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LIMITING CASE HARDY INEQUALITIES ON THE SPHERE

AHMED A. ABDELHAKIM

(Communicated by M. Praljak)

Abstract. We give sharp limiting case Hardy inequalities on the sphere S and show that their
optimal constants are unattainable by any f € H' (Sz) \ {0} . The singularity of the problem is
related to the geodesic distance from a point on the sphere.

1. Introduction

The classical Hardy inequality
2

—2)2 u
s 020 [ 1
/Rn| uPar> T [ s (1)

is valid in dimensions n > 3 for all functions u € H' (R") ([1]). It obviously fails on R?
as the right hand side of (1) no longer makes sense. In order to obtain a version of (1)
in the critical case n = 2 on bounded domains, a logarithmic weight can be introduced
to tame the singularity. In [2, 4-8, 10], for instance, inequalities of the type

Jul”

/|Vu|"dx>Cn(B)/7ndx
B B | x| <log ﬁ)

were analysed for u € WO1 "(B) where B is the unit ball in R".

Let n >3 and S" be the unit sphere equipped with its Lebesgue surface measure
o, in R"™"!. Denote by d(.,p) : S" — [0, ] the geodesic distance from p € S", and by
Vgn the gradient on S". Recently, Xiao [11] proved that if f € C*(S") then

2 2
7n 2 n Vn 2 n = 2 f f n 2
¢ /Snf do +/Sn| o fPdo >cn/Sn (d(x,p)2+(7r—d(x,p))2>dc @)

with ¢, = (‘3—‘ + %) cﬁ +cp, = % It was also shown in [11] that the constant ¢,

in (2) is sharp in the sense that

= legf 0N P legf 0 [, —L_da,
fec=(S"\{ }fgn d(;v,p)zdcn fec=(SM)\{ }fSn mdcn
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where

Du(f) = c—n/Snf2dan+/Sn Vo f2do,, feC=(Sh).

Recently, Xiao’s result was extended to the case p # 2 in [9].

We prove L? Hardy inequalities with optimal constants on the sphere S in R3.
This is a critical exponent case as the integral [ 0~'**do,, where 6 is the polar
angle, diverges for A < —1. We also argue the lack of maximizers for our inequalities.
Our approach denies the possibility of an equality in Xiao’s inequality (2) as well.

2. Preliminaries

A point on the sphere S? will have the standard spherical coordinate parametriza-
tion (sinOcos@,sinOsin@,cos ) where 6 € [0, ] refers to the polar angle and ¢ €
[0,27[ is the azimuthal angle. Then the surface measure induced by the Lebesgue
measure on R? is do, = sin0d0Od @, the gradient and the Laplace-Beltrami operator,
respectively, are given by

5~ 0 1 9 1 9 d 1 9°
Vo=0—4+0——, Ap=——1si —_— .
#=Y5 %4 ) O sineae< ) sin? 6 992
Here 6, ¢ denote the orthogonal three-dimensional unit vectors in the direction where
6., ¢ increase, respectively. The Sobolev space H' (S?) is the completion of C* (S?)
in the norm .
2
15 i e2y= (I Bageay + 1 VF ey

In order to find the geodesic distance d(x, p) from a point x € S? to a given a point
p € S?, we rotate the axes, if necessary, to put p on the zenith direction then place the
great circle passing through p and x in the azimuth reference direction so that we have
d(x,p)=10.

For simplicity, we henceforth denote do,, Vg and Ag» by do, V and A, respec-
tively.

