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MONOTONICITY PROPERTIES AND BOUNDS INVOLVING

THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST KIND

ZHEN-HANG YANG, WEI-MAO QIAN AND YU-MING CHU

(Communicated by S. Varošanec)

Abstract. In the article, we establish several monotonicity properties of the functions involving
the complete elliptic integral of the first kind. As applications, we present sharp bounds for the
complete elliptic integral of the first kind and the arithmetic-geometric mean.

1. Introduction

The well-known complete elliptic integrals K (r) and E (r) [15] of the first and
second kinds are defined as

K (r) =
∫ π/2

0

dt√
1− r2 sin2(t)

, E (r) =
∫ π/2

0

√
1− r2 sin2(t)dt (0 < r < 1),

K
(
0+)= E

(
0+)=

π
2

, E
(
1−
)

= 1, K
(
1−
)

= ∞.

Both K (r) and E (r) are the particular cases of the Gaussian hypergeometric
function [57–59, 63, 64, 75, 83]

F(a,b;c;x) =
∞

∑
n=0

(a,n)(b,n)
(c,n)

xn

n!
(−1 < x < 1), (1.1)

where (a,0) = 1 for a �= 0, (a,n) = Γ(a+n)/Γ(a) and Γ(x) =
∫ ∞
0 tx−1e−t dt (x > 0)

is the classical gamma function [74, 78, 79, 82, 84, 85]. In facts, K (r) and E (r) can
be expressed by

K (r) =
π
2

F

(
1
2
,
1
2
;1;r2

)
=

π
2

∞

∑
n=0

(
1
2 ,n
)2

(n!)2 r2n, (1.2)
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E (r) =
π
2

F

(
−1

2
,
1
2
;1;r2

)
=

π
2

∞

∑
n=0

(− 1
2 ,n
)( 1

2 ,n
)

(n!)2 r2n.

There are close connections between the complete elliptic integrals and bivariate
means. For example, the Toader mean T (a,b) [22, 24, 25, 27] and the arithmetic-
geometric mean AG(a,b) [13, 14, 17, 44, 51–56] of two positive real numbers a and b
with a > b can be expressed as

T (a,b) =
2
π

∫ π/2

0

√
a2 cos2 t +b2 sin2 tdt =

2a
π

E

⎛
⎝
√

1−
(

b
a

)2
⎞
⎠ , (1.3)

AG(a,b) =
πa

2K

(√
1− ( b

a)
2

) . (1.4)

The identity (1.4) is called Gaussian identity [11] and the arithmetic-geometric
mean AG(a,b) is defined as the common limit of the sequences {an} and {bn} as
follows:

a0 = a, b0 = b, an+1 =
an +bn

2
, bn+1 =

√
anbn.

Recently, the complete elliptic integrals K (r) and E (r) have been the subject of
intensive research [19, 20, 23, 26, 48, 60–62, 65, 66, 76, 77]. In particular, many re-
markable inequalities and applications for K (r) , E (r) and other related special func-
tions can be found in the literature [1–3, 6–9, 12, 18, 21, 28–38, 42, 50, 67–73].

Carlson and Gustafson [16] proved that the double inequality

log
4
r′

< K (r) <
4

3+ r2 log
4
r′

(1.5)

holds for all r ∈ (0,1) . Here and in what follows we denote r′ =
√

1− r2 .
The lower bound given in (1.5) was improved by Kühnau [41] as follows

K (r) >
9

8+ r2 log
4
r′

for all r ∈ (0,1) .
In [4, 10, 17, 49, 56], the authors proved that the two-sided inequalities

logr′

r′ −1
< K (r) <

π logr′

2(r′ −1)
,

[
1+
(

π
4log2

−1

)
r′2
]
log

4
r′

< K (r) <

(
1+

1
4
r′2
)

log
4
r′

,

π
2

[
tanh−1(r)

r

]1/2

< K (r) <
π
2

tanh−1(r)
r

(1.6)
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are valid for all r > 0, where tanh−1(r) = log[(1+ r)/(1− r)]/2 is the inverse hyper-
bolic tangent function.

