AN EXTENSION OF HARTFIEL'S DETERMINANT INEQUALITY

Lei Hou and Sheng Dong

(Communicated by F. Hansen)

Abstract. Let A and B be $n \times n$ positive definite matrices, Hartfiel obtained a lower bound for $\operatorname{det}(A+B)$. In this paper, we first extend his result to $\operatorname{det}(A+B+C)$, where A, B and C are $n \times n$ positive definite matrices, and then show a generalization of this to the case of matrices whose numerical ranges are contained in a sector.

1. Introduction

Let A, B be $n \times n$ positive semidefinite matrice, it is well known that

$$
\begin{equation*}
\operatorname{det}(A+B) \geqslant \operatorname{det} A+\operatorname{det} B \tag{1}
\end{equation*}
$$

In [5], Haynsworth proved the following refinement of (1),

$$
\begin{equation*}
\operatorname{det}(A+B) \geqslant\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} B_{k}}{\operatorname{det} A_{k}}\right) \operatorname{det} A+\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} A_{k}}{\operatorname{det} B_{k}}\right) \operatorname{det} B . \tag{2}
\end{equation*}
$$

where $A_{k}, B_{k}, k=1, \cdots, n-1$, denote the k-th leading principal submatrices of positive definite matrices A and B, respectively.

Later, Hartfiel [4] obtained an improvement of (2) as follows:

$$
\begin{align*}
\operatorname{det}(A+B) \geqslant & \left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} B_{k}}{\operatorname{det} A_{k}}\right) \operatorname{det} A+\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} A_{k}}{\operatorname{det} B_{k}}\right) \operatorname{det} B \tag{3}\\
& +\left(2^{n}-2 n\right) \sqrt{\operatorname{det} A \operatorname{det} B}
\end{align*}
$$

where A_{k}, B_{k} are under the same condition as in (2). And the author also gave an interesting corollary:

$$
\begin{equation*}
\operatorname{det}(A+B) \geqslant \operatorname{det} A+\operatorname{det} B+\left(2^{n}-2\right) \sqrt{\operatorname{det} A \operatorname{det} B} \tag{4}
\end{equation*}
$$

In this paper, we fist extend Hartfiel's result by giving a lower bound for $\operatorname{det}(A+$ $B+C)$, where A, B and C are $n \times n$ positive definite matrices. And then, we show some generalizations of the matrix form of the new determinant inequalities to a larger class of matrices, namely, matrices whose numerical ranges are contained in a sector.

[^0]
2. Auxiliary results

Let \mathbb{M}_{n} be the set of $n \times n$ complex matrices. If A is positive semidefinite, we put $A \geqslant 0$, for two Hermitian matrices $A, B \in \mathbb{M}_{n}, A \geqslant B$ means $A-B$ is positive semidefinite. If A is positive definite, we put $A>0$.

For $A \in \mathbb{M}_{n}$, recall the Cartesian decomposition (see, e.g. [6, p. 7])

$$
A=\Re A+i \subseteq A
$$

where

$$
\mathfrak{R} A=\frac{1}{2}\left(A+A^{*}\right), \quad \mathfrak{S} A=\frac{1}{2 i}\left(A-A^{*}\right) .
$$

We say $A \in \mathbb{M}_{n}$ is accretive-dissipative matrix if $\mathfrak{R} A$ and $\mathfrak{S} A$ are positive definie. For more details about this class of matrices, please refer to [3, 8, 9, 12].

The numerical range of $A \in \mathbb{M}_{n}$ is defined by

$$
W(A)=\left\{x^{*} A x \mid x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

Also, for $\alpha \in\left[0, \frac{\pi}{2}\right)$, let S_{α} be the sector in the complex plane given by

$$
S_{\alpha}=\{z \in \mathbb{C}|\Re z>0,|\mathfrak{S} z| \leqslant(\Re z) \tan (\alpha)\}
$$

Clearly, if $W(A) \subset S_{0}$, then A is positive definite. As $0 \notin S_{\alpha}$, if $W(A) \subset S_{\alpha}$, we can get that A is necessarily nonsingular.

