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LIMITING CASE HARDY INEQUALITIES ON THE SPHERE

AHMED A. ABDELHAKIM

(Communicated by M. Praljak)

Abstract. We give sharp limiting case Hardy inequalities on the sphere S
2 and show that their

optimal constants are unattainable by any f ∈ H1
(
S

2
)\{0} . The singularity of the problem is

related to the geodesic distance from a point on the sphere.

1. Introduction

The classical Hardy inequality
∫

Rn
|∇u|2dx � (n−2)2

4

∫
Rn

u2

|x|2 dx (1)

is valid in dimensions n � 3 for all functions u∈H1 (Rn) ([1]). It obviously fails on R
2

as the right hand side of (1) no longer makes sense. In order to obtain a version of (1)
in the critical case n = 2 on bounded domains, a logarithmic weight can be introduced
to tame the singularity. In [2, 4–8, 10], for instance, inequalities of the type∫

B
|∇u|ndx � Cn(B)

∫
B

|u|n
|x|n
(
log 1

|x|
)n dx

were analysed for u ∈W 1,n
0 (B) where B is the unit ball in R

n .
Let n � 3 and S

n be the unit sphere equipped with its Lebesgue surface measure
σn in R

n+1. Denote by d(., p) : S
n → [0,π ] the geodesic distance from p ∈ S

n, and by
∇Sn the gradient on S

n . Recently, Xiao [11] proved that if f ∈C∞ (Sn) then

cn

∫
Sn

f 2dσn +
∫

Sn
|∇Sn f |2dσn � c2

n

∫
Sn

(
f 2

d (x, p)2 +
f 2

(π −d(x, p))2

)
dσn (2)

with cn =
(

4
3 + 1

π2

)
c2
n + cn, cn = n−2

2 . It was also shown in [11] that the constant cn

in (2) is sharp in the sense that

c2
n = inf

f∈C∞(Sn)\{0}
Dn( f )∫

Sn
f 2

d(x,p)2
dσn

= inf
f∈C∞(Sn)\{0}

Dn( f )∫
Sn

f 2

(π−d(x,p))2
dσn
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where
Dn( f ) := cn

∫
Sn

f 2dσn +
∫

Sn
|∇Sn f |2dσn, f ∈C∞ (Sn) .

Recently, Xiao’s result was extended to the case p �= 2 in [9].
We prove L2 Hardy inequalities with optimal constants on the sphere S

2 in R
3 .

This is a critical exponent case as the integral
∫
S2 θ−1+λ dσ2 , where θ is the polar

angle, diverges for λ � −1. We also argue the lack of maximizers for our inequalities.
Our approach denies the possibility of an equality in Xiao’s inequality (2) as well.

2. Preliminaries

A point on the sphere S
2 will have the standard spherical coordinate parametriza-

tion (sinθ cosϕ ,sinθ sinϕ ,cosθ ) where θ ∈ [0,π ] refers to the polar angle and ϕ ∈
[0,2π [ is the azimuthal angle. Then the surface measure induced by the Lebesgue
measure on R

3 is dσ2 = sinθdθdϕ , the gradient and the Laplace-Beltrami operator,
respectively, are given by

∇
S2 = θ̂

∂
∂θ

+ ϕ̂
1

sinθ
∂

∂ϕ
, Δ

S2 =
1

sinθ
∂

∂θ

(
sinθ

∂
∂θ

)
+

1

sin2 θ
∂ 2

∂ϕ2 .

Here θ̂ , ϕ̂ denote the orthogonal three-dimensional unit vectors in the direction where
θ ,ϕ increase, respectively. The Sobolev space H1

(
S

2
)

is the completion of C∞ (
S

2
)

in the norm

‖ f ‖H1(S2):=
(
‖ f ‖2

L2(S2) + ‖ ∇ f ‖2
L2(S2)

) 1
2
.

In order to find the geodesic distance d(x, p) from a point x∈ S
2 to a given a point

p ∈ S
2, we rotate the axes, if necessary, to put p on the zenith direction then place the

great circle passing through p and x in the azimuth reference direction so that we have
d(x, p) = θ .