Alzer and Qiu [5], and Yang et al. [81] improved the lower bound given in (1.6)
independently as follows:

K (r) >
π
2

[
tanh−1(r)

r

]3/4

for all r ∈ (0,1) .
The main purpose of the article is to establish the monotonicity properties of the

functions involving the complete elliptic integral K (r) and provide the sharp bounds
for K (r) and AG(1,r) in terms of elementary functions.

2. Lemmas

In order to prove our main results we need several formulas and lemmas, which
we present in this section.

The hypergeometric function F(a,b,c;x) and the complete elliptic integrals K (r)
and E (r) have the following formulas (See [11, (1.16), 1.19(4), 1.20(10), 1.48, (3.6)]):

dn

dxn F(a,b,c;x) =
(a,n)(b,n)

(c,n)
F(a+n,b+n;c+n;x), (2.1)

F(a,b;c;1) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

(2.2)

if c > a+b .

F(a,b;a+b+1;x) = (1− x)F(a+1,b+1;a+b+1;x), (2.3)

Γ(a)Γ(b)
Γ(a+b)

F(a,b;a+b;x)+ log(1− x)+ ψ(a)+ ψ(b)+2γ = O((1− x) log(1− x))

(2.4)
as x → 1, where

ψ(x) =
Γ′(x)
Γ(x)

is the psi function and

γ = lim
n→∞

(
1+

1
2

+
1
3

+ · · ·+ 1
n
− logn

)
= 0.57721566 · · ·

is the Euler-Mascheroni constant.

dK (r)
dr

=
E (r)− r′2K (r)

rr′2
. (2.5)
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LEMMA 2.1. (See [80, Lemma 2.1]) Let r > 0 , {ak}∞
k=0 be a nonnegative real

sequence with am > 0 and ∑∞
k=m+1 ak > 0 , and

S(t) =
m

∑
k=0

akt
k −

∞

∑
k=m+1

akt
k

be a convergent power series on the interval (0,r) . Then S(t) > 0 for all t ∈ (0,r) if
S(r−) � 0 .

LEMMA 2.2. (See [47, (2.13)]) The inequality

Γ2(n+1/2)
Γ2(n+1)

<
1

n+1/4

is valid for all n ∈ N .

LEMMA 2.3. Let n ∈ N and

λn = ψ(n)− 4n2−17n+1
2(4n+1)

+ γ. (2.6)

Then λn < 0 for n � 11 .

Proof. Elaborated computations lead to

λ11 = −107
280

< 0, (2.7)

λn+1−λn = −16n3−8n2−65n−10
2n(4n+1)(4n+5)

< 0 (2.8)

for n � 3.
Therefore, Lemma 2.3 follows easily from (2.7) and (2.8). �

LEMMA 2.4. Let n,k ∈ N with k � n and

vk =
1

(k+1)(n− k+1)(k+1/4)(n− k+1/4)
, (2.9)

ωn =
(

n+
1
4

) n

∑
k=0

vk − 6(2n+1)
(n+1)(n+2)

. (2.10)

Then ωn < 0 for n � 8 .

Proof. Let n � 8, 1 � k � n−1 and

ξk =
1

k(k+1)(n− k)(n− k+1)
. (2.11)
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Then we clearly see that

ξk =
1

n(n+1)

(
1
k

+
1

n− k

)
− 1

(n+1)(n+2)

(
1

k+1
+

1
n− k+1

)
,

n−1

∑
k=1

ξk =
2(ψ(n)+ γ)

n(n+1)
− 2(ψ(n)+1/n+ γ−1)

(n+1)(n+2)
=

2(2ψ(n)+n+2γ−1)
n(n+1)(n+2)

. (2.12)

Note that (
k+

1
4

)(
n− k+

1
4

)
> k(n− k) (2.13)

for all k,n ∈ N .
It follows (2.9), (2.11) and (2.13) that

v0 + vn =
32

(n+1)(4n+1)
,

n

∑
k=0

vk =
n−1

∑
k=1

vk +
32

(n+1)(4n+1)
<

n−1

∑
k=1

ξk +
32

(n+1)(4n+1)
. (2.14)

From (2.10), (2.12) and (2.14) we have

ωn <
2(2ψ(n)+n+2γ−1)(n+1/4)

n(n+1)(n+2)
+

32(n+1/4)
(n+1)(4n+1)

− 6(2n+1)
(n+1)(n+2)

(2.15)

=
4n+1

n(n+1)(n+2)
λn,

where λn is given by (2.6).
Elaborated computations lead to

ω8 = − 1855051
114400650

< 0, ω9 = − 3251242
111035925

< 0, ω10 = − 1777462049611
46588453411500

< 0.