Relevant studies on matrices with numerical ranges in a sector can be found in [1, 2, 11, 7, 13].

Next, we present some lemmas which are useful for our proofs.
Lemma 1. [6, Theorem 7.8.19] Let $A \in \mathbb{M}_{n}$. If $\mathfrak{R}(A)>0$, then

$$
\operatorname{det}(\mathfrak{R}(A)) \leqslant|\operatorname{det}(A)|
$$

Lemma 2. [11, Lemma 2.6] Let $A \in \mathbb{M}_{n}$ with $W(A) \subset S_{\alpha}$. Then

$$
\sec ^{n}(\alpha) \operatorname{det}(\Re(A)) \geqslant|\operatorname{det}(A)|
$$

Lemma 3. [10, Theorem 1.1] Let A, B, C be $n \times n$ positive definite matrices. Then

$$
\begin{array}{r}
\operatorname{det}(A+B+C)+\operatorname{det}(C)-(\operatorname{det}(A+C)+\operatorname{det}(B+C)) \\
\geqslant \operatorname{det}(A+B)-(\operatorname{det}(A)+\operatorname{det}(B)) \tag{5}
\end{array}
$$

Lemma 4. [11, Proposition 2.1] Let $A, B, C \in \mathbb{M}_{n}$, and partition A as $A=$ $\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$ with A_{11} square. If $W(A), W(B), W(C) \subset S_{\alpha}$, then $W(A+B+C) \subset S_{\alpha}$ and $W\left(A_{11}\right) \subset S_{\alpha}$.

3. Main results

In this section, we begin with extending inequality (3) and inequality (4) as follows:

THEOREM 1. Let A, B, C be $n \times n$ positive definite matrices, $A_{k}, B_{k}, C_{k}, k=$ $1, \cdots, n-1$, denote the k-th leading principal submatrices of A, B, C, respectively. Then

$$
\begin{align*}
\operatorname{det}(A+B+C) \geqslant & \left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} B_{k}+\operatorname{det} C_{k}}{\operatorname{det} A_{k}}\right) \operatorname{det} A \\
& +\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} A_{k}+\operatorname{det} C_{k}}{\operatorname{det} B_{k}}\right) \operatorname{det} B \tag{6}\\
& +\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} A_{k}+\operatorname{det} B_{k}}{\operatorname{det} C_{k}}\right) \operatorname{det} C \\
& +\left(2^{n}-2 n\right)(\sqrt{\operatorname{det} A B}+\sqrt{\operatorname{det} A C}+\sqrt{\operatorname{det} B C})
\end{align*}
$$

Proof. According to Lemma 3, we have

$$
\begin{align*}
\operatorname{det}(A+B+C) \geqslant & \operatorname{det}(A+B)+\operatorname{det}(A+C)+\operatorname{det}(B+C) \\
& -\operatorname{det} A-\operatorname{det} B-\operatorname{det} C \tag{7}
\end{align*}
$$

