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Abstract. A new characterization for the boundedness of the difference of composition operators
Cϕ −Cψ from weighted Bergman spaces into the Bloch space in terms of the Bloch norm of the
quantities ϕn −ψn , n ∈ N , is given, as well as an asymptotic estimate for the essential norm of
the operator.

1. Introduction

Let D be the open unit disk in the complex plane C and H(D) be the space of
holomorphic functions in D . For a,z ∈ D , let σa(z) = a−z

1−az be the Möbius transforma-
tion of D which interchanges 0 and a . For z , w ∈ D , the pseudo-hyperbolic distance
between z and w is given by

ρ(z,w) = |σw(z)| =
∣∣∣∣ z−w
1−wz

∣∣∣∣.

It is well known that ρ(z,w) � 1. We denote ρ(ϕ(z),ψ(z)) by ρ(z) .
For 0 < p < ∞ and α > −1, the weighted Bergman space Ap

α = Ap
α(D) consists

of all f ∈ H(D) such that

‖ f‖p
Ap

α
= (α +1)

∫
D

| f (z)|p(1−|z|2)αdA(z) < ∞,

where dA denote the normalized Lebesgue area measure on D such that A(D) = 1.
Recall that the classical Bloch space B = B(D) consists of all f ∈ H(D) such

that
‖ f‖β = sup

z∈D

(1−|z|2)| f ′(z)| < ∞.

Then the norm ‖ f‖B = | f (0)|+‖ f‖β makes B a Banach space.
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Let ϕ be an analytic self-map of the unit disk D . Associated with ϕ is the com-
position operator Cϕ defined by

Cϕ( f )(z) = f (ϕ(z)), z ∈ D,

for f ∈ H(D) . We denote by S(D) the set of all analytic self-maps of D . The main
subject in the study of composition operators is to describe operator theoretic properties
of Cϕ in terms of function theoretic properties of ϕ . We refer to books [3, 34] for the
basic theory of composition operators on a wide variety of topics.

Recall that L : X → Y is compact if it maps bounded sets into relatively compact
sets and X ,Y are Banach spaces. The essential norm of a continuous linear operator L
is its distance to compact operators, that is,

‖L‖e,X→Y = inf{‖L−K‖X→Y : K is compact },

where ‖·‖X→Y is the operator norm. Clearly, L is compact if and only if ‖L‖e,X→Y = 0.
There has been a considerable interest in estimating of essential norms of compo-

sition, weighted composition and other concrete operators involving the composition
ones on spaces of analytic functions (see, e.g., [3, 8, 11, 13, 16, 18, 21, 22, 24, 25, 27,
29, 30, 33].

It is a simple consequence of the Schwarz-Pick inequality that any composition
operator Cϕ is bounded on B . The compactness and essential norm of Cϕ on B was
studied in [12, 13, 31]. Wulan, Zheng and Zhu proved that Cϕ : B → B is compact
if and only if limn→∞ ‖ϕn‖B = 0 in [32]. Soon after that, Zhao [33] obtained an exact
value of the essential norm for Cϕ : B → B , i.e.

‖Cϕ‖e,B→B =
e
2

limsup
n→∞

‖ϕn‖B.

In [8], it was proved that Cϕ : Ap
α → B , 1 � p < ∞ , α > −1, ϕ ∈ S(D) , is bounded if

and only if supn�1 n(α+2)/p‖ϕn‖B < ∞ (for earlier characterizations, their extensions
and related operators, see, e.g., [9, 10, 19, 20, 23, 26]). Moreover, under the assumption
that Cϕ : Ap

α → B is bounded, they showed that

‖Cϕ‖e,Ap
α→B ≈ limsup

n→∞
n(α+2)/p‖ϕn‖B.

Many authors have investigated in the last few decades the difference of compo-
sition operators on various analytic function spaces in order to study their topological
structure. The study of the difference of two composition operators was started in
[1, 15]. We refer to [2, 4, 5, 6, 7, 14, 16, 17, 24, 28] and related references therein for
more information of the difference of composition operators between different spaces
of analytic functions.