For simplicity, we henceforth denote dσ2 , ∇
S2 and Δ

S2 by dσ , ∇ and Δ , respec-
tively.

3. Main results

Let φ :]0,π ] → [1,∞[ be defined by φ(t) := log(πe/t) , ψ :]0,π [→ [1+ logπ ,∞[
be such that ψ(t) := φ (sin t) , and ρφ (t) := tφ(t) . Let A > 0. Denote by S, TA, and
Q(.;φ) the positive nonlinear functionals on H1

(
S

2
)

given by

S( f ) :=
∫

S2
|θ̂ .∇ f |2dσ +

1
2π2

∫
S2

f 2 dσ ,

TA( f ) :=
∫

S2
|∇ f |2dσ2 +

A
4

∫
S2

f 2dσ2,

Q( f ;φ) :=
1
4

∫
S2

(
f 2

ρφ 2 (d (x, p))
+

f 2

ρφ 2 (π −d (x, p))

)
dσ2.
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THEOREM 1. Assume that f ∈ H1
(
S

2
)
. Then there exists constants A, B > 0 ,

independent of f , such that

Q( f ;φ) � TA( f ), (3)

Q( f ;ψ) � TB( f ). (4)

Both inequalities (3) and (4) are optimal, but an equality is impossible in either
one:

THEOREM 2.

sup
f∈H1(S2)\{0}

Q( f ;φ)
TA( f )

= 1, (5)

sup
f∈H1(S2)\{0}

Q( f ;ψ)
TB( f )

= 1. (6)

THEOREM 3. There does not exist f ∈H1
(
S

2
)\{0} such that Q( f ;φ) = TA( f ),

or Q( f ;ψ) = TB( f ) .

A variant of the above-mentioned results follows via a different approach:

THEOREM 4. Let f ∈ H1
(
S

2
)
. Then

1
4

∫
S2

f 2

ρφ 2 (d (x, p))
dσ � S( f )+

1
2π

∫
S2

f 2

π −d (x, p)
dσ , (7)

1
4

∫
S2

f 2

ρφ 2 (π −d (x, p))
dσ � S( f )+

1
2π

∫
S2

f 2

d (x, p)
dσ . (8)

Moreover

sup
f∈H1(S2)\{0}

1
4

∫
S2

f 2

ρφ 2(d(x,p)) dσ

S( f )+ 1
2π
∫
S2

f 2

π−d(x,p) dσ
= sup

f∈H1(S2)\{0}

1
4

∫
S2

f 2

ρφ 2(π−d(x,p)) dσ

S( f )+ 1
2π
∫
S2

f 2

d(x,p) dσ
= 1,

(9)
and the suprema in (9) are not attained in H1

(
S

2
)\ {0} .

4. Proof of Theorem 1

Proof. Let f ∈C∞ (
S

2
)
. Notice that ψ > 1 and write f (θ ,ϕ) =

√
ψ(θ )g(θ ,ϕ) .

We have

|∇ f |2 = |ψ 1
2 ∇g+g∇ψ

1
2 |2

= ψ |∇g|2 + 〈ψ 1
2 ∇g,gψ− 1

2 ∇ ψ〉+
∣∣∣1
2

ψ− 1
2 ∇ψ

∣∣∣2g2

= ψ |∇g|2 +
1
2
〈∇ψ , ∇g2〉+ 1

4
1
ψ
|∇ψ |2g2. (10)
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Integrating both sides of (10) over S
2 we get∫

S2
|∇ f |2dσ =

∫
S2

(
ψ |∇g|2 +

1
2
〈∇ψ , ∇g2〉+ 1

4
1
ψ
|∇ψ |2g2

)
dσ

� 1
4

∫
S2

1
ψ
|∇ψ |2g2dσ +

1
2

∫
S2
〈∇ψ , ∇g2〉dσ (11)

