ON SOME CLASSICAL TRACE INEQUALITIES AND A NEW HILBERT-SCHMIDT NORM INEQUALITY

MOSTAFA HAYAJNEH, SAJA HAYAJNEH AND FUAD KITTANEH

(Communicated by J.-C. Bourin)

Abstract. Let A be a positive semidefinite matrix and B be a Hermitian matrix. Using some classical trace inequalities, we prove, among other inequalities, that

 $||A^{s}B + BA^{1-s}||_{2} \leq ||A^{t}B + BA^{1-t}||_{2}$

for $\frac{1}{2} \leq s \leq t \leq 1$. We conjecture that this inequality is also true for all unitarily invariant norms, and we affirmatively settle this conjecture for the case $s = \frac{1}{2}$ and t = 1.

1. Introduction

Throughout this paper, all matrices are assumed to be $n \times n$ complex matrices. In their investigation of trace inequalities for multiple products of powers of two positive semidefinite matrices, T. Ando, F. Hiai, and K. Okubo [1] proved that if A and B are positive semidefinite matrices, then

$$\operatorname{tr}\left(A^{\frac{1}{2}}B\right)^{2} \leqslant \operatorname{tr} A^{t}BA^{1-t}B \leqslant \operatorname{tr} AB^{2} \tag{1}$$

for $0 \le t \le 1$. See Corollary 2.2 in [1].

The inequalities (1) can be generalized by proving that the inequality

$$\operatorname{tr} A^{s}BA^{1-s}B \leqslant \operatorname{tr} A^{t}BA^{1-t}B \tag{2}$$

holds for $\frac{1}{2} \leq s \leq t \leq 1$, where A is a positive semidefinite matrix and B is a Hermitian matrix.

To accomplish this, we consider the function $f(t) = \text{tr } A^t B A^{1-t} B$ for $0 \le t \le 1$. Note that f(t) = f(1-t), and so f(t) is symmetric about $t = \frac{1}{2}$. The Cauchy Schwarz inequality (see [2, p. 96]) says that for any two matrices X and Y, we have

$$|\text{tr } XY| \leq (\text{tr } X^*X)^{\frac{1}{2}} (\text{tr } Y^*Y)^{\frac{1}{2}}.$$

Mathematics subject classification (2010): Primary 15A60, Secondary 15A45, 15B57, 47A30, 47B15. *Keywords and phrases*: Trace, Hilbert-Schmidt norm, positive semidefinite matrix, Hermitian matrix, inequality.

Using this inequality, we can prove that f(t) is logarithmically convex (and hence it is convex) for $0 \le t \le 1$. In fact, if $0 \le s, t \le 1$, then

$$\begin{split} f\left(\frac{s+t}{2}\right) &= \mathrm{tr}\; A^{\frac{s+t}{2}} B A^{1-\left(\frac{s+t}{2}\right)} B \\ &= \mathrm{tr}\left(A^{\frac{t}{2}} B A^{\frac{1-t}{2}}\right) \left(A^{\frac{1-s}{2}} B A^{\frac{s}{2}}\right) \\ &\leqslant \left(\mathrm{tr}\; A^{\frac{1-t}{2}} B A^{t} B A^{\frac{1-t}{2}}\right)^{\frac{1}{2}} \left(\mathrm{tr}\; A^{\frac{s}{2}} B A^{1-s} B A^{\frac{s}{2}}\right)^{\frac{1}{2}} \\ &= \left(\mathrm{tr}\; A^{t} B A^{1-t} B\right)^{\frac{1}{2}} \left(\mathrm{tr}\; A^{s} B A^{1-s} B\right)^{\frac{1}{2}} \\ &= (f\left(t\right))^{\frac{1}{2}} \left(f\left(s\right)\right)^{\frac{1}{2}} \\ &\leqslant \frac{1}{2} \left(f\left(s\right) + f\left(t\right)\right). \end{split}$$

Thus, f(t) is decreasing for $0 \le t \le \frac{1}{2}$, increasing for $\frac{1}{2} \le t \le 1$, attains its minimum at $t = \frac{1}{2}$, and attains its maximum at t = 0 and t = 1.