Let ϕ ,ψ ∈ S(D) and 1 � p < ∞ , α > −1. We define

Dϕ(z) :=
(1−|z|2)ϕ ′(z)

(1−|ϕ(z)|2) 2+α+p
p

, Dψ(z) :=
(1−|z|2)ψ ′(z)

(1−|ψ(z)|2) 2+α+p
p

.
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In [35], Zhu and Yang studied the boundedness and compactness of the difference of
two composition operators from Ap

α to B . For example, they showed that Cϕ −Cψ :
Ap

α → B is bounded if and only if supz∈D |Dϕ (z)−Dψ(z)| < ∞ and

sup
z∈D

|Dϕ(z)|ρ(z) < ∞ (or sup
z∈D

|Dψ (z)|ρ(z) < ∞).

Motivated by the results in [8] and [35], in the present paper, we study the bound-
edness, compactness and essential norm of the operator Cϕ −Cψ : Ap

α → B by using
the sequence n(α+2)/p‖ϕn−ψn‖B , n ∈ N .

For two quantities P and Q which may depend on ϕ and ψ , we use the abbre-
viation P � Q whenever there is a positive constant c (independent of ϕ and ψ ) such
that P � cQ . We write P ≈ Q , if P � Q � P .

2. Boundedness of Cϕ −Cψ : Ap
α → B

In this section we characterize the boundedness of the operator Cϕ −Cψ : Ap
α →B .

In order to prove the main result in this section, we need the following lemmas.

LEMMA 2.1. [9] Let 1 � p < ∞ , α > −1 . If f ∈ Ap
α , then

| f (z)| � C‖ f‖Ap
α

(1−|z|2) 2+α
p

and | f ′(z)| � C‖ f‖Ap
α

(1−|z|2) 2+α+p
p

.

LEMMA 2.2. [35] Let 1 � p < ∞ , α > −1 . Then for all z,w ∈ D ,

sup
‖ f‖

Ap
α �1

|(1−|z|2) 2+α+p
p f ′(z)− (1−|w2|) 2+α+p

p f ′(w)| � ρ(z,w).

For any a ∈ D , we define the following two families of test functions:

fa(z) =
∫ z

0

(1−|a|2) 2+α+p
p

(1−au)2 2+α+p
p

du,

ga(z) =
∫ z

0

(1−|a|2) 2+α+p
p

(1−au)2 2+α+p
p

·σa(u)du, z ∈ D.

LEMMA 2.3. Let ϕ ,ψ ∈ S(D) , 1 � p < ∞ , α > −1 . Then
(i)

sup
a∈D

‖(Cϕ −Cψ) fa‖B � sup
n∈N

n
2+α

p ‖ϕn−ψn‖B.

(ii)

sup
a∈D

‖(Cϕ −Cψ)ga‖B � sup
n∈N

n
2+α

p ‖ϕn−ψn‖B.
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Proof. It is easy to see that ‖ga‖Ap
α

� ‖ fa‖Ap
α

� 1. Moreover,

fa(z) = (1−|a|2)t
∞

∑
k=0

Γ(k+2t)
(k+1)!Γ(2t)

akzk+1, z ∈ D.

Here t = 2+α+p
p . Then by Stirling’s formula we get

fa(z) ≈ (1−|a|2)t
∞

∑
k=0

k2t−2akzk+1, z ∈ D.

Therefore,

‖(Cϕ −Cψ) fa‖B � (1−|a|2)t
∞

∑
k=1

k2t−2|a|k‖ϕk+1−ψk+1‖B

� (1−|a|2)t
∞

∑
k=1

kt−1|a|k(k+1)t−1‖ϕk+1−ψk+1‖B

� (1−|a|2)t
∞

∑
k=1

kt−1|a|k sup
n∈N

n
2+α

p ‖ϕn−ψn‖B

� sup
n∈N

n
2+α

p ‖ϕn−ψn‖B.

