Lemma 2.4 in conjunction with the symmetry of functions S1/p (t) and sin(π t)
about t = 1/2 yields:

τ1 =
8√
2

∫ 1/2

0
S1/p (t)sin(π t) dt � 16√

2

∫ 1/2

0
t sin(π t) dt =

16√
2π2

,

which verifies the assertion. �

PROPOSITION 2.8. Condition (19) is satisfied, if

(π2

8

)n−1 <
( 2

π p,p′

)n
. (21)

Proof. From Proposition 2.6, (15) and estimates (19), (20) and (21) we obtain

∑
k∈Nn, k�=1

|τ2k−1| <
( 16√

2π2

)n
� |τ(1,...,1)|,

which completes the proof (cf. the proof of [1, Proposition 2.7]). �

THEOREM 2.9. Let p ∈ (1,∞) and n ∈ N be so that the condition (21) is sat-
isfied. Then the sequence

{
(E1/p (iπ p,p′ ·))k

}
k∈Zn is a basis in Lr

(
(−1,1)n

)
for any

r ∈ (1,∞) .

Proof. By Proposition 2.8, condition (21) implies that (19) holds. Thus, by Lemma
2.5, the operator T is a homeomorphism and the assertion follows. �

REMARK 2.10. By (7) we have, for any p ∈ (1,∞) , that 2/π p,p′ � 1. Since(
π2/8

)n
< 2 if and only if n � 3, it is apparent that the above described method of

proving that the sequence
{
(E1/p (iπ p,p′ ·))k

}
k∈Zn is a basis in Lr

(
(−1,1)n

)
is confined

to the cases n = 1,2,3.

COROLLARY 2.11. (n = 1) Let p ∈ (1,∞) . The sequence{
(E1/p (iπ p,p′kx))

}∞
k=−∞

is a basis in Lr
(
(−1,1)

)
for any r ∈ (1,∞) .

COROLLARY 2.12. (n = 2) There exists p2 > 1 such that, for every p ∈ (p2,∞) ,
the sequence {

E1/p(iπ p,p′ k1 x1)E1/p(iπ p,p′ k2 x2)
}∞

k1,k2=−∞

is a basis in Lr
(
(−1,1)2

)
for any r ∈ (1,∞) .
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COROLLARY 2.13. (n = 3) There exists p3 > 1 such that, for every p ∈ (p3,∞) ,
the sequence{

E1/p (π p,p′ k1 x1)E1/p (π p,p′ k2 x2)E1/p (π p,p′ k3 x3)
}∞

k1,k2,k3=−∞

is a basis in Lr
(
(−1,1)3

)
for any r ∈ (1,∞) .

Proof. [Proof of Corollaries 2.11–2.13] The proofs can be handled analogously as
that of Theorem 2.10 of [1], applying Theorem (2.9). We omit the details. �

REMARK 2.14. By numerical computation we obtain that these rough estimates:
p2 � 3, p3 � 21.
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