Another proof of the inequality (2) can be concluded from Lemma 2 in [7]. We remark here that the inequality (2) is equivalent to saying that

$$\operatorname{tr} A^{\alpha} B A^{\beta} B \leqslant \operatorname{tr} A^{\gamma} B A^{\delta} B$$

for $\alpha, \beta, \gamma, \delta \ge 0$ with $\alpha + \beta = \gamma + \delta$ and

$$\max\left\{\alpha,\beta\right\} \leqslant \max\left\{\gamma,\delta\right\}.$$

Related classical trace inequalities, based on log convexity results, can be found in [8], [13], and [14].

The second inequality in (1) is a particular case of the inequality

$$\left|\operatorname{tr} A^{s} B^{t} A^{1-s} B^{1-t}\right| \leqslant \operatorname{tr} AB,\tag{3}$$

where *A* and *B* are positive semidefinite matrices and $0 \le s, t \le 1$.

In [1], T. Ando, F. Hiai, and K. Okubo proved that the inequality (3) holds for all non-negative real numbers s,t for which

$$\left|s-\frac{1}{2}\right|+\left|t-\frac{1}{2}\right|\leqslant\frac{1}{2}.$$

It is natural to ask what is the complete range of validity of the inequality (3). Plevnik [14] gave a counterexample to the inequality (3). He answered it in the negative for $s = \frac{4}{5}, t = \frac{1}{5}$.

Recently, M. Hayajneh, S. Hayajneh, and F. Kittaneh [11] generalized the inequality (3) by proving that the inequality

$$\left|\operatorname{tr} A^{w} B^{z} A^{1-w} B^{1-z}\right| \leqslant \operatorname{tr} AB,\tag{4}$$

holds for all complex numbers w, z for which

$$\left|\operatorname{Re} w - \frac{1}{2}\right| + \left|\operatorname{Re} z - \frac{1}{2}\right| \leqslant \frac{1}{2}.$$

A special case of the inequality (4) when w = z is the inequality

$$\left|\operatorname{tr} A^{z}B^{z}A^{1-z}B^{1-z}\right| \leqslant \operatorname{tr} AB.$$

In [5], Bottazzi et al. have proved this inequality under the condition that

$$\frac{1}{4} \leqslant \operatorname{Re} z \leqslant \frac{3}{4}$$

We mention here that the inequality (3) has been studied by several authors as in [3], [9], and [10].

Section 2 is devoted to proving the following Hilbert-Schmidt norm inequality as the first application of the inequality (2):

$$\|A^{s}B + BA^{1-s}\|_{2} \leq \|A^{t}B + BA^{1-t}\|_{2}$$

for $\frac{1}{2} \leq s \leq t \leq 1$, where *A* is a positive semidefinite matrix and and *B* is a Hermitian matrix.

In Section 3, we prove the following trace inequality as the second application of the inequality (2):

tr
$$A^t B A^{1-t} (\log A) B \leq \operatorname{tr} A^t (\log A) B A^{1-t} B$$
,

where A is a positive definite matrix, B is a Hermitian matrix, and $\frac{1}{2} \le t \le 1$. As a consequence of this trace inequality, we prove that the inequality

$$\left\|A^{t}B + BA^{1-t}\log A\right\|_{2} \leq \left\|A^{t}\left(\log A\right)B + BA^{1-t}\right\|_{2}$$

holds for $\frac{1}{2} \leq t \leq 1$, where *A* is a positive definite matrix with $\sigma(A) \subseteq [e^{-1}, 1] \cup [e, \infty)$ and *B* is a Hermitian matrix.

It would be interesting to investigate the following conjectures concerning the generalizations of our Hilbert-Schmidt norm inequalities to the wider class of unitarily invariant norms.