Since a ∈ D is arbitrary, we see that (i) holds.
Similarly, we have

ga(z) = (1−|a|2)t
∫ z

0

( ∞

∑
k=0

Γ(k+2t)
k!Γ(2t)

akuk
)(

a− (1−|a|2)
∞

∑
k=0

akuk+1
)
du

= a fa(z)− (1−|a|2)t+1
∫ z

0

∞

∑
k=1

( k−1

∑
l=0

Γ(l +2t)
l!Γ(2t)

)
ak−1ukdu.

Hence,

‖(Cϕ −Cψ)ga‖B

� ‖(Cϕ −Cψ) fa‖B +(1−|a|2)t+1
∞

∑
k=1

k2t−1|a|k−1‖ϕk+1−ψk+1‖B

� ‖(Cϕ −Cψ) fa‖B +(1−|a|2)t+1
∞

∑
k=1

kt |a|k−1 sup
n�2

nt−1‖ϕn−ψn‖B

� sup
n∈N

n
2+α

p ‖ϕn−ψn‖B,

for any a ∈ D . Therefore (ii) holds. The proof is complete. �

By modifying the proof of Corollary 4.20 in [34], we can easily obtain the follow-
ing result.
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LEMMA 2.4. Let 1 � p < ∞ , α > −1 . Then

‖zn‖Ap
α
≈ 1

n
2+α

p

.

THEOREM 2.1. Let 1 � p < ∞ and −1 < α < ∞ . Let ϕ and ψ be analytic
self-maps of D . Then Cϕ −Cψ : Ap

α → B is bounded if and only if

sup
n∈N

n
2+α

p ‖ϕn−ψn‖B < ∞. (1)

Proof. First, we assume that (1) holds. For any z ∈ D , we have

‖(Cϕ −Cψ) fϕ(z)‖B

� |((Cϕ −Cψ) fϕ(z))
′(z)|(1−|z|2)

=
∣∣ f ′ϕ(z)(ϕ(z))ϕ ′(z)− f ′ϕ(z)(ψ(z))ψ ′(z)

∣∣(1−|z|2)

=
∣∣Dϕ (z)− (1−|ϕ(z)|2) 2+α+p

p (1−|ψ(z)|2) 2+α+p
p

(1−ϕ(z)ψ(z))
2(2+α+p)

p

Dψ (z)
∣∣

� |Dϕ (z)|− (1−|ϕ(z)|2) 2+α+p
p (1−|ψ(z)|2) 2+α+p

p

|1−ϕ(z)ψ(z)| 2(2+α+p)
p

|Dψ (z)|

and

‖(Cϕ −Cψ)gϕ(z)‖B �
∣∣g′ϕ(z)(ϕ(z))ϕ ′(z)−g′ϕ(z)(ψ(z))ψ ′(z)

∣∣(1−|z|2)

=
(1−|ϕ(z)|2) 2+α+p

p (1−|ψ(z)|2) 2+α+p
p

|1−ϕ(z)ψ(z)| 2(2+α+p)
p

|Dψ (z)|ρ(z).

Hence

|Dϕ (z)|ρ(z) � ‖(Cϕ −Cψ) fϕ(z)‖Bρ(z)+‖(Cϕ −Cψ)gϕ(z)‖B

� ‖(Cϕ −Cψ) fϕ(z)‖B +‖(Cϕ −Cψ)gϕ(z)‖B,

and consequently

sup
z∈D

|Dϕ (z)|ρ(z) � sup
z∈D

‖(Cϕ −Cψ) fϕ(z)‖B + sup
z∈D

‖(Cϕ −Cψ)gϕ(z)‖B

� sup
a∈D

‖(Cϕ −Cψ) fa‖B + sup
a∈D

‖(Cϕ −Cψ)ga‖B. (2)

Similarly,

|Dψ (z)|ρ(z) � ‖(Cϕ −Cψ) fψ(z)‖B +‖(Cϕ −Cψ)gψ(z)‖B. (3)



