
Mathematical
Inequalities

& Applications

Volume 22, Number 1 (2019), 1–23 doi:10.7153/mia-2019-22-01
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FEIFEI DU, WEI HU, LYNN ERBE AND ALLAN PETERSON

(Communicated by M. Bohner)

Abstract. In this paper, we establish some generalizations of inequalities on time scales, which
have appeared in different articles. The inequalities that we will derive from our results when
g(t) = t are essentially new.

1. Introduction

Stefan Hilger introduced the theory of time scales in his PhD thesis [8] in 1988
(supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. Since
then, many authors have studied various inequalities and dynamic equations on time
scales in detail [4, 5, 3, 2, 16, 20, 14, 7].

In [15], the following open problem was posed by Feng Qi: Under what conditions
does the inequality ∫ b

a
[ f (x)]t dx �

[∫ b

a
f (x)dx

]t−1

hold for t > 1? Various results have been studied by authors in [6, 7, 14, 20].
Kamel Brahim et al.[6] and Yu et al.[12] obtained some Feng-Qi type q -integral

inequalities. Mohamad Rafi Segi Rahmat [16] pointed out some (q,h) analogues of
integral inequalities on discrete time scales. L. Yin et al. [20] presented some Feng-Qi
type inequalities on time scales.

This work is motivated by Waadallah T. Sulaiman [17, 18, 19] and Fayyaz et al.
[7] who obtained integral inequalities on discrete time scales. We generalize the Feng-
Qi type integral inequalities which appeared in these articles. To the best of the authors’
knowledge, the inequalities that we will derive from our results when g(t) = t are es-
sentially new. In addition, we show that a recent result (Theorem 3.3 in [7]) is incorrect
as stated without an additional assumption.
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2. Preliminaries

For the convenience of the readers, we extracted some definitions and results that
can be found in the monograph [4] as follows.

DEFINITION 1. A time scale T is a non-empty, closed subset of the real numbers
R . We define the forward and backward jump operators σ , ρ : T → T by

σ(t) := inf{s ∈ T : s > t}
and

ρ(t) := sup{s ∈ T : s < t},
respectively.

DEFINITION 2. The forward and backward graininess functions are defined as
follows:

μ(t) := σ(t)− t

and
ν(t) := t −ρ(t),

respectively.

DEFINITION 3. If σ(t) > t , we say that t is right-scattered, while if ρ(t) < t we
say that t is left-scattered. Points that are right-scattered and left-scattered at the same
time are called isolated. Also, if t < supT and σ(t) = t , then t is called right-dense,
while if t > infT and ρ(t) = t , then t is called left-dense. Points that are right-dense
and left-dense at the same time are called dense.

DEFINITION 4. Tκ and Tκ are defined as follows:

T
κ

:=

{
T\(ρ(supT),supT] if supT < ∞,

T if supT = ∞,

and

Tκ :=

{
T\[infT,σ(infT)) if infT > −∞,

T if infT = −∞,

respectively.

DEFINITION 5. Assume f : T → R is a function and let t ∈ Tκ . Then we define
f Δ(t) to be the number (provided it exists) with the property that given any ε > 0, there
is a neighborhood U of t (i.e., U = (t− δ ,t + δ )∩T for some δ > 0) such that∣∣[ f (σ(t))− f (s)]− f Δ(t)[σ(t)− s]

∣∣� ε|σ(t)− s|

for all s ∈U. We call f Δ(t) the delta derivative of f at t .
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DEFINITION 6. Assume f : T → R is a function and let t ∈ Tκ . Then we define
f ∇(t) to be the number (provided it exists) with the property that given any ε > 0, there
is a neighborhood U of t (i.e., U = (t− δ ,t + δ )∩T for some δ > 0) such that∣∣[ f (ρ(t))− f (s)]− f ∇(t)[ρ(t)− s]

∣∣� ε|ρ(t)− s|

for all s ∈U. We call f ∇(t) the nabla derivative of f at t .