(2.16)
Therefore, Lemma 2.4 follows easily from Lemma 2.3, (2.15) and (2.16). �

LEMMA 2.5. Let k,n ∈ N with k � n, and

Wn =
Γ(n+1/2)

Γ(1/2)Γ(n+1)
, (2.17)

un = π
n

∑
k=0

W 2
k W 2

n−k

(k+1)(n− k+1)
− 6(2n+1)W2

n

(n+1)(n+2)
. (2.18)

Then un < 0 for all n � 8 .
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Proof. From (2.17) we clearly see that the sequence {(k+1/4)W2
k }∞

k=0 is strictly
increasing, which leads to the conclusion that(

k+
1
4

)
W 2

k �
(

n+
1
4

)
W 2

n ,

W 2
k W 2

n−k � (n+1/4)2W 4
n

(k+1/4)(n− k+1/4)
(2.19)

for 0 � k � n .
Let ωn be defined by (2.10), then it follows from (2.9), (2.17), (2.18) and (2.19)

together with Lemma 2.2 that

un

W 2
n

� π
n

∑
k=0

(n+1/4)2W 2
n

(k+1)(n− k+1)(k+1/4)(n− k+1/4)
− 6(2n+1)

(n+1)(n+2)
(2.20)

<
n

∑
k=0

n+1/4
(k+1)(n− k+1)(k+1/4)(n− k+1/4)

− 6(2n+1)
(n+1)(n+2)

= ωn.

Therefore, Lemma 2.5 follows from Lemma 2.4 and (2.20). �

3. Main results

THEOREM 3.1. The function r �→ r′peK (r) is strictly increasing on (0,1) if and
only if p � π/4 and strictly decreasing on (0,1) if and only if p � 1 .

Proof. Let x = r2 ∈ (0,1) and

G1(x) = (1− x)p/2eK (
√

x) = (1− x)p/2e
π
2 F(1/2,1/2;1;x) = r′peK (r). (3.1)

Then (2.1) and (2.3) lead to

G′
1(x) = − p

2
(1− x)p/2−1eK (

√
x) +

π
8

(1− x)p/2F (3/2,3/2;2;x)eK (
√

x) (3.2)

= − p
2
(1− x)p/2−1eK (

√
x) +

π
8

(1− x)p/2−1F (1/2,1/2;2;x)eK (
√

x)

= −1
2
(1− x)p/2−1eK (

√
x)
(

p− π
4

F (1/2,1/2;2;x)
)

.

From (3.1) and (3.2) we clearly see that the function r → r′ peK (r) is strictly in-
creasing on (0,1) if and only

p � π
4

inf
x∈(0,1)

F

(
1
2
,
1
2
;2;x

)

and strictly decreasing on (0,1) if and only if

p � π
4

sup
x∈(0,1)

F

(
1
2
,
1
2
;2;x

)
.
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It follows from (1.1) and (2.2) that

inf
x∈(0,1)

F

(
1
2
,
1
2
;2;x

)
= F

(
1
2
,
1
2
;2;0+

)
= 1,

sup
x∈(0,1)

F

(
1
2
,
1
2
;2;x

)
= F

(
1
2
,
1
2
;2;1−

)
=

Γ(2)Γ(1)
Γ2(3/2)

=
4
π

. �

THEOREM 3.2. The function

r �→ r′

r2

[
E (r)− r′2K (r)

]
eK (r)

is strictly increasing from (0,1) onto (πeπ/2/4,4) .