=
1
4

∫
S2

1
ψ
|ψ ′|2g2dσ − 1

2

∫
S2

g2Δψdσ (12)

by partial integration over the closed manifold S
2 . Calculating, we find

Δψ =
1

sinθ
∂

∂θ

(
sinθ

∂
∂θ

ψ
)

= 1. (13)

Returning g to f/
√ψ and substituting for Δψ from (13) into (12), we obtain

∫
S2
|∇ f |2dσ � 1

4

∫
S2

f 2

ψ2

cos2 θ
sin2 θ

dσ − 1
2

∫
S2

f 2

ψ
dσ . (14)

Adding the finite integral
1
4

∫
S2

(
1

θ 2φ2 (θ )
+

1

(π −θ )2 φ2 (π −θ )

)
f 2dσ to both sides

of (14) transforms it into the inequality

1
4

∫
S2

(
1

θ 2φ2 (θ )
+

1

(π −θ )2 φ2 (π −θ )

)
f 2dσ

�
∫

S2
|∇ f |2dσ +

1
4

∫
S2

F(θ ) f 2dσ , (15)

where

F(t) :=
1

t2φ2 (t)
+

1

(π − t)2 φ2 (π − t)
− cos2 t

sin2 t

1
φ2 (sin t)

+
2

φ (sin t)
.

Obviously, F is continuous on ]0,π [ and, as expected from the facts that φ(t) → +∞
when t → 0+, sin t = t +o(t) as t → 0, it turns out

lim
t→0+

F(t) = lim
t→π− F(t) =

1
π2 .

Hence, F can be extended to a uniformly continuous, consequently a bounded, function
on [0,π ] . Noting this in (15) implies (3). Direct computation also shows

A = sup
[0,π ]

|F| = F
(π

2

)
=

2
1+ logπ

+
8

(1+ log2)2

1
π2 .

To prove (4), we add to both sides of (14) the well-defined integral

1
4

∫
S2

(
1

θ 2 +
1

(π −θ )2

)
f 2

ψ2 (θ )
dσ .
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We then obtain the following analogue of (15):

1
4

∫
S2

(
1

θ 2 +
1

(π −θ )2

)
f 2

ψ2 (θ )
dσ

�
∫

S2
|∇ f |2dσ +

1
4

∫
S2

G(θ ) f 2dσ , (16)

where

G(t) :=
M(t)
ψ2(t)

+
2

ψ(t)
,

M(t) :=
1
t2

+
1

(π − t)2 −
cos2 t

sin2 t
. (17)

Once the boundedness of G is ensured, we see that (16) yields the inequality (4). Evi-
dently, G has the same features as F . Since

lim
θ→0

M(θ ) = lim
θ→π

M(θ ) =
2
3

+
1

π2 , lim
θ→0+

ψ(t) = lim
θ→π− ψ(t) = +∞ (18)

then M ∈C[0,π ], and limt→0+ G(t) = limt→π− G(t) = 0, which makes G bounded on
[0,π ] . Moreover

B = sup
[0,π ]

|G| = G
(π

2

)
=

2
1+ logπ

+
8

(1+ logπ)2

1
π2 . �

5. Proof of Theorem 2

Proof. First, we would like to define the weak Laplace-Beltrami gradient of a
function f ∈ L1

(
S

2
)
. Suppose f ∈ C∞ (

S
2
)

and v(θ ,ϕ) = vθ (θ ,ϕ)θ̂ + vϕ(θ ,ϕ)ϕ̂
with vθ ,vϕ ∈C∞ (

S
2
)
. Then

∫
S2

∂ f
∂θ

vθ dσ =
∫

S2
∇ f · θ̂ vθ dσ = −

∫
S2

f ∇ · (vθ θ̂ )dσ ,

∫
S2

1
sinθ

∂ f
∂ϕ

vϕdσ =
∫

S2
∇ f · ϕ̂ vϕdσ = −

∫
S2

f ∇ · (vϕϕ̂)dσ .