LEMMA 1. Assume f : T → R is continuous at t .
(i) If σ(t) > t , then f is delta differentiable at t ∈ Tκ with

f Δ(t) =
f (σ(t))− f (t)

μ(t)
.

(ii) If σ(t) = t , then f is delta differentiable at t ∈ Tκ iff the limit lim
s→t

f (t)− f (s)
t − s

exits as a finite number. In this case

f Δ(t) = lim
s→t

f (t)− f (s)
t− s

.

(iii) If ρ(t) < t , then f is nabla differentiable at t ∈ Tκ with

f ∇(t) =
f (t)− f (ρ(t))

ν(t)
.

(iv) If ρ(t) = t , then f is nabla differentiable at t ∈ Tκ iff the limit lim
s→t

f (t)− f (s)
t − s

exits as a finite number. In this case

f ∇(t) = lim
s→t

f (t)− f (s)
t− s

.

LEMMA 2. The delta-integral of f and the nabla-integral of g over the time scale
interval [a,b]T := {t ∈ T : a � t � b and a,b ∈ T} are defined by

∫ b

a
f (t)Δt = F(b)−F(a)

and ∫ b

a
g(t)∇t = G(b)−G(a),

where FΔ = f on Tκ and G∇ = g on Tκ , respectively.

DEFINITION 7. A function f : T → R is called rd-continuous provided it is con-
tinuous at right-dense points in T and its left-sided limits exist (finite) at left-dense
points in T . The set of rd-continuous functions f : T→ R will be denoted in this paper
by Crd . The set of functions f : T → R that are differentiable and whose derivatives
are rd-continuous is denoted by C1

rd .
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DEFINITION 8. A function f : T → R is called ld-continuous provided it is con-
tinuous at left-dense points in T and its right-sided limits exist (finite) at right-dense
points in T . The set of ld-continuous functions f : T →R will be denoted in this paper
by Cld . The set of functions f : T → R that are differentiable and whose derivatives
are ld-continuous is denoted by C1

ld .

DEFINITION 9. ([1]) Let f be a real-valued function on T×T .

(1) The function f is called rd-continuous in t if for every β ∈ T , the function
f (t,β ) is rd-continuous on T .

(2) The function f is called rd-continuous in s if for every α ∈ T , the function
f (α,s) is rd-continuous on T .

Similarly, we have the following definitions:

DEFINITION 10. Let f be a real-valued function on T×T .

(1) The function f is called ld-continuous in t if for every β ∈ T , the function
f (t,β ) is ld-continuous on T .

(2) The function f is called ld-continuous in s if for every α ∈ T , the function
f (α,s) is ld-continuous on T .

DEFINITION 11. ([1]) Crd(T×T,R) denotes the set of functions f : T×T → R

with the following properties:

(R1) f is rd-continuous in t .

(R2) f is rd-continuous in s .

(R3) if (t1,s1)∈ T×T with t1 right-dense or maximal and s1 right dense or maximal,
then f is continuous at (t1,s1) .

(R4) if t1 and s1 are both left-dense, then the limit of f (t,s) exists as (t,s) approaches
(t1,s1) along any path in the region RLL(t1,s1) := {(t,s) : t ∈ [a,t1]∩T, y ∈
[c,s1]∩T} .

Similarly, we can give the definition of Cld(T×T,R) as follows:

DEFINITION 12. Cld(T×T,R) denotes the set of functions f (t,s) on T×T with
the following properties:

(L1) f is ld-continuous in t .

(L2) f is ld-continuous in s .

(L3) if (t1,s1) ∈ T×T with t1 left-dense or minimal and s1 left dense or minimal,
then f is continuous at (t1,s1) .
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(L4) if t1 and s1 are both right-dense, then the limit of f (t,s) exists as (t,s) ap-
proaches (t1,s1) along any path in the region RLL(t1,s1) := {(t,s) : t ∈ [t1,b]∩
T, y ∈ [s1,d]∩T} .