CONJECTURE 1. Let *A* be a positive semidefinite matrix and *B* be a Hermitian matrix. Then for $\frac{1}{2} \le s \le t \le 1$ and for every unitarily invariant norm, we have

$$||||A^{s}B + BA^{1-s}||| \leq |||A^{t}B + BA^{1-t}|||.$$

CONJECTURE 2. Let *A* be a positive definite matrix such that $\sigma(A) \subseteq [e^{-1}, 1] \cup [e, \infty)$ and *B* be a Hermitian matrix. Then for $\frac{1}{2} \leq t \leq 1$ and for every unitarily invariant norm, we have

$$|||A^{t}B + BA^{1-t}\log A||| \leq |||A^{t}(\log A)B + BA^{1-t}|||.$$

In Section 4, we present further applications of the inequality (2). These applications contain trace inequalities involving means of two non-negative real numbers, which include a generalization of the Ando-Hiai-Okubo trace inequalities (1). We conclude the paper with a general trace inequality for products of positive definite matrices, which is related to the inequality (2).

2. A new Hilbert-Schmidt norm inequality

In this section, we affirmatively settle Conjecture 1 for the Hilbert-Schmidt norm. This application is a Hilbert-Schmidt norm inequality, which asserts that

$$\left\| A^{s}B + BA^{1-s} \right\|_{2} \leq \left\| A^{t}B + BA^{1-t} \right\|_{2}$$

where *A* is a positive semidefinite matrix, *B* is a Hermitian matrix, and $\frac{1}{2} \le s \le t \le 1$. A useful lemma for our purpose is the following.

LEMMA 1. Let A and C be any two positive semidefinite matrices. Then the function $g(t) = \text{tr } (A^t + A^{1-t}) C$ is increasing for $\frac{1}{2} \leq t \leq 1$.

Proof. Without loss of generality, we may assume that A is a positive definite matrix. The general case follows by a continuity argument.

By the spectral theorem, it is evident that the matrix $(A^t - A^{1-t}) \log A$ is a positive semidefinite matrix for $\frac{1}{2} \le t \le 1$. Since *C* is a positive semidefinite matrix, it follows that

$$\frac{d}{dt}g(t) = \operatorname{tr}\left(A^{t}\log A - A^{1-t}\log A\right)C \ge 0.$$

Therefore, g(t) is increasing for $\frac{1}{2} \leq t \leq 1$.

THEOREM 1. Let A be a positive semidefinite matrix and B be a Hermitian matrix. Then

$$\left\|A^{s}B + BA^{1-s}\right\|_{2} \leq \left\|A^{t}B + BA^{1-t}\right\|_{2} \quad for \quad \frac{1}{2} \leq s \leq t \leq 1.$$

In other words, the function $h(t) = ||A^tB + BA^{1-t}||_2$ is increasing for $\frac{1}{2} \le t \le 1$.

Proof. Using the fact that for any matrix X, $||X||_2^2 = \text{tr } X^*X$, we have

$$(h(t))^{2} = \left\|A^{t}B + BA^{1-t}\right\|_{2}^{2}$$

= tr $(BA^{t} + A^{1-t}B) (A^{t}B + BA^{1-t})$
= tr $(A^{2t}B^{2} + A^{2(1-t)}B^{2}) + 2$ tr $A^{t}BA^{1-t}B$
= tr $(A^{2t} + A^{2(1-t)})B^{2} + 2$ tr $A^{t}BA^{1-t}B$.

Replacing *A* by A^2 and taking $C = B^2$ in Lemma 1, we see that tr $(A^{2t} + A^{2(1-t)})B^2$ is increasing for $\frac{1}{2} \le t \le 1$. Since tr $A^t B A^{1-t} B$ is increasing for $\frac{1}{2} \le t \le 1$, it follows that h(t) is increasing for $\frac{1}{2} \le t \le 1$. This completes the proof of the theorem. \Box