Adding these identities we get∫
S2

∇ f ·V dσ = −
∫

S2
f ∇ ·V dσ (19)

for any vector field V ∈C∞ (
S

2 → T
(
S

2
))

where T
(
S

2
)

is the tangent bundle of the
smooth manifold S

2 . Motivated by (19), f is weakly differentiable if there is a vector
field ϑ f ∈ L1

(
S

2 → T
(
S

2
))

such that∫
S2

ϑ f ·V dσ = −
∫

S2
f ∇ ·V dσ , ∀V ∈C∞ (

S
2 → T

(
S

2)) . (20)
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This, unique up to a set of zero measure, vector field ϑ f is the weak surface gradient
of f . According to ([3], Proposition 3.2., page 15)

H1 (
S

2)= W 1,2 (
S

2) :=
{

f ∈ L2(S2) : |ϑ f | ∈ L2 (
S

2)} .

We start with (5). By Theorem 1, it suffices to prove the existence of a sequence
{ fn}n�1 in H1

(
S

2
)

such that

lim
n→∞

Q( fn;φ)
TA( fn)

= 1. (21)

Consider the functions
fn(θ ,ϕ) := φ(θ )

1
2− 1

n . (22)

The functions fn are independent of ϕ , hence

Q( fn;φ)
TA( fn)

=

∫ π
0

f 2
n sinθ

θ2 φ2(θ)
dθ +

∫ π
0

f 2
n sinθ

(π−θ)2 φ2(π−θ)
dθ

4
∫ π
0

(
∂ fn
∂θ

)2
sinθdθ +A

∫ π
0 f 2

n sinθdθ
(23)

where the derivative ∂ fn/∂θ is understood in the week sense discussed above. Since
φ ∈ L1

loc (R) and φ � 1 on [0,π ] , then∫ π

0
f 2
n sinθdθ =

∫ π

0
φ(θ )1− 2

n sinθdθ �
∫ π

0
φ(θ )dθ ≈ 1. (24)

Thus fn ∈ L2
(
S

2
)

for all n � 1. Notice also that fn is smooth on [0,π ] \ {0} and its
weak derivative

∂ fn
∂θ

=
1
n − 1

2

θ φ
1
2 + 1

n

. (25)

Therefore∫ π

0

(
∂ fn
∂θ

)2

sinθdθ =
an

4

∫ π

0

1

θ φ1+ 2
n

sinθ
θ

dθ , an :=
(

1− 2
n

)2

.

And since
∫ π

0

dθ
θ φ1+ 2

n

=
n
2
, sinθ � θ , then ∂ fn/∂θ ∈ L2

(
S

2
)

for all n � 1. Substi-

tuting for fn from (22) and for ∂ fn/∂θ from (25) into (23) implies

Q( fn;φ)
TA( fn)

=
αn + βn

anαn + γn
=

1
an

(
1+

βn− γn/an

αn + γn/an

)
(26)

where

αn :=
∫ π

0

1

θ φ1+ 2
n

sinθ
θ

dθ ,

βn :=
∫ π

0

φ1− 2
n (θ ) sinθ

(π −θ )2 φ2 (π −θ )
dθ ,

γn := A
∫ π

0
φ1− 2

n sinθdθ .
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Observe that limn→+∞ an = 1. We shall show that, while limn→+∞ αn = +∞, the se-
quences {βn}n�1 and {γn}n�1 are both convergent. Using this in (26) proves (21).

Exploiting the continuity and positivity of sinθ/
(

θ 2 φ1+ 2
n

)
on [π/2,π ] , then

applying the inequality sinθ/θ � 2/π when 0 � θ � π/2, we obtain

αn =
∫ π/2

0

1

θ φ1+ 2
n

sinθ
θ

dθ +
∫ π

π/2

sinθ
θ 2 φ1+ 2

n

dθ

� 2
π

∫ π/2

0

1

θ φ1+ 2
n

dθ =
n

π(1+ log(2))
2
n

. (27)

This proves the divergence of {αn} . Next, by the dominated convergence theorem and
(24) we readily find

lim
n→+∞

γn = A lim
n→+∞

∫ π

0
φ1− 2

n (θ ) sinθdθ =
∫ π

0
φ(θ ) sinθdθ � 1.