LEMMA 3. Let a,b ∈ T,a < b and f ∈ Crd .
( i) If T = R , then ∫ b

a
f (t)Δt =

∫ b

a
f (t)dt,

where the integral on the right is the usual Riemann integral from calculus.
( ii) If [a,b]T consists of only isolated points, then

∫ b

a
f (t)Δt = ∑

t∈[a,b)T

μ(t) f (t).

LEMMA 4. Let a,b ∈ T,a < b and f ∈ Cld .
( i) If T = R , then ∫ b

a
f (t)∇t =

∫ b

a
f (t)dt,

where the integral on the right is the usual Riemann integral from calculus.
( ii) If [a,b]T consists of only isolated points, then

∫ b

a
g(t)∇t = ∑

t∈(a,b]T

ν(t)g(t).

LEMMA 5. Assume f : T → R is a function and let t ∈ Tκ .
( i) If f is delta differentiable at t , then f is continuous at t .
( ii) If f is continuous, then f is rd-continuous.

LEMMA 6. If f ∈ Crd and t ∈ Tκ , then

∫ σ(t)

t
f (τ)Δτ = μ(t) f (t).

The following chain rule is due to Christian Pötzsche, who derived it first in 1998
(see also Stefan Keller’s PhD thesis [13] and [11])

LEMMA 7. ([4], Theorem 1.90) Let f : R → R be continuously differentiable
and suppose g : T→R is delta differentiable. Then f ◦g : T→R is delta differentiable
and the formula

( f ◦ g)Δ(t) =
{∫ 1

0
f ′[g(t)+hμ(t)gΔ(t)]dh

}
gΔ(t)

holds.
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LEMMA 8. Assume f : T → R is delta differentiable at t ∈ Tκ . Then

f (σ(t)) = f (t)+ μ(t) f Δ(t).

LEMMA 9. Assume f : T → R is delta differentiable on Tκ . Then f is nabla
differentiable at t and

f ∇(t) = f Δ(ρ(t))

for t ∈ Tκ such that σ(ρ(t)) = t.

LEMMA 10. (Remark 3.2, [10]) If g,h∈Crd([a,b]T,C) , then f ∈Crd(T×T,C) ,
where f is defined by f (t,s) = g(t)h(s) for (t,s) ∈ T×T .

Similarly, we have the following Lemma:

LEMMA 11. If g,h ∈ Cld([a,b]T,C) , then f ∈ Cld(T×T,C) , where f is defined
by f (t,s) = g(t)h(s) for (t,s) ∈ T×T .

3. Delta integral inequalities

In this section, we give some Feng-Qi type delta-integral inequalities on time
scales. We begin with the following useful lemma.

LEMMA 12. Let p � 1 . Suppose f : R → R is continuously differentiable and
g : T → R is delta differentiable for t ∈ Tκ , and assume f , f ′ , and g are nonnegative
and nondecreasing functions. Then

p f p−1(g(t)) f ′(g(t))gΔ(t) � ( f p ◦ g)Δ(t) � p f p−1(g(σ(t))) f ′(g(σ(t)))gΔ(t).

Proof. Let u(x) = xp . Using Lemma 7 twice, we have

( f p ◦ g)Δ(t) =
(
u ◦ ( f ◦ g)

)Δ(t)

=
{∫ 1

0
u′[( f ◦ g)(t)+hμ(t)( f ◦ g)Δ(t)]dh

}
( f ◦ g)Δ(t)

=
{

p
∫ 1

0
[( f ◦ g)(t)+hμ(t)( f ◦ g)Δ(t)]p−1dh

}
( f ◦ g)Δ(t)

�
{

p
∫ 1

0
[ f (g(t))]p−1dh

}{∫ 1

0
f ′[g(t)+hμ(t)gΔ(t)]dh

}
gΔ(t)

� p f p−1(g(t)) f ′(g(t))gΔ(t).