1158 Y. ZHANG AND L. ZHANG

By Lemma 2.2, we have

‖(Cϕ −Cψ) fϕ(z)‖B

�
∣∣Dϕ(z)− (1−|ϕ(z)|2) 2+α+p

p (1−|ψ(z)|2) 2+α+p
p

(1−ϕ(z)ψ(z))
2(2+α+p)

p

Dψ(z)
∣∣

� |Dϕ (z)−Dψ(z)|−
∣∣∣∣1− (1−|ϕ(z)|2) 2+α+p

p (1−|ψ(z)|2) 2+α+p
p

(1−ϕ(z)ψ(z))
2(2+α+p)

p

∣∣∣∣|Dψ (z)|

� |Dϕ (z)−Dψ(z)|
−∣∣(1−|ϕ(z)|2) 2+α+p

p f ′ϕ(z)(ϕ(z))− (1−|ψ(z)|2) 2+α+p
p f ′ϕ(z)(ψ(z))

∣∣|Dψ(z)|
� |Dϕ (z)−Dψ(z)|− |Dψ(z)|ρ(z).

Thus, by (3) we get

|Dϕ(z)−Dψ(z)|
� ‖(Cϕ −Cψ) fϕ(z)‖B + |Dψ(z)|ρ(z)
� ‖(Cϕ −Cψ) fϕ(z)‖B +‖(Cϕ −Cψ) fψ(z)‖B +‖(Cϕ −Cψ)gψ(z)‖B.

Hence

sup
z∈D

|Dϕ (z)−Dψ(z)| � sup
a∈D

‖(Cϕ −Cψ) fa‖B + sup
a∈D

‖(Cϕ −Cψ)ga‖B. (4)

Combining (2), (4), and Lemma 2.3, we have

sup
z∈D

|Dϕ(z)|ρ(z)+ sup
z∈D

|Dϕ (z)−Dψ(z)|

� sup
a∈D

‖(Cϕ −Cψ) fa‖B + sup
a∈D

‖(Cϕ −Cψ)ga‖B

� sup
n∈N

n
2+α

p ‖ϕn−ψn‖B < ∞.

By Theorem 1 of [35], we see that Cϕ −Cψ : Ap
α → B is bounded.

Conversely, suppose that Cϕ −Cψ : Ap
α → B is bounded. For any n ∈ N , let

fn(z) = zn/‖zn‖Ap
α
. Then ‖ fn‖Ap

α
= 1. Thus, by the boundedness of Cϕ −Cψ and

Lemma 2.4, we obtain

∞ > ‖Cϕ −Cψ‖Ap
α→B � ‖(Cϕ −Cψ) fn‖B =

‖ϕn−ψn‖B

‖zn‖Ap
α

� n
2+α

p ‖ϕn−ψn‖B,

which implies that (1) holds. The proof is complete. �
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3. Essential norm estimates

An estimate for the essential norm of Cϕ −Cψ from Ap
α to B will be given in this

section by using n
2+α

p ‖ϕn−ψn‖B . We state some auxiliary results firstly.

LEMMA 3.1. [31] Let X ,Y be two Banach spaces of analytic functions on D .
Suppose that the following statements hold.

(1) The point evaluation functionals on Y are continuous.

(2) The closed unit ball of X is a compact subset of X in the topology of uniform
convergence on compact sets.

(3) T : X → Y is continuous when X and Y are given the topology of uniform con-
vergence on compact sets.

Then, T is a compact operator if and only if given a bounded sequence { fn} in X such
that fn → 0 uniformly on compact sets, then the sequence {T fn} converges to zero in
the norm of Y .

LEMMA 3.2. Let 1 � p < ∞ and −1 < α < ∞ . Let ϕ and ψ be analytic self-
maps of D such that Cϕ −Cψ : Ap

α → B is bounded. Then the following inequalities
hold.