Then we can obtain, by (3), that

$$
\begin{aligned}
\operatorname{det}(A+B+C) \geqslant & \left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} B_{k}}{\operatorname{det} A_{k}}\right) \operatorname{det} A+\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} A_{k}}{\operatorname{det} B_{k}}\right) \operatorname{det} B \\
& +\left(2^{n}-2 n\right) \sqrt{\operatorname{det} A B}+\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} C_{k}}{\operatorname{det} A_{k}}\right) \operatorname{det} A \\
& +\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} A_{k}}{\operatorname{det} C_{k}}\right) \operatorname{det} C+\left(2^{n}-2 n\right) \sqrt{\operatorname{det} A C} \\
& +\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} C_{k}}{\operatorname{det} B_{k}}\right) \operatorname{det} B+\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} B_{k}}{\operatorname{det} C_{k}}\right) \operatorname{det} C \\
& +\left(2^{n}-2 n\right) \sqrt{\operatorname{det} B C}-\operatorname{det} A-\operatorname{det} B-\operatorname{det} C \\
\geqslant & \left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} B_{k}+\operatorname{det} C_{k}}{\operatorname{det} A_{k}}\right) \operatorname{det} A+\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} A_{k}+\operatorname{det} C_{k}}{\operatorname{det} B_{k}}\right) \operatorname{det} B \\
& +\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} A_{k}+\operatorname{det} B_{k}}{\operatorname{det} C_{k}}\right) \operatorname{det} C \\
& +\left(2^{n}-2 n\right)(\sqrt{\operatorname{det} A B}+\sqrt{\operatorname{det} A C}+\sqrt{\operatorname{det} B C}) .
\end{aligned}
$$

By inequality (4) and Lemma 3, the following interesting theorem can be obtained.

THEOREM 2. Let A, B, C be $n \times n$ positive definite matrices. Then

$$
\begin{align*}
\operatorname{det}(A+B+C) \geqslant & \operatorname{det} A+\operatorname{det} B+\operatorname{det} C \\
& +\left(2^{n}-2\right)(\sqrt{\operatorname{det} A B}+\sqrt{\operatorname{det} A C}+\sqrt{\operatorname{det} B C}) . \tag{8}
\end{align*}
$$

Now, we extend Theorem 1 and Theorem 2 to the case of matrices whose numerical ranges are contained in a sector.

Theorem 3. Let $A, B, C \in \mathbb{M}_{n}, W(A), W(B), W(C) \subset S_{\alpha}, \alpha \in\left[0, \frac{\pi}{2}\right)$ and let $A_{k}, B_{k}, C_{k}, k=1, \cdots, n-1$, denote the k-th leading principal submatrices of A, B, C, respectively. Then

$$
\begin{aligned}
\sec ^{n}(\alpha)|\operatorname{det}(A+B+C)| \geqslant & \left(1+\sum_{k=1}^{n-1} \cos ^{k}(\alpha) \frac{\left|\operatorname{det} B_{k}\right|+\left|\operatorname{det} C_{k}\right|}{\left|\operatorname{det} A_{k}\right|}\right)|\operatorname{det} A| \\
& +\left(1+\sum_{k=1}^{n-1} \cos ^{k}(\alpha) \frac{\left|\operatorname{det} A_{k}\right|+\left|\operatorname{det} C_{k}\right|}{\left|\operatorname{det} B_{k}\right|}\right)|\operatorname{det} B| \\
& +\left(1+\sum_{k=1}^{n-1} \cos ^{k}(\alpha) \frac{\left|\operatorname{det} A_{k}\right|+\left|\operatorname{det} B_{k}\right|}{\left|\operatorname{det} C_{k}\right|}\right)|\operatorname{det} C| \\
& +\left(2^{n}-2 n\right)(\sqrt{|\operatorname{det} A B|}+\sqrt{|\operatorname{det} A C|}+\sqrt{|\operatorname{det} B C|}) .
\end{aligned}
$$

Proof. According to Lemma 4, we have $W\left(A_{k}\right), W\left(B_{k}\right), W\left(C_{k}\right) \subset S_{\alpha}$. Compute