Finally, since θ �→ sinθ/
(
(π −θ )2 φ2 (π −θ )

)
∈ C ([0,π/2]), then using the local

integrability of φ and the dominated convergence theorem again implies

lim
n→∞

∫ π/2

0

φ1− 1
n (θ ) sinθ

(π −θ )2 φ2 (π −θ )
dθ =

∫ π/2

0

φ(θ ) sinθ
(π −θ )2 φ2 (π −θ )

dθ � 1. (28)

Furthermore, since φ ∈C ([π/2,π ]), and
sinθ
π −θ

=
sin(π −θ )

π −θ
� 1, on [π/2,π ], then

∫ π

π/2

φ1− 1
n (θ ) sinθ

(π −θ )2 φ2 (π −θ )
dθ �

∫ π

π/2

dθ
(π −θ ) φ2 (π −θ )

≈ 1. (29)

The convergence of {βn} follows from (28) together with (29).

The proof of (6) shares the main idea of (5). The functions gn(θ ,ϕ) := ψ(θ )
1
2− 1

n ∈
L2
(
S

2
)
, n � 1, and satisfy lim

n→∞

Q(gn;ψ)
TB(gn)

= 1. Indeed, we have

Q(gn;ψ)
TB(gn)

=

∫ π
0

g2
n sinθ

θ2 ψ2(θ) dθ +
∫ π
0

g2
n sinθ

(π−θ)2 ψ2(π−θ)
dθ

4
∫ π
0

(
∂gn
∂θ

)2
sinθdθ +B

∫ π
0 g2

n sinθdθ

=
α̃n

anα̃n + β̃n
=

1
an

(
1− β̃n/an

α̃n + β̃n/an

)

where

α̃n :=
∫ π

0

sinθ dθ
θ 2 ψ1+ 2

n

+
∫ π

0

sinθdθ
(π −θ )2 ψ1+ 2

n

= 2
∫ π

0

sinθ dθ
θ 2 ψ1+ 2

n

,

β̃n := B
∫ π

0
ψ1− 2

n sinθdθ −an

∫ π

0
M(θ )

sinθ
ψ1+ 2

n

dθ .
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Similarly to (27), we have

α̃n = 2
∫ 1

0

sinθ
θ 2

1

ψ1+ 2
n

dθ +2
∫ π

1

sinθ
θ 2

1

ψ1+ 2
n

dθ

� 2
∫ 1

0

sinθ
θ 2

1

ψ1+ 2
n

dθ = 2
∫ 1

0

sin2 θ
θ 2 cosθ

1

ψ1+ 2
n

cosθ
sinθ

dθ

� 8
π2

∫ 1

0

1

ψ1+ 2
n

cosθ
sinθ

dθ =
4n
π2

1

(1+ logπ)
2
n

.

Hence limn→∞ α̃n = ∞ . Recall from (17) and (18) that M ∈ C([0,π ]) . Also, since
ψ ∈ L1

loc (R) , ψ > 1 uniformly, then limn→∞ β̃n exists by the dominated convergence
theorem. �

6. Proof of Theorem 3

Proof. The transition to the inequalities (3) and (4) from their respective stronger
versions, (15) and (16), comes from the bounds

∫
S2

F(θ ) f 2dσ � A
∫

S2
f 2dσ ,

∫
S2

G(θ ) f 2dσ � B
∫

S2
f 2dσ

where the bounded functions F and G are both positive and independent of f . Inter-
estingly, as seen in Section 5, the size of 0 < A,B < ∞ played no role in optimising (3)
and (4).