(i)

limsup
|a|→1

‖(Cϕ −Cψ) fa‖B � limsup
n→∞

n
2+α

p ‖ϕn−ψn‖B

(ii)

limsup
|a|→1

‖(Cϕ −Cψ)ga‖B � limsup
n→∞

n
2+α

p ‖ϕn−ψn‖B.

Proof. Let t = 2+α+p
p . For any N ∈ N , from the proof of Lemma 2.3, we obtain

limsup
|a|→1

‖(Cϕ −Cψ) fa‖B

� limsup
|a|→1

(1−|a|2)t
N

∑
k=0

Γ(k+2t)
(k+1)!Γ(2t)

(k+1)1−t|a|k(k+1)
2+α

p ‖ϕk+1−ψk+1‖B

+ limsup
|a|→1

(1−|a|2)t
∞

∑
k=N+1

Γ(k+2t)
(k+1)!Γ(2t)

(k+1)1−t|a|k

× sup
n�N+1

(n+1)
2+α

p ‖ϕn+1−ψn+1‖B

� sup
n�N+2

n
2+α

p ‖ϕn−ψn‖B,

which implies that (i) holds.
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Similarly, from the proof of Lemma 2.3 and (i), we have

limsup
|a|→1

‖(Cϕ −Cψ)ga‖B � limsup
|a|→1

‖(Cϕ −Cψ) fa‖B + sup
n�N+2

n
2+α

p ‖ϕn−ψn‖B

� sup
n�N+2

n
2+α

p ‖ϕn−ψn‖B.

The proof is complete. �

THEOREM 3.1. Let 1 � p < ∞ and α > −1 . Let ϕ and ψ be analytic self-maps
of D . If Cϕ ,Cψ : Ap

α → B are bounded, then

‖Cϕ −Cψ‖e,Ap
α→B ≈ limsup

n→∞
n

2+α
p ‖ϕn−ψn‖B.

Proof. First, we consider the upper estimate. We adopt the method from [17].
For h ∈ (0,1) , let Kh f (z) = fh(z) = f (hz) . Then Kh : Ap

α → Ap
α is compact with

‖Kh‖Ap
α→Ap

α
� 1. Let {hn} ⊂ (0,1) be a sequence such that hn → 1 as n → ∞ . Since

each Khn is compact on Ap
α , Cϕ −Cψ is bounded from Ap

α to B , (Cϕ −Cψ )Khn is also
compact from Ap

α to B . Then, we have

‖Cϕ −Cψ‖e,Ap
α→B � limsup

n→∞
‖Cϕ −Cψ − (Cϕ −Cψ)Khn‖

= limsup
n→∞

‖(Cϕ −Cψ)(I−Khn)‖
� limsup

n→∞
sup

‖ f‖
Ap

α
�1

‖(Cϕ −Cψ)(I−Khn) f‖B,

which is bounded by

limsup
n→∞

sup
‖ f‖Ap

α
�1

|(I−Khn)( f (ϕ(0))− f (ψ(0)))|+ limsup
n→∞

sup
‖ f‖Ap

α
�1

sup
z∈D

|((I−Khn) f )′(ϕ(z))ϕ ′(z)− ((I−Khn) f )′(ψ(z))ψ ′(z)|(1−|z|2).
(5)

Since f − fhn uniformly on compact subsets of D as n → ∞ and the sets {ϕ(0)} and
{ψ(0)} are compact, we have

limsup
n→∞

sup
‖ f‖

Ap
α

�1
|(I−Khn)( f (ϕ(0))− f (ψ(0)))| = 0. (6)

Let

Pn = sup
‖ f‖

Ap
α

�1
sup
z∈D

|((I−Khn) f )′(ϕ(z))ϕ ′(z)− ((I−Khn) f )′(ψ(z))ψ ′(z)|(1−|z|2),

f ∈ Ap
α with ‖ f‖Ap

α
� 1 and fix an arbitrary s ∈ (0,1) . We set

Q f
n (z) := |((I−Khn) f )′(ϕ(z))ϕ ′(z)− ((I−Khn) f )′(ψ(z))ψ ′(z)|(1−|z|2)
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and

D1 := {z ∈ D : |ϕ(z)| > s, |ψ(z)| > s},D2 := {z ∈ D : |ϕ(z)| > s, |ψ(z)| � s},
D3 := {z ∈ D : |ϕ(z)| � s, |ψ(z)| > s},D4 := {z ∈ D : |ϕ(z)| � s, |ψ(z)| � s}.