3. Main results

Let ¢ :]0, ] — [1,oo[ be defined by ¢(z) :=log(me/t), y:]0,m[— [l +logm,eo|
be such that y(7) := ¢ (sinz), and py(r) :=1¢(¢). Let A > 0. Denote by S, Ty, and
Q(.;0) the positive nonlinear functionals on H' (S?) given by

. 1
S(f) ::/Sz\e.VdeaJrW/SZfzda,
Ta(f) iz/Sz \Vf\zdcz-i-%/Szfszz,

o(f;9)

_l f2 f2
T4 e <P¢2 @p) | pe (ﬂ—d(xm)))dcz'
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THEOREM 1. Assume that f € H 1 (Sz). Then there exists constants A, B > 0,
independent of f, such that

Q(f:¢) < Ta(f), 3)
Q(f3y) < Tp(f)- 4)

Both inequalities (3) and (4) are optimal, but an equality is impossible in either
one:

<
< T

THEOREM 2.
(f:9)
sup =1, (5)
feH! (SZ)\{O} TA (f)
sp 2BV 6)

pemt(@)\qoy T8US)

THEOREM 3. There does not exist f € H' (S*)\ {0} such that Q(f;) =Ta(f),
or Q(f;w) = Ts(f).

A variant of the above-mentioned results follows via a different approach:

THEOREM 4. Let f € H' (S?). Then

1/ f72d0<s(f)+i/ fizda (7)
4 Js py?(d(x,p)) 2w ) m—d(x,p)
1 12 1 f?
- ———L —— _do<S(f)+ —/ do. 8
3 o pre a4 <0 37 o T ®
Moreover
L, 12 L
e omaem il p¢ 7 1°

)

sup 5 sup
rem (s2)\{0y S(f) + 2z Je #@p)dﬁ rer ()0} S(f) + 2z Je mdﬁ

9)
and the suprema in (9) are not attained in H' (S?) \ {0}.

4. Proof of Theorem 1

Proof. Let f € C=(S?). Notice that y > 1 and write f(6,¢) = \/y(0)g(6.9).
We have

VI = |wiVe+gVy? |
1 _1 1 1 2
— Vel + (wiVe gy TV )+ Sy vyl

1 11
_ 2, ! 2, 11 22
= y|Vg| +2(V1//,Vg >+4W|Vu/\ g . (10)
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Integrating both sides of (10) over S* we get
1 11
V2=/ Vel 2 (Vy, V) + ~ |V
[ 9stao = [ (viver+ 507wV + 3 LIVWEE ) do

21/ i\lezgzdcwl/ (Vy,Vgdo (11)
4 21;/
_ 1 "2 2 / 2

szw“”‘gd 5 |, &Avdo (12)

by partial integration over the closed manifold S?. Calculating, we find

1 4 J

Returning g to f/,/¥ and substituting for Ay from (13) into (12), we obtain

1 f? cos? 6 f2
V f|?do > - — dG— — do. 14
/SZ‘ 7l 4 Js2 w2 sin% 0 22y (14)

1 1
6797(0) (m—0)* 92 (n—0)

of (14) transforms it into the inequality

1 1 1 2
4 Js (92¢2(9) " (ﬂ—9)2¢2(”—9)>f “

2 1 2
< [LIVsPdo+ [ F(6) fdo. (15)

1
Adding the finite integral 1 / , ) f*do toboth sides
S

where
1 N 1 B cos?t 1 N 2
202(t)  (m—1)*¢2(m—1) sin’t ¢ (sinz) = ¢ (sinz)’

Obviously, F is continuous on |0, 7| and, as expected from the facts that ¢ () — oo
when 1 — 0%, sint =1+o0(t) as r — 0, it turns out

F(t):=

1
lim F(f) = lim F(t) = —.
t—0t ( ) t—m ( ) w2
Hence, F can be extended to a uniformly continuous, consequently a bounded, function
on [0, 7]. Noting this in (15) implies (3). Direct computation also shows

T 2 8 1
A:sup|F|:F(—): + 55
0,7] 2 l+logm  (1+41log2)° 7

To prove (4), we add to both sides of (14) the well-defined integral

1 1 1 12
4 Js2 <¥+(n—9)2> V()"
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We then obtain the following analogue of (15):

1 1 1 12
4 Js2 <¥+ (n—9)2> v (0)°

2 1 2
</82|Vf| dG+Z/SZG(6)fdG, (16)
where
M(r) 2
G(t) := + —,
=20 v
2

M) = Ly L oSt (17)