By virtue of Lemma 7 and Lemma 8, we obtain

( f p ◦ g)Δ(t) =
{

p
∫ 1

0
[( f ◦ g)(t)+hμ(t)( f ◦ g)Δ(t)]p−1dh

}
( f ◦ g)Δ(t)

�
{

p
∫ 1

0
[ f (g(σ(t)))]p−1dh

}{∫ 1

0
f ′[g(t)+hμ(t)gΔ(t)]dh

}
gΔ(t)

� p f p−1(g(σ(t))) f ′(g(σ(t)))gΔ(t). �
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Let g(t) = t in Lemma 12. Then we have the following result:

COROLLARY 1. Let p � 1 . Suppose f : T → R is delta differentiable for t ∈ Tκ

and f and f ′ are nonnegative and nondecreasing functions. Then

p f p−1(t) f ′(t) � ( f p)Δ(t) � p f p−1(σ(t)) f ′(σ(t)).

Let f (t) = t in Lemma 12. Then we have the following result:

COROLLARY 2. Let p � 1 . Suppose g : T → R is delta differentiable for t ∈ Tκ ,
and assume g is a nonnegative and nondecreasing function. Then

pgp−1(t)gΔ(t) � (gp)Δ(t) � pgp−1(σ(t))gΔ(t).

REMARK 1. Lemma3.1 ([7]) is similar to Corollary 2, but only holds for discrete
time scales. When p � 1 is an integer, the proof method of Lemma3.1 ([20]) is valid
for any time scale.

For p = 1 in Lemma 12, we have the following result:

COROLLARY 3. Suppose f : R→ R is continuously differentiable and g : T → R

is delta differentiable for t ∈ Tκ , and assume g is nonnegative and f ′,g are nonde-
creasing functions. Then

f ′(g(t))gΔ(t) � ( f ◦ g)Δ(t) � f ′(g(σ(t)))gΔ(t).

THEOREM 1. Let a,b ∈ T , α � γ + 1 , β � 2 , and γ > 0 . Suppose f : R →
R is continuously differentiable and g,σ : T → R are delta differentiable for t ∈
T

κ . Assume further that f and g are nonnegative and increasing functions such that

f α−γ (g(a)) � β
(

f γ (g(a))μ(a)
)β−1

and

(α − γ) f α−γ−1(g(t)) f ′(g(t))gΔ(t) � β (β −1) f γ(β−1)(g(σ2(t)))(σ2(t)−a)β−2σΔ(t),

where σ2(t) := σ(σ(t)) . Then

∫ b

a
f α (g(t))Δt �

(∫ b

a
f γ (g(t))Δt

)β
.

Proof. For each t ∈ [a,b]T let

F(t) :=
∫ t

a
f α (g(τ))Δτ −

(∫ t

a
f γ (g(τ))Δτ

)β
.
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Using Corollary 2, we have

FΔ(t) � f α (g(t))−β
(∫ σ(t)

a
f γ (g(τ))Δτ

)β−1

f γ (g(t))

= f γ (g(t))

(
f α−γ (g(t))−β

(∫ σ(t)

a
f γ (g(τ))Δτ

)β−1
)

= f γ (g(t))h(t),

where

h(t) := f α−γ(g(t))−β
(∫ σ(t)

a
f γ (g(τ))Δτ

)β−1

.

Now, using Lemma 12 and Corollary 2, we have

hΔ(t) =( f α−γ (g(t)))Δ −β

((∫ σ(t)

a
f γ (g(τ))Δτ

)β−1
)Δ

�(α − γ) f α−γ−1(g(t)) f ′(g(t))gΔ(t)

−β (β −1)
(∫ σ2(t)

a
f γ (g(τ))Δτ

)β−2(∫ σ(t)

a
f γ (g(τ))Δτ

)Δ

=(α − γ) f α−γ−1(g(t)) f ′(g(t))gΔ(t)

−β (β −1)
(∫ σ2(t)

a
f γ (g(τ))Δτ

)β−2

f γ (g(σ(t)))σΔ(t),

where(∫ σ(t)

a
f γ (g(τ))Δτ

)Δ
=
(∫ t

a
f γ (g(τ))Δτ +

∫ σ(t)

t
f γ (g(τ))Δτ

)Δ

=
(∫ t

a
f γ (g(τ))Δτ

)Δ
+
[

f γ (g(t))(σ(t)− t)
]Δ

= f γ (g(t))+ ( f γ ◦ g)Δ(t)μ(t)+ f γ(g(σ(t)))(σΔ(t)−1)

= f γ (g(σ(t)))+ f γ(g(σ(t)))(σΔ(t)−1)

= f γ (g(σ(t)))σΔ(t).