Then

limsup
n→∞

Pn = limsup
n→∞

sup
‖ f‖

A
p
α

�1
sup
z∈D

Q f
n = max

1�i�4
limsup

n→∞
sup

‖ f‖
A

p
α

�1
sup
z∈Di

Q f
n

= max
1�i�4

{limsup
n→∞

P(i)
n },

where P(i)
n = sup‖ f‖

Ap
α

�1 supz∈Di
Q f

n . In addition, we have

Q f
n (z) � |((I−Khn) f )′(ψ(z))|(1−|ψ(z)|2) 2+α+p

p |Dϕ(z)−Dψ(z)|
+|((I−Khn) f )′(ϕ(z))(1−|ϕ(z)|2) 2+α+p

p

−((I−Khn) f )′(ψ(z))(1−|ψ(z)|2) 2+α+p
p ||Dϕ (z)|

� |((I−Khn) f )′(ψ(z))|(1−|ψ(z)|2) 2+α+p
p |Dϕ(z)−Dψ(z)|+ |Dϕ(z)|ρ(z)

and

Q f
n (z) � |((I−Khn) f )′(ϕ(z))|(1−|ϕ(z)|2) 2+α+p

p |Dϕ(z)−Dψ(z)|+ |Dψ(z)|ρ(z).

Using the fact that

limsup
n→∞

‖(I−Khn) f‖Ap
α

� limsup
n→∞

‖I−Khn‖Ap
α→Ap

α
‖ f‖Ap

α
� 1,

we get

limsup
n→∞

P(1)
n � limsup

n→∞
sup

‖ f‖
Ap

α
�1

sup
z∈D1

(
|((I−Khn) f )′(ϕ(z))|(1−|ϕ(z)|2) 2+α+p

p

×|Dϕ(z)−Dψ(z)|+ |Dψ(z)|ρ(z)
)

� limsup
n→∞

sup
‖ f‖

Ap
α

�1
sup

|ϕ(z)|>s
|ψ(z)|>s

‖(I−Khn) f‖Ap
α
|Dϕ (z)−Dψ(z)|

+ sup
|ψ(z)|>s

|Dψ (z)|ρ(z)

� sup
|ϕ(z)|>s
|ψ(z)|>s

|Dϕ(z)−Dψ(z)|+ sup
|ψ(z)|>s

|Dψ (z)|ρ(z).

Thus,
limsup

n→∞
P(1)

n � limsup
|ϕ(z)|→1
|ψ(z)|→1

|Dϕ(z)−Dψ(z)|+ limsup
|ψ(z)|→1

|Dψ (z)|ρ(z).
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Since Cϕ and Cψ are bounded and supz∈D |Dϕ (z)−Dψ(z)| < ∞ , we obtain

limsup
n→∞

P(2)
n

� limsup
n→∞

sup
‖ f‖

Ap
α

�1
sup
z∈D2

(
|((I−Khn) f )′(ψ(z))|(1−|ψ(z)|2) 2+α+p

p

×|Dϕ(z)−Dψ(z)|+ |Dϕ(z)|ρ(z)
)

� limsup
n→∞

sup
‖ f‖

Ap
α

�1
sup

|ψ(z)|�s
|((I−Khn) f )′(ψ(z))|(1−|ψ(z)|2) 2+α+p

p

×|Dϕ(z)−Dψ(z)|+ sup
|ϕ(z)|>s

|Dϕ (z)|ρ(z)

� sup
|ϕ(z)|>s

|Dϕ(z)|ρ(z).

