
Mathematical
Inequalities

& Applications

Volume 21, Number 4 (2018), 1125–1133 doi:10.7153/mia-2018-21-77
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Abstract. We present a short proof of a conjecture proposed by I. Raşa (2017), which is an
inequality involving basic Bernstein polynomials and convex functions. This proof was given in
the letter to I. Raşa (2017). The methods of our proof allow us to obtain some extended versions
of this inequality as well as other inequalities given by I. Raşa. As a tool we use stochastic convex
ordering relations. We propose also some generalizations of the binomial convex concentration
inequality. We use it to insert some additional expressions between left and right sides of the
Raşa inequalities.

1. Introduction

For n ∈ N the classical Bernstein operators Bn : C ([0,1])→ C ([0,1]) , defined by

Bn( f )(x) =
n

∑
i=0

pn,i(x) f
(

i
n

)
for x ∈ [0,1],

with the Bernstein basic polynomials

pn,i(x) =
(

n
i

)
xi(1− x)n−i for i = 0,1, . . . ,n, x ∈ [0,1],

are the most prominent positive linear approximation operators (see [8]). If f ∈C ([0,1])
is a convex function, the inequality

n

∑
i=0

n

∑
j=0

(pn,i(x)pn, j(x)+ pn,i(y)pn, j(y)−2pn,i(x)pn, j(y)) f

(
i+ j
2n

)
� 0 (1.1)

is valid for all x,y ∈ [0,1] .
This inequality involving Bernstein basic polynomials and convex functions was

stated as an open problems 25 years ago by I. Raşa. During the Conference on Ulam’s
Type Stability (Rytro, Poland, 2014), Raşa [12] recalled his problem.
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Inequalities of type (1.1) have important applications. They are useful when study-
ing whether the Bernstein-Schnabl operators preserve convexity (see [3, 4]).

Recently, J. Mrowiec, T. Rajba and S. Wa̧sowicz [10] affirmed the conjecture (1.1)
in positive. Their proof makes heavy use of probability theory. As a tool they applied
a concept of stochastic convex orderings, as well as the so-called binomial convex con-
centration inequality. Later, U. Abel [1] gave an elementary proof of (1.1), which was
much shorter than that given in [10]. Very recently, A. Komisarski and T. Rajba [6]
gave a new, very short proof of (1.1), which is significantly simpler and shorter than
that given by U. Abel [1]. As a tool the authors use both stochastic convex orders as
well as the usual stochastic order.

Let us recall some basic notations and results on stochastic ordering (see [14]). If
μ and ν are two probability distributions such that∫

ϕ(x)μ(dx) �
∫

ϕ(x)ν(dx) for all convex functions ϕ : R → R,

provided the integrals exist, then μ is said to be smaller than ν in the convex stochastic
order (denoted as μ �cx ν ).

The binomial distribution with parameters n∈N and p∈ [0,1] (denoted by B(n, p))
is the probability distribution given by

B(n, p)({k}) = pn,k(p) =
(

n
k

)
pk(1− p)n−k for k = 0,1, . . . ,n

and B(n, p)(R\ {0,1, . . . n}) = 0. In particular, B(1, p) is the Bernoulli distribution.
Below we recall the theorem on the binomial convex concentration inequality (see

[14]).

THEOREM 1.1. Let n ∈ N , p1, . . . , pn ∈ [0,1] and p = p1+...+pn
n . Then

B(1, p1)∗ . . .∗B(1, pn) �cx B(n, p).

In the above theorem ∗ denotes the convolution of probability distributions. In
[10], the authors note that the inequality (1.1) is equivalent to the following stochastic
convex ordering relation

B(n,x)∗B(n,y) �cx
1
2

[B(n,x)∗B(n,x)+B(n,y)∗B(n,y)]. (1.2)

To prove (1.2), the authors proved the following two propositions on convex or-
dering relations

PROPOSITION 1.2. ([10])

B(n,x)∗B(n,y) �cx B
(
2n,

x+ y
2

)
. (1.3)
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PROPOSITION 1.3. ([10])

B
(
2n,

x+ y
2

)
�cx

1
2

[B(n,x)∗B(n,x)+B(n,y)∗B(n,y)]. (1.4)

The inequality (1.3) follows immediately from Theorem 1.1 on the binomial con-
vex concentration inequality. In the proof of (1.4), the authors used the Ohlin lemma
[11].