2 (m—0)? sin’t
Once the boundedness of G is ensured, we see that (16) yields the inequality (4). Evi-

dently, G has the same features as F'. Since

2 1
limM(0) =1limM(0) ==+ — li t)=li 1) = oo 18
lim M(6) = lim M(8) = 5 + 5, lim y{r)= lim y(s)=+ (18)
then M € C[0, x|, and lim,_y+ G(r) = lim,_, .- G(¢) =0, which makes G bounded on
[0, ]. Moreover

r 2 g8 1
B:sup|G\:G(—): + - O
[0,7] 2 l+logm  (14logn)™ @

5. Proof of Theorem 2

Proof. First, we would like to define the weak Laplace-Beltrami gradient of a
function f € L' (S?). Suppose f € C™(S*) and v(6,9) = ve(0,9)0 +vy(0,9)d
with vg,ve € C™ (82) . Then

af N N
/SZ %vedazfgzw.evedo - —/Ssz(veO)dG,
/ L Jf, dG—/ Vi dG——/ £V (vod)do
esinfde *  Js2 Prodo =" |, 9P)do.
Adding these identities we get
/ Vf-VdG:—/ fV.-Vdo (19)
s? s?
for any vector field V € C~ (S> — T (S?)) where T (S?) is the tangent bundle of the
smooth manifold S%. Motivated by (19), f is weakly differentiable if there is a vector

field ¥y € L' (S* — T (S?)) such that

/Szﬂf~VdG:—/S2fV-VdG, ¥V e (ST (). 20)
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This, unique up to a set of zero measure, vector field ¥ is the weak surface gradient
of f. According to ([3], Proposition 3.2., page 15)

H'(S*) =W'?(S?) :={f e L*(S*): |9/ € L*(S%)}.

We start with (5). By Theorem 1, it suffices to prove the existence of a sequence
{fu}us1 in H' (S?) such that

. Q(fn,(z))
1 =1. 21
”gr"l" TA(fn) 1)
Consider the functions L
In(0,0):=¢(8)2 . (22)

The functions f; are independent of ¢, hence
T 12 mn(-) f2sin6
Q(fn,(z)) Jo 0292(0) fO 00220 0
Lalfa) g ym (g_f;) $in0d0 1 A [ 2 sin 040

(23)

where the derivative df,,/d0 is understood in the week sense discussed above. Since
¢ €Ll (R)and ¢ > 1 on [0,7], then

loc

/”fn2 5in0d6 :/”¢(9)1—% 5in 06 < /”¢(e)d9 ~ 1. 24)

Thus f, € L? (S*) forall n > 1. Notice also that f, is smooth on [0, 7]\ {0} and its
weak derivative

afn l_%
Zn_ _n . 25
26 " 9ot =
Therefore
T (9, T 1 sin@ 2\?
/ f) smGdO—— s e, a,:= 1——) .
0 a0 4 0 0¢1+ 0 n
V9
Andsince/ %:g, sin@ < 6, then df,/00 € L* (S?) forall n > 1. Substi-
0 G(Z) n
tuting for f,, from (22) and for df,,/d0 from (25) into (23) implies
Q(fn:0) _ On+ B :i< o Wan) 26)
TA(fn) an 0y + Y dap OCn—H/n/an
where
o = 2 sm9d67
0 9¢1+; 0
T 1-2 i
B, ::/ ) 2(9)s1n9 a6,
0 (m—0)"¢*(7r—0)

T 2
T ::A/ 0! 7 sin6d0.
0
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Observe that lim,—;~a, = 1. We shall show that, while lim,— . 0, = oo, the se-
quences {fB,},~; and {,}, are both convergent. Using this in (26) proves (21).