The arithmetic-geometric mean inequality for unitarily invariant norms (see, e.g., [4] or [12]) says that if S and T are positive semidefinite matrices, then for every matrix X and every unitarily invariant norm, we have

$$2|||SXT||| \leq |||S^2X + XT^2|||.$$

Using the triangle inequality, the self-adjointness of unitarily invariant norms, and the arithmetic-geometric mean inequality for unitarily invariant norms, we have

$$\begin{split} \left\| \left\| A^{\frac{1}{2}}B + BA^{\frac{1}{2}} \right\| &\leq \left\| A^{\frac{1}{2}}B \right\| + \left\| BA^{\frac{1}{2}} \right\| \\ &= 2 \left\| A^{\frac{1}{2}}B \right\| \\ &\leq \left\| AB + B \right\| , \end{split}$$

where *A* is a positive semidefinite matrix and *B* is a Hermitian matrix. This affirmatively settles Conjecture 1 for the case $s = \frac{1}{2}$ and t = 1.

3. Related inequalities

The following trace inequality is the second application of the inequality (2).

THEOREM 2. Let A be a positive definite matrix and B be a Hermitian matrix. Then for $\frac{1}{2} \leq t \leq 1$, we have

tr
$$A^t B A^{1-t} (\log A) B \leq \text{tr } A^t (\log A) B A^{1-t} B.$$

Proof. Consider $f(t) = \text{tr } A^t B A^{1-t} B$. Then we have

$$\frac{d}{dt}f(t) = \operatorname{tr}\left(\frac{d}{dt}(A^{t}B)A^{1-t}B + A^{t}B\frac{d}{dt}(A^{1-t}B)\right)$$
$$= \operatorname{tr}\left(-A^{t}BA^{1-t}(\log A)B + A^{t}(\log A)BA^{1-t}B\right).$$

Since the function $f(t) = \text{tr } A^t B A^{1-t} B$ is increasing for $\frac{1}{2} \leq t \leq 1$, it follows that $\frac{d}{dt} f(t) \ge 0$. Thus,

tr
$$A^t B A^{1-t} (\log A) B \leq \operatorname{tr} A^t (\log A) B A^{1-t} B$$
.

This completes the proof of the theorem. \Box

Letting t = 1 in Theorem 2, we have the following corollary.

COROLLARY 1. Let A be a positive definite matrix and B be a Hermitian matrix. Then

$$\operatorname{tr} AB(\log A)B \leqslant \operatorname{tr} A(\log A)B^2.$$
(5)

It should be mentioned here that the inequality (5) can also be concluded from Theorem 1.2 in [6].

The following norm inequality is a another consequence of Theorem 2.

THEOREM 3. Let A be a positive definite matrix such that $\sigma(A) \subseteq [e^{-1}, 1] \cup [e, \infty)$ and B be a Hermitian matrix. Then for $\frac{1}{2} \leq t \leq 1$, we have

$$||A^{t}B + BA^{1-t}(\log A)||_{2} \leq ||A^{t}(\log A)B + BA^{1-t}||_{2}.$$

Proof. We can see that the square of the right-hand side of the desired norm inequality is equal to

tr
$$\left(A^{2t} (\log A)^2 B^2 + A^{2(1-t)} B^2\right) + 2$$
 tr $A^t (\log A) B A^{1-t} B$

and the square of the left-hand side is equal to

tr
$$\left(A^{2t}B^2 + A^{2(1-t)}(\log A)^2B^2\right) + 2$$
 tr $A^tBA^{1-t}(\log A)B$

Note that tr $A^t B A^{1-t} (\log A) B \leq \text{tr } A^t (\log A) B A^{1-t} B$ by Theorem 2. Thus, it is enough to show that

$$\operatorname{tr}\left(A^{2t}B^{2} + A^{2(1-t)}\left(\log A\right)^{2}B^{2}\right) \leq \operatorname{tr}\left(A^{2t}\left(\log A\right)^{2}B^{2} + A^{2(1-t)}B^{2}\right).$$
(6)

By the spectral theorem, it is evident that $\sigma(A) \subseteq [e^{-1}, 1] \cup [e, \infty)$ implies that the matrix $(A^{2t} - A^{2(1-t)}) ((\log A)^2 - I)$ is a positive semidefinite matrix. Since B^2 is also positive semidefinite, it follows that

$$\operatorname{tr}\left(A^{2t} - A^{2(1-t)}\right)\left(\left(\log A\right)^2 - I\right)B^2 \ge 0.$$

This gives the inequality (6).