Raşa [13] remarked, that (1.1) is equivalent to

(B2n f ) (x)+ (B2n f ) (y) � 2
n

∑
i=0

n

∑
j=0

pn,i(x)pn, j(y) f

(
i+ j
2n

)
. (1.5)

Since B2n f is convex, we have

(B2n f ) (x)+ (B2n f ) (y) � 2(B2n f )
(

x+ y
2

)
. (1.6)

Thus the following problem seems to be a natural one. Prove that

(B2n f )
(

x+ y
2

)
�

n

∑
i=0

n

∑
j=0

pn,i(x)pn, j(y) f

(
i+ j
2n

)
(1.7)

for all convex f ∈ C ([0,1]) and x,y ∈ [0,1] .
If (1.7) is valid, then (1.5) is satisfied, and hence (1.1) is a consequence of (1.6)

and (1.7). Starting from these remarks, Raşa [13] presented the inequality (1.7) as an
open problem. A very simple probabilistic proof of the inequality (1.7) was given by
the authors in the letter to I. Raşa [7]. After that, an analytic proof of (1.7) was given in
[2].

In this paper, we present the proof of (1.7), given in the letter to I. Raşa [7], as well
as we give generalizations of (1.5), (1.6), (1.7) and (1.1). We propose also some gen-
eralizations of Theorem 1.1 on the binomial convex concentration inequality. Among
other, we use it to insert some additional expressions between left and right sides of the
Raşa inequalities.

2. Main results

First we recall a new conjecture of I. Raşa [13] and present its proof, which we
sent in the letter to I. Raşa [7].

THEOREM 2.1. (new conjecture of I. Raşa [7])

n

∑
i=0

n

∑
j=0

pn,i(x)pn, j(y) f

(
i+ j
2n

)
� (B2n f )

(
x+ y

2

)
(2.1)

for all convex functions f ∈ C ([0,1]) and x,y ∈ [0,1] .
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Proof. Note that (2.1) can be written in the form

B(n,x)∗B(n,y) �cx B
(
2n,

x+ y
2

)
, (2.2)

which was proved in [10] (see Proposition 1.2). The theorem is proved. �
In the following theorem we give a generalization of the inequalities (2.1), (1.6),

(1.5) and (1.1).

THEOREM 2.2. Let ni ∈ N for i = 1, . . .k and ∑k
i=1 ni = m. Then

n1

∑
i1=0

. . .
nk

∑
ik=0

pn1,i1(x1) . . . pnk,ik(xk) f

(
i1 + . . .+ ik

m

)
� (Bm f )

(
k

∑
i=1

ni

m
xi

)
, (2.3)

(Bm f )

(
k

∑
i=1

ni

m
xi

)
�

k

∑
i=1

ni

m
(Bm f ) (xi) , (2.4)

n1

∑
i1=0

. . .
nk

∑
ik=0

pn1,i1(x1) . . . pnk,ik(xk) f

(
i1 + . . .+ ik

m

)
�

k

∑
i=1

ni

m
(Bm f ) (xi) , (2.5)

n1

∑
i1=0

. . .
nk

∑
ik=0

pn1,i1(x1) . . . pnk,ik(xk) f

(
i1 + . . .+ ik

m

)
�

k

∑
i=1

ni

m

m

∑
j=0

pm, j(xi) f
(

j
m

)
(2.6)

for all convex functions f ∈ C ([0,1]) and x1, . . . ,xk ∈ [0,1] , .

Proof. To prove (2.3), using the well-known characterization of binomial distri-
butions, we have that for every i = 1, . . . ,k

B(ni,xi) = [B(1,xi)]∗ni = B(1,xi)∗ . . .∗B(1,xi),

which implies

B(n1,x1)∗ . . .∗B(nk,xk) = [B(1,x1)]
∗n1 ∗ . . .∗ [B(1,xk)]

∗nk .