Since s is arbitrary, we have

limsup
n→∞

P(2)
n � limsup

|ϕ(z)|→1
|Dϕ (z)|ρ(z).

Similarly, we obtain

limsup
n→∞

P(3)
n � limsup

|ψ(z)|→1
|Dψ (z)|ρ(z).

Finally, by Lemma 3.1, we obtain

limsup
n→∞

P(4)
n = limsup

n→∞
sup

‖ f‖
A

p
α

�1
sup
z∈D4

Q f
n

� limsup
n→∞

sup
‖ f‖

Ap
α

�1
sup

|ϕ(z)|�s
|((I−Khn) f )′(ϕ(z))||ϕ ′(z)|(1−|z|2)

+ limsup
n→∞

sup
‖ f‖

A
p
α

�1
sup

|ψ(z)|�s
|((I−Khn) f )′(ψ(z))||ψ ′(z)|(1−|z|2)

= 0.

Therefore,

limsup
n→∞

Pn = max{limsup
n→∞

P(1)
n , limsup

n→∞
P(2)

n , limsup
n→∞

P(3)
n , limsup

n→∞
P(4)

n }
� limsup

|ϕ(z)|→1
|Dϕ(z)|ρ(z)+ limsup

|ψ(z)|→1
|Dψ (z)|ρ(z)

+ limsup
|ϕ(z)|→1
|ψ(z)|→1

|Dϕ(z)−Dψ(z)|. (7)

Set
A f g := limsup

|a|→1
‖(Cϕ −Cψ) fa‖B + limsup

|a|→1
‖(Cϕ −Cψ)ga‖B.
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From the proof of Theorem 2.1, we obtain

limsup
|ϕ(z)|→1

|Dϕ (z)|ρ(z) � A f g, limsup
|ψ(z)|→1

|Dψ(z)|ρ(z) � A f g

and

limsup
|ϕ(z)|→1
|ψ(z)|→1

|Dϕ(z)−Dψ(z)| � A f g.

By (5), (6), (7) and Lemma 3.2, we have

‖Cϕ −Cψ‖e,Ap
α→B

� limsup
|ϕ(z)|→1

|Dϕ (z)|ρ(z)+ limsup
|ψ(z)|→1

|Dψ (z)|ρ(z)+ limsup
|ϕ(z)|→1
|ψ(z)|→1

|Dϕ(z)−Dψ(z)|

� A f g � limsup
n→∞

n
2+α

p ‖ϕn−ψn‖B,

as desired.
Next, we consider the lower estimate. Let n be any positive integer. Set yn(z) =

zn/‖zn‖Ap
α
. Then ‖yn‖Ap

α
= 1 and by Lemma 2.4, yn → 0 uniformly on compact

subsets of D . Let K : Ap
α → B be a compact operator. By Lemma 3.1 we have

limn→∞ ‖Kyn‖B = 0. Hence,

‖Cϕ −Cψ −K‖ � limsup
n→∞

‖(Cϕ −Cψ −K)yn‖B � limsup
n→∞

‖(Cϕ −Cψ)yn‖B.

By Lemma 2.4, we have

limsup
n→∞

n
2+α

p ‖ϕn−ψn‖B � limsup
n→∞

1
‖zn‖Ap

α

‖(Cϕ −Cψ)zn‖B

= limsup
n→∞

‖(Cϕ −Cψ)yn‖B

� ‖Cϕ −Cψ‖e,Ap
α→B .

The proof is complete. �

From Theorem 3.1, we immediately get the following corollary.

COROLLARY 3.1. Let 1 � p < ∞ and α > −1 . Let ϕ and ψ be analytic self-
maps of D such that Cϕ , Cψ are bounded from Ap

α to B . Then Cϕ −Cψ is compact
from Ap

α to B if and only if

limsup
n→∞

n
2+α

p ‖ϕn−ψn‖B = 0.
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