Since γ > 0 and f , g are increasing, we have that f γ ◦ g is increasing. Then

∫ σ2(t)

a
f γ (g(τ))Δτ � f γ (g(σ2(t)))(σ2(t)−a).

Hence we obtain

hΔ(t) �(α − γ) f α−γ−1(g(t)) f ′(g(t))gΔ(t)

−β (β −1) f γ(β−2)(g(σ2(t)))(σ2(t)−a)β−2 f γ (g(σ(t)))σΔ(t)
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�(α − γ) f α−γ−1(g(t)) f ′(g(t))gΔ(t)

−β (β −1) f γ(β−1)(g(σ2(t)))(σ2(t)−a)β−2σΔ(t)
�0.

So h is nondecreasing. But

h(a) = f α−γ (g(a))−β
(∫ σ(a)

a
f γ (g(τ))Δτ

)β−1

= f α−γ (g(a))−β
(

f γ (g(a))μ(a)
)β−1

� 0.

Therefore h(t) � h(a) � 0 and it follows that FΔ(t) � 0. So F(t) � F(a) = 0, which
completes the proof. �

If f (t) = t in Theorem 1, we have the following result:

COROLLARY 4. Let a,b∈T , α � γ +1 , β � 2 , and γ > 0 . Suppose g,σ : T→R

are delta differentiable for t ∈ Tκ , and assume g is a nonnegative and increasing

function such that f α−γ(g(a)) � β
(

f γ (g(a))μ(a)
)β−1

and

(α − γ)gα−γ−1(t)gΔ(t) � β (β −1)gγ(β−1)(σ2(t))(σ2(t)−a)β−2σΔ(t),

where σ2(t) := σ(σ(t)) . Then

∫ b

a
gα(t)Δt �

(∫ b

a
gγ(t)Δt

)β
.

If g(t) = t in Theorem 1, we have the following result:

COROLLARY 5. Let a,b ∈ T , α � γ +1 , β � 2 , and γ > 0 . Suppose f is differ-
entiable for t ∈ R and σ : T → R is delta differentiable for t ∈ Tκ , and assume f is a

nonnegative and increasing function such that f α−γ (a) � β
(

f γ (a)μ(a)
)β−1

and

(α − γ) f α−γ−1(t) f ′(t) � β (β −1) f γ(β−1)(σ2(t))(σ2(t)−a)β−2σΔ(t),

where σ2(t) := σ(σ(t)) . Then

∫ b

a
f α(t)Δt �

(∫ b

a
f γ (t)Δt

)β
.

If γ = 1, β = α −1 in Corollary 5, we obtain the following result:
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COROLLARY 6. Let a,b ∈ T , α � 3 . Suppose f ,σ : T → R are delta differen-
tiable for t ∈ Tκ , and assume f is a nonnegative and increasing function such that

f α−1(a) � (α −1)( f (a)μ(a))α−2 (1)

and
f α−2(t) f Δ(t) � (α −2) f α−2(σ2(t))(σ2(t)−a)α−3σΔ(t),

where σ2(t) := σ(σ(t)) . Then

∫ b

a
f α(t)Δt �

(∫ b

a
f (t)Δt

)α−1

.

REMARK 2. Nonnegativity of f does not guarantee (1) holds. So it seems that
Theorem 3.3 in [7] is incorrect since F1(a) � 0 does not hold without (1). A similar
comment applies to Theorem 3.2 in [16].

Furthermore, if T = R in Theorem 1, we have the following result, providing
another sufficient condition for Feng-Qi inequality which is different from Theorem
1.1 in [14].