$$
\begin{aligned}
|\operatorname{det}(A+B+C)| \geqslant & \operatorname{det}(\Re(A+B+C)) \\
\geqslant & \left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} \Re\left(B_{k}\right)+\operatorname{det} \Re\left(C_{k}\right)}{\operatorname{det} \Re\left(A_{k}\right)}\right) \operatorname{det} \Re(A) \\
& +\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} \Re\left(A_{k}\right)+\operatorname{det} \Re\left(C_{k}\right)}{\operatorname{det} \Re\left(B_{k}\right)}\right) \operatorname{det} \Re(B) \\
& +\left(1+\sum_{k=1}^{n-1} \frac{\operatorname{det} \Re\left(A_{k}\right)+\operatorname{det} \Re\left(B_{k}\right)}{\operatorname{det} \Re\left(C_{k}\right)}\right) \operatorname{det} \Re(C) \\
& +\left(2^{n}-2 n\right)(\sqrt{\operatorname{det} \Re(A) \operatorname{det} \Re(B)}+\sqrt{\operatorname{det} \Re(A) \operatorname{det} \Re(C)} \\
& +\sqrt{\operatorname{det} \Re(B) \operatorname{det} \Re(C)}) \\
\geqslant & \left(1+\sum_{k=1}^{n-1} \cos ^{k}(\alpha) \frac{\left|\operatorname{det} B_{k}\right|+\left|\operatorname{det} C_{k}\right|}{\left|\operatorname{det} A_{k}\right|}\right) \cos _{\alpha}^{n}|\operatorname{det} A| \\
& +\left(1+\sum_{k=1}^{n-1} \cos ^{k}(\alpha) \frac{\left|\operatorname{det} A_{k}\right|+\left|\operatorname{det} C_{k}\right|}{\left|\operatorname{det} B_{k}\right|}\right) \cos _{\alpha}^{n}|\operatorname{det} B| \\
& +\left(1+\sum_{k=1}^{n-1} \cos ^{k}(\alpha) \frac{\left|\operatorname{det} A_{k}\right|+\left|\operatorname{det} B_{k}\right|}{\left|\operatorname{det} C_{k}\right|}\right) \cos _{\alpha}^{n}|\operatorname{det} C| \\
& +\left(2^{n}-2 n\right) \cos ^{n}(\alpha)(\sqrt{|\operatorname{det} A B|}+\sqrt{|\operatorname{det} A C|}+\sqrt{|\operatorname{det} B C|}) .
\end{aligned}
$$

where the first inequality above is by Lemma 1 ; the second is due to the inequality (6) and the last inequality holds by Lemma 1 and Lemma 2.

Multiplying both sides of the inequality by $\sec ^{n}(\alpha)$ yields the desired inequality, which completes the proof.

When $\alpha=0$, Theorem 3 reduces to Theorem 1. Note that if A is accretivedissipative, then $W\left(e^{-i \pi / 4} A\right) \subset S_{\pi / 4}$. Thus, we have the following corollary.

Corollary 1. Suppose $A, B, C \in \mathbb{M}_{n}$ are accretive-dissipative, let A_{k}, B_{k}, C_{k}, $k=1 \cdots n-1$, denote the k-th leading principal submatrices of A, B, C, respectively. Then

$$
\begin{aligned}
2^{\frac{n}{2}}|\operatorname{det}(A+B+C)| \geqslant & \left(1+\sum_{k=1}^{n-1} \frac{1}{2^{k / 2}} \frac{\left|\operatorname{det} B_{k}\right|+\left|\operatorname{det} C_{k}\right|}{\left|\operatorname{det} A_{k}\right|}\right)|\operatorname{det} A| \\
& +\left(1+\sum_{k=1}^{n-1} \frac{1}{2^{k / 2}} \frac{\left|\operatorname{det} A_{k}\right|+\left|\operatorname{det} C_{k}\right|}{\left|\operatorname{det} B_{k}\right|}\right)|\operatorname{det} B| \\
& +\left(1+\sum_{k=1}^{n-1} \frac{1}{2^{k / 2}} \frac{\left|\operatorname{det} A_{k}\right|+\left|\operatorname{det} B_{k}\right|}{\left|\operatorname{det} C_{k}\right|}\right)|\operatorname{det} C| \\
& +\left(2^{n}-2 n\right)(\sqrt{|\operatorname{det} A B|}+\sqrt{|\operatorname{det} A C|}+\sqrt{|\operatorname{det} B C|})
\end{aligned}
$$

For the generalization of Theorem 2, the following results can be obtained by Lemma 1 and Lemma 2.