Up to the inequality (15) or (16) an equality relation persists except for the only
inequality (11). So a sufficient and necessary condition for an equality in (15) or (16)
(and a necessary condition for an equality in (3) and (4)) is an equality in (11). But an
equality in (11) occurs if and only if

∫
S2

ψ |∇g|2dσ = 0. (30)

Recalling that g = f/
√ψ, we compute

ψ |∇g|2 = ψ

∣∣∣∣∣ ∇ f√ψ
− 1

2
f

ψ
3
2

∂ψ
∂θ

θ̂

∣∣∣∣∣
2

= |∇ f |2 − f
ψ

∂ψ
∂θ

∇ f · θ̂ +
1
4

f 2

ψ2

(
∂ψ
∂θ

)2

= |∇ f |2 −
(

∂ f
∂θ

)2

+
(

∂ f
∂θ

)2

− f
ψ

∂ψ
∂θ

∂ f
∂θ

+
1
4

f 2

ψ2

(
∂ψ
∂θ

)2

= |∇ f |2 −
(

∂ f
∂θ

)2

+
(

∂ f
∂θ

− 1
2

f
ψ

∂ψ
∂θ

)2

. (31)
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Since |∇ f |2−
(

∂ f
∂θ

)2

=
1

sin2 θ

(
∂ f
∂ϕ

)2

� 0, then, by (31), the equality (30) is equiv-

alent to ∫
S2
|∇ f |2 −

(
∂ f
∂θ

)2

dσ =
∫

S2

(
∂ f
∂θ

− 1
2

f
ψ

∂ψ
∂θ

)2

dσ = 0. (32)

The equalities (32) are, in their turn, equivalent to

1
sinθ

∣∣∣∣ ∂ f
∂ϕ

∣∣∣∣=
∣∣∣∣ ∂ f
∂θ

− 1
2

f
ψ

∂ψ
∂θ

∣∣∣∣= 0. (33)

Suppose that f is not the zero function. Then (33) are possible if and only if

f = f (θ ),
d f
f

=
1
2

dψ
ψ

.

That is f = c
√ψ , c is a constant. But such f /∈ H1

(
S

2
)

because

∫
S2
|∇ f |2dσ = 2π

∫ π

0

(
∂ f
∂θ

)2

sinθ dθ �
∫ 1

0

cos2 θ
sinθ

1
ψ

dθ

�
∫ 1

0

dθ
sinθ φ(sinθ )

≈
∫ 1

0

dθ
θ φ(θ )

= +∞. �

7. Proof of Theorem 4

Proof. Write

1
θ

1
φ2 (θ )

= ∇
(

1
φ (θ )

)
· θ̂ .

Assume that f is smooth. Then integrating by parts w.r.t. the surface measure σ we
get

∫
S2

f 2

θ 2φ2 (θ )
dσ =

∫
S2

∇
(

1
φ (θ )

)
· f 2

θ
θ̂dσ

= −
∫

S2

1
φ (θ )

∇ ·
(

f 2

θ
θ̂
)

dσ

= −2
∫

S2

f ∇ f .θ̂
θ φ (θ )

dσ +
∫

S2

f 2

θ 2 φ (θ )
dσ −

∫
S2

f 2

θ φ (θ )
cosθ
sinθ

dσ .

(34)

Observe here that each of the last two integrals on the right hand side of (34) can
diverge. They suffer nonintegrable singularities at θ = 0. But, when put together, their
sum

I :=
∫

S2

f 2

θ 2 φ (θ )
dσ −

∫
S2

f 2

θ φ (θ )
cosθ
sinθ

dσ =
∫

S2

1
θ φ (θ )

(
1
θ
− cosθ

sinθ

)
f 2dσ (35)
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is convergent. In fact

lim
θ→0+

1
θ φ (θ )

(
1
θ
− cosθ

sinθ

)
= 0.

Also, θ �→ 1/
(
θ 2 φ (θ )

)
is continuous on a neighborhood of θ = π . Furthermore, if

we fix δ > 0 and let D :=
{
x(θ ,ϕ) ∈ S

2 : 0 � θ < δ
}

, then the integral

∫
S2\D

f 2

θ φ (θ )
cosθ
sinθ

dσ

does exist. Unfortunately, we can not control the integral I by
∫
S2 f 2dσ , up to a con-

stant factor. The reason is

lim
θ→π−

1
θ φ (θ )

cosθ
sinθ

= −∞.