COROLLARY 7. Let a,b ∈ T , α � 3 . Suppose f : R → R is differentiable at
t ∈ R , and assume f is a nonnegative and increasing function. If

f α−2(t) f ′(t) � (α −2) f α−2(t)(t−a)α−3

is satisfied, then

∫ b

a
f α(t)dt �

(∫ b

a
f (t)dt

)α−1

.

THEOREM 2. Let ρm(a) , b∈T , m∈ N2 , α � γ +1 , β � 2 , and γ > 0 . Suppose
f : R → R is continuously differentiable and g,σ : T → R are delta differentiable
for t ∈ Tκ , and assume f and g are nonnegative and increasing functions such that

f α−γ (g(a)) � β
(

f γ (g(ρm(a)))μ(a)
)β−1

and

(α − γ) f ′(g(t))gΔ(t) � β (β −1) f γβ−α+1(g(ρm−2(t)))(σ2(t)−a)β−2σΔ(t),

where σ2(t) := σ(σ(t)). Then

∫ b

a
f α (g(t))Δt �

(∫ b

a
f γ (g(ρm(t)))Δt

)β
.

Proof. For each t ∈ [a,b]T let

F(t) :=
∫ t

a
f α (g(τ))Δτ −

(∫ t

a
f γ (g(ρm(τ)))Δτ

)β
.
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Using Corollary 2, we have

FΔ(t) � f α(g(t))−β
(∫ σ(t)

a
f γ (g(ρm(τ)))Δτ

)β−1

f γ (g(ρm(t)))

� f α(g(t))−β
(∫ σ(t)

a
f γ (g(ρm(τ)))Δτ

)β−1

f γ (g(t))

= f γ (g(t))

(
f α−γ (g(t))−β

(∫ σ(t)

a
f γ (g(ρm(τ)))Δτ

)β−1
)

= f γ (g(t))h(t),

where

h(t) := f α−γ (g(t))−β
(∫ σ(t)

a
f γ (g(ρm(τ)))Δτ

)β−1

.

Now, using Lemma 12 and Corollary 2,

hΔ(t) =( f α−γ (g(t)))Δ −β

((∫ σ(t)

a
f γ (g(ρm(τ)))Δτ

)β−1
)Δ

�(α − γ) f α−γ−1(g(t)) f ′(g(t))gΔ(t)

−β (β −1)
(∫ σ2(t)

a
f γ (g(ρm(τ)))Δτ

)β−2(∫ σ(t)

a
f γ (g(ρm(τ)))Δτ

)Δ

=(α − γ) f α−γ−1(g(t)) f ′(g(t))gΔ(t)

−β (β −1)
(∫ σ2(t)

a
f γ (g(ρm(τ)))Δτ

)β−2

f γ (g(ρm−1(t)))σΔ(t),

where(∫ σ(t)

a
f γ (g(ρm(τ)))Δτ

)Δ
=
(∫ t

a
f γ (g(ρm(τ)))Δτ +

∫ σ(t)

t
f γ (g(ρm(τ)))Δτ

)Δ

=
(∫ t

a
f γ (g(ρm(τ)))Δτ

)Δ
+
[

f γ (g(ρm(t)))μ(t)
]Δ

= f γ (g(ρm−1(t)))σΔ(t).

Since γ > 0 and f , g are increasing, we have that f γ ◦ g is increasing. It follows that

∫ σ2(t)

a
f γ (g(ρm(τ)))Δτ � f γ (g(ρm−2(t)))(σ2(t)−a).

Hence we obtain

hΔ(t) �(α − γ) f α−γ−1(g(t)) f ′(g(t))gΔ(t)

−β (β −1) f γ(β−2)(g(ρm−2(t)))(σ2(t)−a)β−2 f γ (g(ρm−1(t)))σΔ(t)
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�(α − γ) f α−γ−1(g(ρm−2(t))) f ′(g(t))gΔ(t)

−β (β −1) f γ(β−1)(g(ρm−2(t)))(σ2(t)−a)β−2σΔ(t)

= f α−γ−1(g(ρm−2(t)))
(

(α − γ) f ′(g(t))gΔ(t)

−β (β −1) f γβ−α+1(g(ρm−2(t)))(σ2(t)−a)β−2σΔ(t)
)

�0.