Thus,

$$\operatorname{tr}\left(A^{2t} \left(\log A\right)^{2} B^{2} + A^{2(1-t)} B^{2}\right) + 2\operatorname{tr} A^{t} \left(\log A\right) B A^{1-t} B$$
$$\geq \operatorname{tr}\left(A^{2t} B^{2} + A^{2(1-t)} \left(\log A\right)^{2} B^{2}\right) + 2\operatorname{tr} A^{t} B A^{1-t} \left(\log A\right) B.$$

Hence, the desired norm inequality is valid for $\frac{1}{2} \leq t \leq 1$. \Box

Note that if we set $t = \frac{1}{2}$ in Theorem 3, the inequality becomes equality, but if we set t = 1, we get the following inequality.

COROLLARY 2. Let A be a positive definite matrix such that $\sigma(A) \subseteq [e^{-1}, 1] \cup [e, \infty)$ and B be a Hermitian matrix. Then

$$||AB + B(\log A)||_2 \leq ||A(\log A)B + B||_2.$$

4. Further applications

In this section, we give more applications of the inequality (2). These applications contain trace inequalities involving means of two non-negative real numbers, which include a generalization of the Ando-Hiai-Okubo trace inequalities (1). Here, we assume that A is a positive semidefinite matrix, B is a Hermitian matrix, $a, b \ge 0$, and $\frac{1}{2} \leq r \leq 1$.

REMARK 1. Let f(a,b) and g(a,b) be means of a and b. Then

tr
$$A^{g(r,\frac{1}{2})}BA^{1-g(r,\frac{1}{2})}B \leq \text{tr } A^{r}BA^{1-r}B \leq \text{tr } A^{f(r,1)}BA^{1-f(r,1)}B.$$
 (7)

In fact, since f(a,b) and g(a,b) are means of a and b and $\frac{1}{2} \leq r \leq 1$, it follows by the internality property that

$$\frac{1}{2} \leqslant g\left(r, \frac{1}{2}\right) \leqslant r \leqslant f\left(r, 1\right) \leqslant 1$$

Therefore, using the inequality (2), we have

tr
$$A^{g(r,\frac{1}{2})}BA^{1-g(r,\frac{1}{2})}B \leq \text{tr } A^{r}BA^{1-r}B \leq \text{tr } A^{f(r,1)}BA^{1-f(r,1)}B$$

The following example is derived from the inequality (1).

EXAMPLE 1. Let $f(a,b) = \max\{a,b\}$ and $g(a,b) = \min\{a,b\}$ in the inequality (1). Then

$$\operatorname{tr}\left(A^{\frac{1}{2}}B\right)^{2} \leqslant \operatorname{tr} A^{r}BA^{1-r}B \leqslant \operatorname{tr} AB^{2}.$$
(8)

The inequalities (8) yield the inequalities (1) when B is a positive semidefinite matrix.

Another related trace inequality is

$$\operatorname{tr} A^{\alpha} B A^{\beta} B \leqslant \frac{1}{2} \operatorname{tr} \left(A^{\alpha+\eta} B A^{\beta-\eta} B + A^{\alpha-\eta} B A^{\beta+\eta} B \right), \tag{9}$$

where A is a positive semidefinite matrix, B is a Hermitian matrix and $\alpha, \beta \ge \eta \ge 0$.

To prove the inequality (9), let $C = BA^{\frac{\beta+\eta}{2}} - A^{\eta}BA^{\frac{\beta-\eta}{2}}$ and $R = A^{\alpha-\eta}$. Since tr $RCC^* \ge 0$, it follows that

$$\operatorname{tr} A^{\alpha-\eta} \left(BA^{\frac{\beta+\eta}{2}} - A^{\eta} BA^{\frac{\beta-\eta}{2}} \right) \left(A^{\frac{\beta+\eta}{2}} B - A^{\frac{\beta-\eta}{2}} BA^{\eta} \right) \ge 0,$$

which is equivalent to the inequality (9).

