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Abstract. The purpose of this paper is to present some general inequalities for operator concave
functions which include some known inequalities as a particular case. Among other things,
we prove that if A ∈ B (H ) is a positive operator such that mI � A � MI for some scalars
0 < m < M and Φ is a normalized positive linear map on B (H ) , then
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where 0 � r � 1 , which nicely extend the operator Kantorovich inequality.

1. Introduction

In this paper we consider operator monotone and convex functions defined on the
half real line (0,∞) . Let B (H ) be the algebra of all bounded linear operators on
a complex Hilbert space and I denote the identity operator. If A is an operator then
we denote Sp(A) its spectrum. An operator A is called positive if 〈Ax,x〉 � 0 for
all x ∈ H , and we then write A � 0. By B � A we mean that B− A is positive,
while B > A means that B−A is strictly positive. A mapping Φ on B (H ) is said
to be positive if Φ(A) � 0 for each A � 0 and is called normalized if Φ preserves the
identity operator.

For any strictly positive operator A,B ∈ B (H ) and v ∈ [0,1] , we write

A∇vB := (1− v)A+ vB and A�vB := A
1
2

(
A− 1

2 BA− 1
2

)v
A

1
2 .

For the case v = 1
2 , we write ∇ and � , respectively. The operator arithmetic-geometric

mean inequality (in short, AM-GM inequality) asserts that A�vB � A∇vB , for any pos-
itive operators A,B ∈ B (H ) and any v ∈ [0,1] . A real valued function f defined on
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an interval J is said to be operator convex (resp. operator concave) if f (A∇vB) �
f (A)∇v f (B) (resp. f (A∇vB) � f (A)∇v f (B)) for all self-adjoint operators A,B with
spectra in J and all v ∈ [0,1] . A continuous real valued function f defined on an in-
terval J is called operator monotone (more precisely, operator monotone increasing) if
B � A implies that f (B) � f (A) , and operator monotone decreasing if B � A implies
f (B) � f (A) for all self-adjoint operators A,B with spectra in J .

During the past decades several formulations, extensions or refinements of the
Kantorovich inequality [7] in various settings have been introduced by many mathe-
maticians; see [6, 8, 9, 11] and references therein.

Let A ∈ B (H ) be a positive operator such that mI � A � MI for some scalars
0 < m < M and Φ be a normalized positive linear map on B (H ) , then

Φ
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In addition
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whenever m2A � B � M2A and 0 < m < M . The first inequality goes back to Nakamoto
and Nakamura in the 1996’s [12], the second is more general and has been proved only
in 2009 by Lee [5] (its matrix version).

In Sec. 2, we first extend (2), then as an application, we obtain a generalization of
(1). In Sec. 3, we use elementary operations and give some inequalities related to the
Bellman type.

2. Some operator inequalities involving positive linear maps

We prove the following new result, from which (2) directly follows:

THEOREM 1. Let A,B∈B (H ) be two strictly positive operators such that m2
1I �

A � M2
1 I , m2

2I � B � M2
2 I for some positive scalars m1 < M1 , m2 < M2 , and let Φ be

a normalized positive linear map on B (H ) . If f is an operator monotone, then
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where m = m2
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Proof. According to the assumption, we have
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(
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) 1
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it follows that
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which is the statement of the theorem. �
We complement Theorem 1 by proving the following.

THEOREM 2. Let A,B∈B (H ) be two strictly positive operators such that m2
1I �

A � M2
1 I , m2

2I � B � M2
2 I for some scalars m1 < M1 , m2 < M2 , and let Φ be a nor-

malized positive linear map on B (H ) . If g is an operator monotone decreasing,
then
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Proof. Since g is operator monotone decreasing on (0,∞) , so 1
g is operator mono-

tone on (0,∞) . Now by applying Theorem 1 for f = 1
g , we have
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Taking the inverse, we get
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proving the main assertion of the theorem. �
As a byproduct of Theorems 1 and 2, we have the following result.

COROLLARY 1. Under the assumptions of Theorem 1.
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The important special case
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was observed by Moslehian et al. [11] (see [9, Theorem 2.5] for much stronger
result).
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Our next result is a straightforward application of Theorems 1 and 2.

COROLLARY 2. Let A∈B (H ) be positive operator such that mI � A � MI for
some scalars 0 < m < M and Φ be a normalized positive linear map on B (H ) .
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(i) If f is an operator monotone, then
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In the same vein as in Corollary 1, we have the following consequences.

COROLLARY 3. Under the assumptions of Corollary 2.
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For the special case in which r = 1 , we have
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3. Operator Bellman inequality with negative parameter

Let A,B ∈ B (H ) be two strictly positive operators and Φ be a normalized pos-
itive linear map on B (H ) . If f is an operator concave, then for any v ∈ [0,1] , the
following inequality obtained in [10, Theorem 2.1]:

Φ( f (A))∇vΦ( f (B)) � f (Φ(A∇vB)) . (3)

In the same paper, as an operator version of Bellman inequality [3], the authors showed
that

Φ((I−A)r∇v(I−B)r) � Φ(I−A∇vB)r, (4)

where A,B are two operator contractions (in the sense that ‖A‖ , ‖B‖ � 1) and r,v ∈
[0,1] .