Proof. It follows from (1.2), (2.1), (2.3) and (2.5) that

E (r)− r′2K (r)
rr′2

=
dK (r)

dr
=

πr
4

F(3/2,3/2;2;r2) =
πr

4r′2
F(1/2,1/2;2;r2),

r′

r2

[
E (r)− r′2K (r)

]
eK (r) =

π
4

√
1− r2F(1/2,1/2;2;r2)eK (r) (3.3)

=
π
4

√
1− r2F(1/2,1/2;2;r2)e

π
2 F(1/2,1/2;1;r2).

Let x = r2 , Wn and un be respectively defined by (2.17) and (2.18), and

G2(x) =
π
4

√
1− xF(1/2,1/2;2;x)eK (

√
x) (3.4)

=
π
4

√
1− xF(1/2,1/2;2;x)e

π
2 F(1/2,1/2;1;x),

G3(x) =
32

√
1− x
π

e−K (
√

x)G′
2(x).

Then it follows from (1.1), (2.1), (2.3), (2.17) and (2.18) that

G3(x) =
32

√
1− x
π

e−K (
√

x)G′
2(x) (3.5)

= π(1− x)F
(

1
2
,
1
2
;2;x

)
F

(
3
2
,
3
2
;2;x

)
−4F

(
1
2
,
1
2
;2;x

)

+(1− x)F
(

3
2
,
3
2
;3;x

)

= πF2
(

1
2
,
1
2
;2;x

)
−4F

(
1
2
,
1
2
;2;x

)
+(1− x)F

(
3
2
,
3
2
;3;x

)

= π

(
∞

∑
n=0

W 2
n

n+1
xn

)2

−4
∞

∑
n=0

W 2
n

n+1
xn −

∞

∑
n=0

2(4n−1)W2
n

(n+1)(n+2)
xn

= π
∞

∑
n=0

(
n

∑
k=0

W 2
k W 2

n−k

(k+1)(n− k+1)

)
xn −

∞

∑
n=0

6(2n+1)W2
n

(n+1)(n+2)
xn =

∞

∑
n=0

unx
n.
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Elaborated computations show that

u0 = π −3 > 0, u1 =
π −3

4
> 0, u2 =

14π −45
128

< 0, (3.6)

u3 =
31π −105

512
< 0, u4 =

626π −2205
16384

< 0, u5 =
1718π −6237

65536
< 0, (3.7)

u6 =
79948π−297297

4194304
< 0, u7 =

242659π−920205
16777216

< 0. (3.8)

From (1.1), (2.2), (2.4), (3.4) and (3.5) we get

G2(0+) =
π
4

F

(
1
2
,
1
2
;2;0+

)
eK (0+) =

π
4

eπ/2, (3.9)

F

(
1
2
,
1
2
;2;1−

)
=

Γ(2)Γ(1)
Γ2(3/2)

=
4
π

,

G2(1−) = lim
x→1−

√
1− xe

π
2 F(1/2,1/2;1;x) (3.10)

= lim
x→1−

√
1− xe2 log2−log

√
1−x+O((1−x) log(1−x)) = 4,

G3(1−) = π
(

4
π

)2

− 16
π

+ lim
x→1−

(1− x)F
(

3
2
,
3
2
;3;x

)
(3.11)

=
8
π

lim
x→1−

(1− x) [4(log2−1)− log(1− x)+O((1− x) log(1− x))] = 0.

From Lemmas 2.1 and 2.5 together with (3.5)–(3.8) and (3.11) we have

G3(x) > 0 (3.12)

for x ∈ (0,1) .
Therefore, Theorem 3.2 follows from (3.3)–(3.5), (3.9), (3.10) and (3.12). �

THEOREM 3.3. The function

r �→ eK (r) − p
r′

is strictly decreasing on (0,1) if and only if p � 4 and strictly increasing on (0,1) if
and only if p � πeπ/2/4 = 3.7781401 · · ·.