Then by Theorem 1.1, we conclude that

B(n1,x1)∗ . . .∗B(nk,xk) �cx B(m, p), (2.7)

where p = ∑k
i=1 ni xi

m = ∑k
i=1

ni
m xi. Since (2.7) is equivalent to (2.3), the inequality (2.3)

is proved.
The inequality (2.4) follows immediately from the convexity of Bm f . In turn, the

inequality (2.5) is an immediate consequence of (2.3) and (2.4), and the inequality (2.6)
follows from (2.5). The theorem is proved. �

In the set of all the m-tuples p = (p1, . . . , pm) ∈ R
m we consider the following

quasiorder.
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DEFINITION 2.3. We say that q majorizes p (denoted by p ≺ q or q � p) if

(i) ∑m
l=1 p̂l = ∑m

l=1 q̂l ,

(ii) ∑k
l=1 p̂l � ∑k

l=1 q̂l for k = 1, . . . ,m ,

where p̂1 � . . . � p̂m and q̂1 � . . . � q̂m are nonincreasing permutations of p and q ,
respectively.

The majorization has been studied in [5] (before Theorem 45), [9], and many other
sources.

In the next theorem we give a generalization of the binomial convex concentration
inequality.

THEOREM 2.4. Let p = (p1, . . . , pm) ∈ [0,1]m and p′ = (p′1, . . . , p
′
m) ∈ [0,1]m be

such that p majorizes p′ (i.e. p � p′ ). Then

B(1, p1)∗ . . .∗B(1, pm) �cx B(1, p′1)∗ . . .∗B(1, p′m). (2.8)

REMARK 2.5. Intuitively, Theorem 2.4 says that if p′ is more concentrated than
p (p � p′ ), then B(1, p1) ∗ . . . ∗ B(1, pm) is more concentrated than B(1, p′1) ∗ . . . ∗
B(1, p′m) .

Proof. Let p � p′ . We need to show that for each convex function f : R → R (or
f : [0,n] → R) we have

E f

(
m

∑
i=1

Xi

)
� E f

(
m

∑
i=1

X ′
i

)
,

where X1, . . . ,Xm and X ′
1, . . . ,X

′
m are independent random variables such that Xi ∼

B(1, pi) and X ′
i ∼ B(1, p′i) for each i = 1, . . . ,m .

Since p′ is majorized by p , we may fix p0,p1,p2, . . . , pk ∈ [0,1]m such that
p0 � . . . � pk , p0 is a permutation of p , pk is a permutation of p′ , and such that
for every l = 1, . . . ,k there exist s,t ∈ {1, . . . ,m} such that pl

i = pl−1
i if i /∈ {s,t} ,

pl
s + pl

t = pl−1
s + pl−1

t , and pl
s and pl

t are located between pl−1
s and pl−1

t . In other
words pl is constructed from pl−1 by changing just two of its terms (making the values
of these terms closer).

Because of transitivity of the relation �cx it is enough to show (2.8) for p = pl−1

and p′ = pl , l = 1, . . . ,k . Let s,t ∈ {1, . . . ,m} be such that p′i = pi if i /∈ {s,t} ,
ps � p′s � p′t � pt , and p′s + p′t = ps + pt .

Let X1, . . . ,Xm be independent random variables such that Xi ∼ B(1, pi) , i =
1, . . . ,n . For i /∈ {s,t} we define X ′

i = Xi , and let X ′
s , X ′

t be independent, and in-
dependent on X ′

i , i /∈ {s,t} and such that X ′
s ∼ B(1, p′s) , X ′

t ∼ B(1, p′t) .
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Assume that f : R → R (or f : [0,n]→ R) is a convex function. Then we have the
equality

E f

(
m

∑
i=1

X ′
i

)
= E

(
(1− p′s)(1− p′t) · f

(
∑
i	=s,t

Xi

)

+ ((1− p′s)p
′
t + p′s(1− p′t)) · f

(
1+ ∑

i	=s,t

Xi

)
+ p′sp

′
t · f

(
2+ ∑

i	=s,t

Xi

))
,

and similarly for E f (∑m
i=1 Xi) . It follows that

E f

(
m

∑
i=1

X ′
i

)
−E f

(
m

∑
i=1

Xi

)