Under the convexity assumption on f , (4) can be reversed:

THEOREM 3. Let A,B ∈ B (H ) be two contraction operators and Φ be a nor-
malized positive linear map on B (H ) . Then

Φ(I−A∇vB)r � Φ((I−A)r∇v(I−B)r) , (5)

for any v ∈ [0,1] and r ∈ [−1,0]∪ [1,2] .

Proof. If f is operator convex, we have

f (Φ(A∇vB)) � Φ( f (A∇vB)) (by Choi-Davis-Jensen inequality [4, p. 62])

� Φ( f (A)∇v f (B)) (by operator convexity of f ).

The function f (t) = tr is operator convex on (0,∞) for r ∈ [−1,0]∪ [1,2] (see [4,
Chapter 1]). It can be verified that f (t) = (1− t)r is operator convex on (0,1) for
r ∈ [−1,0]∪ [1,2] . This implies the desired result (5). �

However, we are looking for something stronger than (5). The principal object of
this section is to prove the following:

THEOREM 4. Let A,B ∈ B (H ) be two contraction operators and Φ be a nor-
malized positive linear map on B (H ) . Then

Φ(I−A∇vB)r � Φ(I−A)r�vΦ(I−B)r

� Φ((I−A)r�v(I−B)r)
� Φ((I−A)r∇v(I−B)r) ,

where v ∈ [0,1] and r ∈ [−1,0] .

The proof is at the end of this section. The following lemma will play an important
role in our proof.
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LEMMA 1. Let A,B ∈ B (H ) be two strictly positive operators and Φ be a nor-
malized positive linear map on B (H ) . If f is an operator monotone decreasing, then
for any v ∈ [0,1]

f (Φ(A∇vB)) � f (Φ(A))�v f (Φ(B)) � Φ( f (A))∇vΦ( f (B)) , (6)

and
f (Φ(A∇vB)) � Φ( f (A)�v f (B)) � Φ( f (A))∇vΦ( f (B)) . (7)

More precisely,

f (Φ(A∇vB)) � f (Φ(A))�v f (Φ(B)) � Φ( f (A)�v f (B)) � Φ( f (A))∇vΦ( f (B)) . (8)

Proof. As Ando and Hiai mentioned in [2, (2.16)], the function f is an operator
monotone decreasing if and only if

f (A∇vB) � f (A)�v f (B) . (9)

We emphasize here that if f satisfies in (9), then is operator convex (this class of func-
tions is called operator log-convex). It is easily verified that if Sp(A) ,Sp(B)⊆ J , then
Sp(Φ(A)) , Sp(Φ(B)) ⊆ J . So we can replace A,B by Φ(A) , Φ(B) in (9), respec-
tively. Therefore we can write

f (Φ(A∇vB)) � f (Φ(A))�v f (Φ(B))
� Φ( f (A))�vΦ( f (B)) (by Choi-Davis-Jensen inequality and

monotonicity property of mean)

� Φ( f (A)∇v f (B)) (by AM-GM inequality).

This completes the proof of the inequality (6). To prove the inequality (7), note that if
Sp(A) , Sp(B) ⊆ J , then Sp(A∇vB) ⊆ J . By computation

f (Φ(A∇vB)) � Φ( f (A∇vB)) (by Choi-Davis-Jensen inequality)

� Φ( f (A)�v f (B)) (by (9))

� Φ( f (A))�vΦ( f (B)) (by Ando’s inequality [1, Theorem 3])

� Φ( f (A)∇v f (B)) (by AM-GM inequality),

proving the inequality (7). We know that if g is operator monotone on (0,∞) , then g
is operator concave. As before, it can be shown that

g(Φ(A))�vg(Φ(B)) � Φ(g(A))�vΦ(g(B)) � Φ(g(A)�vg(B)) .

Taking the inverse, we get

g(Φ(A))−1�vg(Φ(B))−1 � Φ(g(A)�vg(B))−1 � Φ
(
g(A)−1�vg(B)−1

)
.

If g is operator monotone, then f = 1
g is operator monotone decreasing, we conclude

f (Φ(A)) �v f (Φ(B)) � Φ( f (A)�v f (B)) .

This proves (8). �
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We are now in a position to present a proof of Theorem 4.

Proof of Theorem 4. It is well-known that the function f (t) = tr on (0,∞) is oper-
ator monotone decreasing for r ∈ [−1,0] . It implies that the function f (t) = (1− t)r on
(0,1) is operator monotone decreasing too. By applying Lemma 1, we get the desired
result. �
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