Exploiting the continuity and positivity of sin8/ <62¢1+%> on [r/2,7], then
applying the inequality sin0/6 >2/m when 0 < 6 < /2, we obtain

T2 ] in 0 T in6
o = / e+ / 7 e
o @¢'ts O /2 92 1t h

/2 1 n
> —/ ~d6 = - (27)
TJo  Qg¢lta n(1+log(2))n

This proves the divergence of {;, }. Next, by the dominated convergence theorem and
(24) we readily find

/i T
lim 7= A lim / 0'-7(0) sin0d6:/ 0(0) sin0d6 < 1.
n—-+ n—- 0 0

Finally, since 6 — sin 6/((77: —0)? ¢*(n— 6)) € C(|0,7/2]), then using the local
integrability of ¢ and the dominated convergence theorem again implies

72 ¢17i(8) sin6 72 9(6)sin6 _
) wres 9 h woren gt @

sin@  sin(m—0)
-0  mw—6
bo 1—% ; T
/ ) 2(9) sin 6 46 < dz
n/2 (m—0)" ¢2(m—0) n/2 (m—0)¢>(n—0)
The convergence of {f,} follows from (28) together with (29).
The proof of (6) shares the main idea of (5). The functions g,(0, ) := l//(G)T% €

. . Q(gn;l//)
L?(S?),n>1, and satisfy lim =212
&) Y ()

Furthermore, since ¢ € C([r/2,7]), and

<1, on [/2,7], then

~ 1. 29)

= 1. Indeed, we have

T ;,,ﬁm@ 5n§1n6
Q(gn;lI/) fO 62 y2(6 d6+f0 (m—0)2 y2(1—0) d6

T5(gn) 4fr <agn> sinfd6 + B [ g2 sin0d0
_ iy _ i 1— M
a, 0, + ﬁn dan 0y, + ﬁn/an

T sinBdo /” sin 0d 0 2/” sin0do
0 g2ylt 0 ( 0 92V,1+%’

where

0y =

T—0)2 lV1+3
sin 6

Bui=B [ ¥ Fsin0ao —a, [ M(6) "1 db.
0 0 yita
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Similarly to (27), we have

G, =2 smG 1 46+ 2/ sin@ 1 460
1

2
0 1 +2

lsing 1 I gin? 9 1 cosO
> ———d6 =2 ——do
o 062 WH% o 62cosH W”r% sin O

8 1 1 cos0 0 4n 1
2 0 l{/lJr% sin O 2 (l—i—logn)%

Hence lim,_.. 0, = o. Recall from (17) and (18) that M € C([0,x]). Also, since
v eLl (R), y> 1 uniformly, then lim, ... B, exists by the dominated convergence
theorem. [

6. Proof of Theorem 3

Proof. The transition to the inequalities (3) and (4) from their respective stronger
versions, (15) and (16), comes from the bounds

/ F(6) f2do < A/ 2o, / G(0) f2do < B/ f2do
s2 $? s2 $?
where the bounded functions F and G are both positive and independent of f. Inter-
estingly, as seen in Section 5, the size of 0 < A,B < e played no role in optimising (3)
and (4).

Up to the inequality (15) or (16) an equality relation persists except for the only
inequality (11). So a sufficient and necessary condition for an equality in (15) or (16)

(and a necessary condition for an equality in (3) and (4)) is an equality in (11). But an
equality in (11) occurs if and only if

/S VsPdo =0, (30)

Recalling that g = f/,/y, we compute

w|Vel* = v
faw VAN
— v - LM vr6 3L (%)
4y \ 6
e (9F IFN? foyaf 1f (dy
=¥/ ‘(%) +(55) 45650 1 (ae)

2 (9f af 1fady
= IVfI7 - (ae)J’(ae_EEae)' @D
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2
Since |Vf|*>— <§£) sm126 (%) > 0, then, by (31), the equality (30) is equiv-
alent to )

af af 1f 81//
2 (9] _ _1L —
/sz‘vﬂ (ae) do /sz (ae 2vae) 1070 (32)
The equalities (32) are, in their turn, equivalent to
_|df 1fay
sine‘% _’ae_iﬁae (33)

Suppose that f is not the zero function. Then (33) are possible if and only if
df ldy

o2y

Thatis f = c,/¥, c isa constant. But such f ¢ H' (S?) because

2, T(af 2 >/100520l
/Sz|Vf| d0—27r/0 55) sn0d0 = [ o
T T

2 Jo snooeing ~ b 86(0)

f=175(8),

= 4o, [

7. Proof of Theorem 4

vew " (5w)