It is interesting to see that the inequality (9) gives another proof of the convexity of the function f(t). To see this, replace A by $A^{\frac{1}{\alpha+\beta}}$ in the inequality (9) and set $s = \frac{\alpha+\eta}{\alpha+\beta}$, $t = \frac{\alpha-\eta}{\alpha+\beta}$ to get $f(\frac{s+t}{2}) \leq \frac{1}{2}(f(s)+f(t))$.

REMARK 2. Since the function $f(t) = \operatorname{tr} A^{t}BA^{1-t}B$ is logarithmically convex (and hence it is convex) for $0 \le t \le 1$, it follows that $\frac{d^2}{dt^2} f(t) \ge 0$. Thus, for a positive definite matrix A and a Hermitian matrix B, we have the trace inequality

tr
$$A^{t}(\log A)BA^{1-t}(\log A)B \leq \frac{1}{2}\operatorname{tr}\left(A^{t}BA^{1-t}(\log A)^{2}B + A^{1-t}BA^{t}(\log A)^{2}B\right).$$
 (10)

Letting $t = \frac{1}{2}$ in the inequality (10), we obtain the inequality

tr
$$\left(A^{\frac{1}{2}}(\log A)B\right)^2 \leq \operatorname{tr} A^{\frac{1}{2}}BA^{\frac{1}{2}}(\log A)^2B.$$

Letting t = 0 or t = 1 in the inequality (10), we obtain the inequality

tr
$$(\log A) BA (\log A) B \leq \frac{1}{2} \operatorname{tr} \left(AB (\log A)^2 B + BA (\log A)^2 B \right).$$

REMARK 3. It should be mentioned here that the functions g(t) given in Lemma 1 and h(t) given in Theorem 1 are also logarithmically convex (and hence they are convex) for $0 \le t \le 1$, symmetric about $t = \frac{1}{2}$, decreasing for $0 \le t \le \frac{1}{2}$, increasing for $\frac{1}{2} \le t \le 1$, attain their minima at $t = \frac{1}{2}$, and attain their maxima at t = 0 and t = 1.

We conclude the paper with a general trace inequality, from which we obtain a trace inequality related to those given in the previous sections.

THEOREM 4. Let T be a positive definite matrix, X,Y be positive semidefinite matrices, and B be a Hermitian matrix. Then $\operatorname{tr}\left(T^{\frac{1}{2}}YT^{-\frac{1}{2}}BXB+T^{-\frac{1}{2}}YT^{\frac{1}{2}}BXB\right) \leq \operatorname{tr}\left(T^{-\frac{1}{2}}YT^{-\frac{1}{2}}BX^{\frac{1}{2}}TX^{\frac{1}{2}}B+T^{\frac{1}{2}}YT^{\frac{1}{2}}BX^{\frac{1}{2}}T^{-1}X^{\frac{1}{2}}B\right).$ If, in addition, T commutes with X and Y, then

tr
$$YBXB \leq \frac{1}{2}$$
tr $(YT^{-1}BXTB + YTBXT^{-1}B)$.

Proof. Let $C = BX^{\frac{1}{2}}T^{\frac{1}{2}} - TBX^{\frac{1}{2}}T^{-\frac{1}{2}}$ and $R = T^{-\frac{1}{2}}YT^{-\frac{1}{2}}$. Since tr $RCC^* \ge 0$, it follows that

tr
$$T^{-\frac{1}{2}}YT^{-\frac{1}{2}}\left(BX^{\frac{1}{2}}T^{\frac{1}{2}} - TBX^{\frac{1}{2}}T^{-\frac{1}{2}}\right)\left(T^{\frac{1}{2}}X^{\frac{1}{2}}B - T^{-\frac{1}{2}}X^{\frac{1}{2}}BT\right) \ge 0,$$

which is equivalent to

 $\operatorname{tr}\left(T^{\frac{1}{2}}YT^{-\frac{1}{2}}BXB + T^{-\frac{1}{2}}YT^{\frac{1}{2}}BXB\right) \leq \operatorname{tr}\left(T^{-\frac{1}{2}}YT^{-\frac{1}{2}}BX^{\frac{1}{2}}TX^{\frac{1}{2}}B + T^{\frac{1}{2}}YT^{\frac{1}{2}}BX^{\frac{1}{2}}T^{-1}X^{\frac{1}{2}}B\right).$ This completes the proof of the theorem. \Box

Based on Theorem 4, we have the following trace inequality, which is closely related to the one given in the inequality (9). In this inequality, the positivity of the matrix A is strengthend, while the positivity of the exponents is released.