Theorem 4. Let $A, B, C \in \mathbb{M}_{n}, W(A)$, $W(B)$, $W(C) \subset S_{\alpha}, \alpha \in\left[0, \frac{\pi}{2}\right)$. Then

$$
\begin{aligned}
\sec ^{n}(\alpha)|\operatorname{det}(A+B+C)| \geqslant & |\operatorname{det} A|+|\operatorname{det} B|+|\operatorname{det} C| \\
& +\left(2^{n}-2\right)(\sqrt{|\operatorname{det} A B|}+\sqrt{|\operatorname{det} A C|}+\sqrt{|\operatorname{det} B C|})
\end{aligned}
$$

Corollary 2. Let $A, B, C \in \mathbb{M}_{n}$ be accretive-dissipative. Then

$$
\begin{aligned}
2^{\frac{n}{2}}|\operatorname{det}(A+B+C)| \geqslant & |\operatorname{det} A|+|\operatorname{det} B|+|\operatorname{det} C| \\
& +\left(2^{n}-2\right)(\sqrt{|\operatorname{det} A B|}+\sqrt{|\operatorname{det} A C|}+\sqrt{|\operatorname{det} B C|}) .
\end{aligned}
$$

Acknowledgements. The work was supported by National Natural Science Foundation of China (NNSFC) [grant number 11271247].

REFERENCES

[1] S. Drury, M. Lin, Singular value inequalities for matrices with numerical ranges in a sector, Oper. Matrices. 8, 4 (2014), 1143-1148.
[2] X. Fu, Y. Liu, Rotfel'd inequality for partitioned matrices with numerical ranges in a sector, Linear Multilinear Algebra 64, 1 (2016), 105-109.
[3] A. George, K. H. D. Ikramov, On the properties of Accretive-Dissipative Matrices, Math. Notes. 77, 5-6 (2005), 767-776.
[4] D. J. Hartfiel, An extension of Haynsworth's determinant inequality, Proc. Amer. Math. Soc. 41, 2 (1973), 463-465.
[5] E. V. Haynsworth, Applications of an inequality for the Schur complement, Proc. Amer. Math. Soc. 21, 3 (1970), 512-516.
[6] R. A. Horn, C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.
[7] L. Hou, D. Zhang, Concave Functions of partitioned matrices with numerical ranges in a sector, Math. Inequal. Appl. 20, 2 (2017), 583-589.
[8] K. H. D. Ikramov, Determinantal Inequalities for Accretive-Dissipative Matrices, J. Math. Sci. 121, 4 (2004), 2458-2464.
[9] M. Lin, Fischer type determinantal inequalities for accretive-dissipative matrices, Linear Algebra Appl. 438, 6 (2013), 2808-2812.
[10] M. Lin, A determinantal inequality for positive definite matrices, Electron J. Linear Algebra 27, 1 (2014), 821-826.
[11] M. Lin, Extension of a result of Hanynsworth and Hartfiel, Arch. Math. 104, 1 (2015), 93-100.
[12] M. Lin, D. ZHOU, Norm inequalities for accretive-dissipative operator matrices, J. Math. Anal. Appl. 407, 2 (2013), 436-442.
[13] J. Liv, Generalizations of the Brunn-Minkowski inequality, Linear Algebra and its Applications 508, 1 (2016), 206-213.

Lei Hou

Department of Mathematics
Shanghai University
Shanghai 200444, China
e-mail: leihou312@hotmail.com
Sheng Dong
Department of Mathematics
Shanghai University
Shanghai 200444, China
e-mail: dongsheng7088@163.com

[^0]: Mathematics subject classification (2010): 15A45, 47A63.
 Keywords and phrases: Hartfiel inequality, determinantal inequality, sector, numerical range.