Assume that f is smooth. Then integrating by parts w.r.t. the surface measure o we
get

/szﬁz(e)d(;:/gﬁ(ﬁ) f;OdG

[y (
L™ (58)
fVf.0 12 2 cos@

=2 )00 20760 )2 09(6) snb

Proof. Write

(34)

Observe here that each of the last two integrals on the right hand side of (34) can
diverge. They suffer nonintegrable singularities at 6 = 0. But, when put together, their
sum

o f? 2 cos@ B 1 1 cosO\ ,
= 2 92¢(9)d6 /SZ 09 (0 )smGdG_ 2 0¢(0) <§_Sin9>fd0' (35)
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is convergent. In fact

lim 1 1 cosf) 0

-0+ 00 () \ O sin@)
Also, 6 — 1/ (6%¢(6)) is continuous on a neighborhood of 6 = 7. Furthermore, if
we fix & >0 and let D := {x(6,9) € S*:0< 6 < 5}, then the integral

/ f? cosOdG
s2\p 0 ¢ (0) sinb

does exist. Unfortunately, we can not control the integral I by Js» f?do, up to a con-
stant factor. The reason is

lim 1 cos -
o7 0¢(0)sinf

But since

lim 1 cos(9+l 1 _0
o—r-\00(0)sind rm(n—0))

1 2
then, we may introduce the convergent integral J := p / , nf 5 do to the integral 1
@ T—
to get
I:I—J+J:/2K(9)f2dG+J (36)
S
where

1 1 cos@ I 1
KO)i= [ ) oo
(9) e¢(e)<e sine) % (n—0)
By the continuity of K on ]0, [ and since

1
lim K(0) = — lim K(0) = ——
ei%l+ (6) 93}3* (6) 2

then K is bounded on [0, 7]. Actually, K is monotonically increasing. Thus

1
sup [K| = = (37)
ox T
Using (37) in (36) we deduce that
1 2
Igﬁfng Ao +1J. (38)

Returning with (38) to the inequality (34) in the light of (35) we obtain

£ A Lf o, 1 f
/sz 6%7(0) "= 7 Szeme)d‘”ﬁ/ng d”E/Sm—ed"' 49
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Applying Cauchy’s inequality with an € we find
fVf.0 / 12 1 / A
-2 do <2 ————d — 0.Vf|-do. 40
55097 <% | 5797 (0) o+ 5 SZ\ fldo (40)
Therefore, it follows from (39) and (40) that

28/ 92¢2 /\6Vf|2d6+ S [Lrdo

2¢ 12
semwT—06

1
do, O<e<§. (41)

The choice € = 1/4 maximizes the factor 2e(1 — 2¢) and, consequently, the left hand
side of (41). This proves (7). The inequality (8) can be obtained analogously.

In the fashion of the proof of Theorem 2, the sequence fn =0 b=a clearly satisfies

fn
. g PR sin6do . oy py7(n=8) sin6do
PR U(f) 4 o JF L singdo U (fn)+2nf”f" 5in6.d6

b4 a 2 1 b4
U(f)z/O (%) sin6d6+2—n2/0 2 5in6 6.

One only needs to inspect the convergence of <¢1‘% sin6/ 0) ae, [y <¢ 1-7 sin@ /

=1

where

(m— 0)>d6 as n — oo. This is obvious from the bound sin® < min{6,7— 6} on

[0,7] and the fact ¢ € L' (0, 7]).

Finally, careful review of the proof of (7) above reveals that a necessary condition
for a function f € H' (S?)\ {0} to achieve an equality in (7) is that it yields an equality
in (40). This is equivalent to

1 f

Vib=—- (42)
200(0)
Suppose (42) was true. Then by (34) and (35) we must have
h(6 )f2
=0 43
= 09(0)" @
where ) 0
cos
h(B):=——
(6) 6 sinf
On the other hand
6% —sin’ O
lim 4(0)=0, HW(0)=-—5—>0, 0<6<m.
oim. h(0) 0) = 7o 8

This shows # is strictly positive on ]0, 7] and since 6¢(0) > 0 then (43) is a contra-
diction. O
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