= E

(
((1− p′s)(1− p′t)− (1− ps)(1− pt)) · f

(
∑
i	=s,t

Xi

)
+((1− p′s)p

′
t + p′s(1− p′t)

−(1− ps)pt + ps(1− pt)) · f

(
1+ ∑

i	=s,t

Xi

)
+(p′sp

′
t − pspt) · f

(
2+ ∑

i	=s,t

Xi

))

= E

(
2(p′sp

′
t − pspt) ·

(
1
2

f

(
∑
i	=s,t

Xi

)
+

1
2

f

(
2+ ∑

i	=s,t

Xi

)
− f

(
1+ ∑

i	=s,t

Xi

)))
� 0.

The last inequality follows from the fact that

2(p′s p
′
t − pspt) =

(ps− pt)2 − (p′s− p′t)2

2
� 0,

and the non-negativity of

1
2

f

(
∑
i	=s,t

Xi

)
+

1
2

f

(
2+ ∑

i	=s,t

Xi

)
− f

(
1+ ∑

i	=s,t

Xi

)

follows from the convexity of the function f . The theorem is proved. �

REMARK 2.6. Taking in the above theorem p′ = (p, . . . , p) , where p = 1
m ∑m

i=1 pi ,
we obtain the inequality B(1, p1)∗ . . .∗B(1, pm) �cx B(m, p) , i.e. the binomial convex
concentration inequality given in Theorem 1.1.

In the following example we show that the condition p � p′ in Theorem 2.4 is
sufficient but it is not necessary.

EXAMPLE 2.7. Let p = ( 3
4 , 3

4 ,0) and p′ = ( 5
6 , 1

2 , 1
6) . We have p1 + p2 + p3 =

p′1 + p′2 + p′3 but p � p′ is not satisfied (because p1 = max(p1, p2, p3) is smaller than
p′1 = max(p′1, p

′
2, p

′
3)). On the other hand B(1, p1) ∗B(1, p2) ∗B(1, p3) �cx B(1, p′1) ∗

B(1, p′2)∗B(1, p′3) . Indeed, we have μ := B(1, p1)∗B(1, p2)∗B(1, p3) = 1
16 δ0 + 3

8 δ1 +
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9
16δ2 and ν := B(1, p′1)∗B(1, p′2)∗B(1, p′3) = 5

72δ0 + 31
72δ1 + 31

72 δ2 + 5
72δ3 . Then by the

Jensen inequality∫
f dν −

∫
f dμ =

(
5
72 f (0)+ 31

72 f (1)+ 31
72 f (2)+ 5

72 f (3)
)

−( 1
16 f (0)+ 3

8 f (1)+ 9
16 f (2)

)
= 19

144 ·
(

1
19 f (0)+ 8

19 f (1)+ 10
19 f (3)− f (2)

)
� 0.

for each convex functions f : R → R (or f : [0,3] → R).

The following example shows that it is not true that the condition p � p′ can be
weakened by replacing it with the conditions p = p′ and ∑m

i=1(pi − p)2 � ∑m
i=1(p

′
i −

p′)2 ( p = 1
m ∑m

i=1 pi and p′ = 1
m ∑m

i=1 p′i ), i.e. E(p) = E(p′) and Var(p) � Var(p′) .

EXAMPLE 2.8. Let p = (1, 1
2 , 1

2 ,0) and p′ = ( 5
6 , 5

6 , 1
6 , 1

6 ) . Then we have p = 1
2 =

p′ and ∑m
i=1(pi − p)2 = 1

2 > 4
9 = ∑m

i=1(p
′
i − p′)2 . We have also μ := B(1, p1) ∗ . . . ∗

B(1, p4) = 1
4 δ1 + 1

2δ2 + 1
4 δ3 and ν := B(1, p′1)∗ . . .∗B(1, p′4) = 25

64 δ0 + 260
64 δ1 + 726

64 δ2 +
260
64 δ3 + 25

64 δ4 , which implies that for the convex function f (x) = |x− 2| we obtain∫
f dμ = 1

2 > 155
324 =

∫
f dν , which contradicts the convex ordering relation μ �cx ν .