Proof. Let x = r2 , G2(x) be defined by (3.4), and

G4(x) = eK (
√

x)− p√
1− x

= eK (r) − p
r′

= e
π
2 F(1/2,1/2;1;x)− p√

1− x
. (3.13)
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Then (2.1) and (2.3) lead to

G′
4(x) =

π
8

F

(
3
2
,
3
2
;2;x

)
eK (

√
x) − p

2(1− x)3/2
(3.14)

=
π
4

√
1− xF

(
1
2 , 1

2 ;2;x
)
eK (

√
x)− p

2(1− x)3/2
=

G2(x)− p

2(1− x)3/2
.

It follows from Theorem 3.2 that G2(x) is strictly increasing from (0,1) onto
(πeπ/2/4,4) . Therefore, Theorem 3.3 follows from (3.13) and (3.14) together with the
monotonicity of G2(x) on the interval (0,1) . �

From (1.3), (1.4) and Theorem 3.2 we get Corollary 3.4 immediately.

COROLLARY 3.4. The double inequalities

r′2K (r)+ p
r2

r′
e−K (r) < E (r) < r′2K (r)+q

r2

r′
e−K (r),

r2

AG(1,r)
+

2pr′2

πr
e
− π

2AG(1,r) < T (1,r) <
r2

AG(1,r)
+

2qr′2

πr
e
− π

2AG(1,r) (3.15)

hold for all r ∈ (0,1) if and only if p � πeπ/2/4 = 3.7781401 · · · and q � 4 .

REMARK 3.5. Let x,y,z be nonnegative real numbers such that at most one of
them is 0. Then the symmetric elliptic integral of the second kind RG(x,y,z) is defined
by

RG(x,y,z) =
1
4

∫ ∞

0
[(t + x)(t + y)(t + z)]−1/2

(
x

t + x
+

y
t + y

+
z

t + z

)
,

and the Toader mean T (a,b) can be written as

T (a,b) =
4
π

RG
(
a2,b2,0

)
=: RE

(
a2,b2) .

Using the inequalities for RE presented in [45, 46] one can obtain bounds for T which
are sharper than those in (3.15).

COROLLARY 3.6. The double inequality

π
2

+ p log
1
r′

< K (r) <
π
2

+q log
1
r′

(3.16)

is valid for all r ∈ (0,1) if and only if p � π/4 and q � 1 . Moreover, we have

log
4
r′

< K (r) <
π
2

+ log
1
r′

(3.17)

for all r ∈ (0,1) .
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Proof. If p � π/4 and q � 1, then inequality (3.16) follows from Theorem 3.1
and the fact that

lim
r→0+

r′peK (r) = eπ/2.

If the first inequality of (3.16) holds for all r ∈ (0,1) , then (1.2) leads to

lim
r→0+

K (r)− (π
2 + p log 1

r′
)

r2 =
π
8
− p

2
� 0,

which leads to p � π/4.
If the second inequality of (3.16) holds for all r ∈ (0,1) , then it follows from (2.4)

that

lim
x→1−

K (
√

x)−
(

π
2 +q log 1√

1−x

)
log(1− x)

= lim
x→1−

log4− π
2 + q−1

2 log(1− x)+O((1− x) log(1− x))
log(1− x)

=
q−1

2
� 0,

which leads to q � 1.
Inequality (3.17) follows from the second inequality of (3.16) and Theorem 3.1

together with the fact that

lim
r→1−

r′eK (r) = lim
x→1−

√
1− xe

π
2 F(1/2,1/2;1;x) = 4. �

COROLLARY 3.7. The double inequality

log
(
eπ/2− p+

p
r′
)

< K (r) < log
(
eπ/2−q+

q
r′
)

(3.18)

holds for all r ∈ (0,1) if and only if p � πeπ/2/4= 3.7781401 · · · and q � 4 . Moreover,
we have

log
4
r′

< K (r) < log

(
eπ/2−4+

4
r′

)
(3.19)

for all r ∈ (0,1) .

Proof. If p � πeπ/2/4 and q � 4, then inequality (3.18) follows from Theorem
3.3 and the fact that

lim
r→0+

(
eK (r) − p

r′
)

= eπ/2− p.