COROLLARY 3. Let A be a positive definite matrix and B be a Hermitian matrix. Then for the real numbers α, β, η , we have

$$\operatorname{tr} A^{\alpha} B A^{\beta} B \leqslant \frac{1}{2} \operatorname{tr} \left(A^{\alpha+\eta} B A^{\beta-\eta} B + A^{\alpha-\eta} B A^{\beta+\eta} B \right).$$

Proof. The result follows immediately by replacing X, Y, T by A^{β} , A^{α} , A^{η} , respectively in Theorem 4. \Box

Note that if we restrict the values of α, β, η in Corollary 3 such that $\alpha, \beta \ge \eta \ge 0$ and if we use a continuity argument, then we retain the inequality (9).

Acknowledgement. The authors are grateful to J. C. Bourin for his comments and suggestions.

REFERENCES

- T. ANDO, F. HIAI, AND K. OKUBO, Trace inequalities for multiple products of two matrices, Math. Inequal. Appl. 3 (2000), 307–318.
- [2] R. BHATIA, Matrix Analysis, Springer, New York, 1997.
- [3] R. BHATIA, Trace inequalities for products of positive definite matrices, J. Math. Phys. 55, 013509 (2014), 3 pp.
- [4] R. BHATIA AND C. DAVIS, More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. 14 (1993), 132–136.
- [5] T. BOTTAZZI, R. ELENCWAJG, G. LAROTONDA, AND A. VARELA, Inequalities related to Bourin and Heinz means with a complex parameter, J. Math. Anal. Appl. 426 (2015), 765–773.
- [6] J. C. BOURIN, Matrix versions of some classical inequalities, Linear Algebra Appl. 416 (2006), 890– 907.
- [7] J. C. BOURIN, Some inequalities for norms on matrices and operators, Linear Algebra Appl. 292 (1999), 139–154.
- [8] J. C. BOURIN AND E. Y. LEE, Matrix inequalities from a two variables functional, Internat. J. Math. 27, 1650071 (2016), 19 pp.
- [9] S. HAYAJNEH AND F. KITTANEH, Lieb-Thirring trace inequalities and a question of Bourin, J. Math. Phys. 54, 033504 (2013), 8 pp.
- [10] M. HAYAJNEH, S. HAYAJNEH AND F. KITTANEH, Remarks on some norm inequalities for positive semidefinite matrices and questions of Bourin, Math. Inequal. Appl. 20 (2017), 225–232.
- [11] M. HAYAJNEH, S. HAYAJNEH AND F. KITTANEH, On the Ando-Hiai-Okubo trace inequality, J. Operator Theory 77 (2017), 77–86.
- [12] F. KITTANEH, A note on the arithmetic-geometric mean inequality for matrices, Linear Algebra Appl. 171 (1992), 1–8.
- [13] M. SABABHEH, Log and harmonically log convex functions related to matrix norms, Oper. Matrices 10 (2016), 453–465.
- [14] L. PLEVNIK, On a matrix trace inequality due to Ando, Hiai and Okubo, Indian J. Pure Appl. math. 47 (2016), 491–500.

(Received March 14, 2018)

Mostafa Hayajneh Department of Mathematics Yarmouk University Irbid, Jordan e-mail: hayaj86@yahoo.com

Saja Hayajneh Department of Mathematics The University of Jordan Amman, Jordan e-mail: sajajo23@yahoo.com

Fuad Kittaneh Department of Mathematics The University of Jordan Amman, Jordan e-mail: fkitt@ju.edu.jo