In the following theorem we give the conditions, which are equivalent to (2.8), but
this characterization seems completely impractical (therefore we skip the proof).

THEOREM 2.9. Let p = (p1, . . . , pm) ∈ [0,1]m and p′ = (p′1, . . . , p
′
m) ∈ [0,1]m .

The following conditions are equivalent:

(i) B(1, p1)∗ . . .∗B(1, pm) �cx B(1, p′1)∗ . . .∗B(1, p′m) ,

(ii) σ1(p) = σ1(p′) and ∀k=2,3,...,m ∑m
j=k(−1) j−k

( j−2
k−2

)
(σ j(p′)−σ j(p)) � 0 ,

where σ1, . . . ,σm are symmetric polynomials of m variables, i.e.

σ j(x1, . . . ,xm) = ∑
A⊂{1,...,m}, |A|= j

∏
i∈A

xi.

In the following theorem we give a generalization of Proposition 1.3.

THEOREM 2.10. Let p = (p1, . . . , pm) ∈ [0,1]m and p′ = (p′1, . . . , p
′
m) ∈ [0,1]m

be such that p � p′ . Then

m

∑
i=1

(Bn f )(pi) �
m

∑
i=1

(Bn f )(p′i)

for all convex functions f : [0,1] → R .
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Proof. Since the function Bn f : [0,1] → R is convex, the theorem follows imme-
diately from the Hardy-Littlewood-Pólya inequality ([5], Theorem 108). �

In the next theorem we use Theorem 2.4 and the Jensen inequality to insert some
additional expressions between left and right sides of the Raşa inequalities (2.3) and
(2.4), respectively.

THEOREM 2.11. Let k ∈ N , ni ∈ N and xi ∈ [0,1] for i = 1, . . .k . Let

k

∑
i=1

ni = m, ñi = n1 + . . .+ni and x̃i = (ñi)
−1 (n1x1 + . . .+nixi) for i = 1, . . .k.

Then for all convex functions f ∈ C ([0,1]) and j = 3, . . .k−1

n1

∑
i1=0

. . .
nk

∑
ik=0

pn1,i1(x1) . . . pnk,ik (xk) f

(
i1 + . . .+ ik

m

)

�
ñ j−1

∑
i j−1=0

n j

∑
i j=0

. . .
nk

∑
ik=0

pñ j−1,i j−1
(x̃ j−1)pnj ,i j (x j) . . . pnk,ik(xk) f

(
i j−1 + . . .+ ik

m

)

�
ñ j

∑
i j=0

n j+1

∑
i j+1=0

. . .
nk

∑
ik=0

pñ j ,i j (x̃ j)pnj+1,i j+1(x j+1) . . . pnk,ik(xk) f

(
i j + . . .+ ik

m

)

� . . . � (Bm f )

(
k

∑
i=1

ni

m
xi

)
, (2.9)

(Bm f )

(
k

∑
i=1

ni

m
xi

)
� . . . � ñ j

m
(Bm f ) (x̃ j)+

n j+1

m
(Bm f )

(
x j+1

)
+ . . .+

nk

m
(Bm f ) (xk)

� ñ j−1

m
(Bm f )

(
x̃ j−1

)
+

n j

m
(Bm f ) (x j)+ . . .+

nk

m
(Bm f ) (xk)

� . . . �
k

∑
i=1

ni

m
(Bm f ) (xi) . (2.10)

Proof. Put

x = x̃k =
k

∑
i=1

ni

m
xi.

To prove (2.9), we take into account the following equalities

B(ni,xi) = [B(1,xi)]
∗ni , B(ñi, x̃i) = [B(1, x̃i)]

∗ñi , i = 1, . . . ,k.

Then by Theorem 2.4, we obtain the following convex ordering relations

B(n1,x1)∗ . . .∗B(nk,xk) �cx B(ñ2, x̃2)∗B(n3,x3)∗ . . .∗B(nk,xk) �cx . . . �cx B(m,x),
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which are equivalent to the inequalities (2.9).
It is not difficult to prove, that by the convexity of Bm f , the inequalities (2.10)

follow immediately from the Jensen inequality. The theorem is proved. �
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