But since

lim
θ→π−

(
1

θ φ (θ )
cosθ
sinθ

+
1
π

1
(π −θ )

)
= 0

then, we may introduce the convergent integral J :=
1
π

∫
S2

f 2

π −θ
dσ to the integral I

to get

I = I− J + J =
∫

S2
K(θ ) f 2 dσ + J (36)

where

K(θ ) :=
1

θ φ (θ )

(
1
θ
− cosθ

sinθ

)
− 1

π
1

(π −θ )
.

By the continuity of K on ]0,π [ and since

lim
θ→0+

K(θ ) = − lim
θ→π− K(θ ) = − 1

π2

then K is bounded on [0,π ] . Actually, K is monotonically increasing. Thus

sup
[0,π ]

|K| = 1
π2 . (37)

Using (37) in (36) we deduce that

I � 1
π2

∫
S2

f 2 dσ + J. (38)

Returning with (38) to the inequality (34) in the light of (35) we obtain

∫
S2

f 2

θ 2φ2 (θ )
dσ � −2

∫
S2

f ∇ f .θ̂
θ φ (θ )

dσ +
1

π2

∫
S2

f 2 dσ +
1
π

∫
S2

f 2

π −θ
dσ . (39)
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Applying Cauchy’s inequality with an ε we find

−2
∫

S2

f ∇ f .θ̂
θ φ (θ )

dσ � 2ε
∫

S2

f 2

θ 2φ2 (θ )
dσ +

1
2ε

∫
S2
|θ̂ .∇ f |2dσ . (40)

Therefore, it follows from (39) and (40) that

2ε(1−2ε)
∫

S2

f 2

θ 2φ2 (θ )
dσ �

∫
S2
|θ̂ .∇ f |2dσ +

2ε
π2

∫
S2

f 2 dσ

+
2ε
π

∫
S2

f 2

π −θ
dσ , 0 < ε <

1
2
. (41)

The choice ε = 1/4 maximizes the factor 2ε(1−2ε) and, consequently, the left hand
side of (41). This proves (7). The inequality (8) can be obtained analogously.

In the fashion of the proof of Theorem 2, the sequence fn = φ
1
2− 1

n clearly satisfies

lim
n→∞

1
4

∫ π
0

f 2
n

ρφ 2(θ) sinθ dθ

U( fn)+ 1
2π
∫ π
0

f 2
n

π−θ sinθ dθ
= lim

n→∞

1
4

∫ π
0

f 2
n

ρφ 2(π−θ) sinθ dθ

U( fn)+ 1
2π
∫ π
0

f 2
n
θ sinθ dθ

= 1

where

U( f ) =
∫ π

0

(
∂ f
∂θ

)2

sinθ dθ +
1

2π2

∫ π

0
f 2 sinθ dθ .

One only needs to inspect the convergence of
∫ π
0

(
φ1− 2

n sinθ/θ
)

dθ ,
∫ π
0

(
φ1− 2

n sinθ/

(π −θ )
)
dθ as n → ∞. This is obvious from the bound sinθ � min{θ ,π −θ} on

[0,π ] and the fact φ ∈ L1 ([0,π ]) .
Finally, careful review of the proof of (7) above reveals that a necessary condition

for a function f ∈H1
(
S

2
)\{0} to achieve an equality in (7) is that it yields an equality

in (40). This is equivalent to

∇ f .θ̂ = −1
2

f
θ φ (θ )

. (42)

Suppose (42) was true. Then by (34) and (35) we must have∫
S2

h(θ ) f 2

θ φ (θ )
dσ = 0 (43)

where

h(θ ) :=
1
θ
− cosθ

sinθ
.

On the other hand

lim
θ→0+

h(θ ) = 0, h′(θ ) =
θ 2− sin2 θ
θ 2 sin2 θ

> 0, 0 < θ < π .

This shows h is strictly positive on ]0,π ] and since θφ(θ ) � 0 then (43) is a contra-
diction. �
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