If the first inequality of (3.18) holds for all r ∈ (0,1) , then (1.2) leads to

lim
x→0+

√
1− x

[
eK (

√
x) + p− eπ/2

]
− p

x

= lim
x→0+

√
1− x

⎡
⎣e

π
2 ∑∞

n=0
( 1

2 ,n)2

(n!)2
xn

+ p− eπ/2

⎤
⎦− p

x
=

πeπ/2

8
− p

2
� 0,
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which leads to p � πeπ/2/4.
If the second inequality of (3.18) holds for all r ∈ (0,1) , then (1.2) and (2.4) lead

to

q � lim
x→1−

√
1− x

[
e

π
2 F(1/2,1/2;1;x)− eπ/2 +q

]
= lim

x→1−

√
1− x

[
elog4− 1

2 log(1−x)+O((1−x) log(1−x))− eπ/2 +q
]

= 4.

Inequality (3.19) follows from the first inequality of (3.17) and the second inequal-
ity of (3.18). �

REMARK 3.8. Let

RF(x,y,z) =
1
2

∫ ∞

0
[(t + x)(t + y)(t + z)]−1/2 dt

be the symmetric elliptic integral of the first kind. Then the complete elliptic integral
of the first kind K (r) can be expressed by

K (r) = RF

(
r′2,1,0

)
:=

π
2

RK

(
r′2,1

)
.

Bounds for complete elliptic integral K included in Corollaries 3.6 and 3.7 are
not necessarily simple and sharp. Using the known bounds for RK given in [39, 40,
43, 46] on can obtain simple and sharp bounds which are sharper than those given in
Corollaries 3.6 and 3.7.

From (1.4), Corollary 3.6 and Corollary 3.7 we get Corollary 3.9 immediately.

COROLLARY 3.9. The double inequalities

1
1− p logr

< AG(1,r) <
1

1−q logr
,

π

2log
(
eπ/2−λ + λ

r

) < AG(1,r) <
π

2log
(
eπ/2− μ + μ

r

)
hold for all r ∈ (0,1) if and only if p � 2/π , q � 1/2 , λ � 4 and μ � πeπ/2/4 .
Moreover, one has

1

1− 2
π logr

< AG(1,r) <
π

2log 4
r

,

AG(1,r) >
π

2log
(
eπ/2−4+ 4

r

) (3.20)

for all r ∈ (0,1) .
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REMARK 3.10. Neuman and Sándor [45, Theorem 3.2] proved that the inequality

AG(1,r) >
1+r
2 −√

r

log 1+r
2
√

r

(3.21)

holds for all r ∈ (0,1) .
Let

I(r) =
1+r
2 −√

r

log 1+r
2
√

r

, J(r) =
π

2log
(
eπ/2−4+ 4

r

) . (3.22)

Then numerical computations lead to

I(0.05) = 0.3531 · · ·< J(0.05) = 0.3576 · · · , (3.23)

I(0.1) = 0.4223 · · ·< J(0.1) = 0.4235 · · ·. (3.24)

From (3.22)–(3.24) we know that the lower bound for AG(1,r) given in (3.20) is
better than that given in (3.21) for some r ∈ (0,1) .
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[45] E. NEUMAN AND J. SÁNDOR, On certain means of two arguments and their extension, Int. J. Math.

Sci. 16 (2003), 981–993.
[46] F. W. J. OLVER, D. W. LOZIER, R. F. BOISVERT AND C. W. CLARK, NIST Digital Library of

Mathematical Functions, available onlin at http://dlmf.nist.gov.
[47] F. QI, Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Article ID 493058,

84 pages.
[48] W.-M. QIAN AND Y.-M. CHU, Sharp bounds for a special quasi-arithmetic mean in terms of arith-

metic and geometric means with two parameters, J. Inequal. Appl. 2017 (2017), Article 274, 10 pages.
[49] S.-L. QIU AND M. K. VAMANAMURTHY, Sharp estimates for complete elliptic integrals, SIAM. J.

Math. Anal. 27, 3 (1996), 823–834.
[50] S.-L. QIU AND M. VUORINEN, Duplication inequalities for the ratios of hypergeometric functions,

Forum Math. 12, 1 (2000), 109–133.
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