Therefore, h is nondecreasing. But

h(a) = f α−γ (g(a))−β
(∫ σ(a)

a
f γ (g(ρm(τ)))Δτ

)β−1

= f α−γ (g(a))−β
(

f γ (g(ρm(a)))μ(a)
)β−1

� 0.

Then h(t) � h(a) � 0 it follows that FΔ(t) � 0. So F(t) � F(a) = 0, which completes
the proof. �

If f (t) = t in Theorem 2, we have the following result:

COROLLARY 8. Let ρm(a) , b ∈ T , m ∈ N2 , α � γ + 1 , β � 2 , and γ > 0 .
Suppose g,σ : T→R are delta differentiable for t ∈T

κ , and assume g is a nonnegative

and increasing function such that gα−γ(a) � β
(

gγ(ρm(a))μ(a)
)β−1

and

(α − γ)gΔ(t) � β (β −1)gγβ−α+1(ρm−2(t))(σ2(t)−a)β−2σΔ(t),

where σ2(t) := σ(σ(t)). Then

∫ b

a
gα(t)Δt �

(∫ b

a
gγ(ρm(t))Δt

)β
.

If g(t) = t in Theorem 2, we have the following result:

COROLLARY 9. Let ρm(a) , b ∈ T , m ∈ N2 , α � γ + 1 , β � 2 , and γ > 0 .
Suppose f is differentiable for t ∈ R and σ : T → R is delta differentiable for t ∈ Tκ ,
and assume f and g are nonnegative and increasing functions such that f α−γ (a) �

β
(

f γ (ρm(a))μ(a)
)β−1

and

(α − γ) f ′(t) � β (β −1) f γβ−α+1(ρm−2(t))(σ2(t)−a)β−2σΔ(t),

where σ2(t) := σ(σ(t)). Then

∫ b

a
f α (t)Δt �

(∫ b

a
f γ (ρm(t))Δt

)β
.
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LEMMA 13. Let ϕ � 0 be non-increasing on [a,b]T , and assume ϕ : T → R is
delta differentiable for t ∈ Tκ . If

∫ σ(t)

a
ψ(τ)Δτ � 0, ∀t ∈ [a,b]T, (2)

then ∫ b

a
ϕ(t)ψ(t)Δt � 0. (3)

If inequality (2) is reversed, then inequality (3) is also reversed.

Proof. By the product rule,

[
ϕ(t)

∫ t

a
ψ(τ)Δτ

]Δ
= ψ(t)ϕ(t)+

(∫ σ(t)

a
ψ(τ)Δτ

)
ϕΔ(t),∀t ∈ [a,b]T.

Therefore,

∫ b

a
ψ(t)ϕ(t)Δt = −

∫ b

a

(∫ σ(t)

a
ψ(τ)Δτ

)
ϕΔ(t)Δt + ϕ(b)

∫ b

a
ψ(τ)Δτ � 0

being the sum of two nonnegative terms. �

THEOREM 3. Suppose f , g, and h are nonnegative functions, where h is defined
on [a,b]T , and f , g are defined on the range of h; Assume further that f is non-
increasing, h is nondecreasing, and f ◦ h, g ◦ h∈ Crd . If

∫ σ(t)

a
f β (h(τ))Δτ �

∫ σ(t)

a
gβ (h(τ))Δτ, ∀t ∈ [a,b]T and β > 0,

then ∫ b

a
f α+β (h(t))Δt �

∫ b

a
f α (h(t))gβ (h(t))Δt, α � 0.

Proof. The proof follows from Lemma 13 by putting

ϕ(t) := f α (h(t)), and ψ(t) := f β (h(t))−gβ (h(t)). �

LEMMA 14. (Change of integration order [9], Lemma 1) Assume a,b ∈ T and
f ∈ Crd(T×T,R) , then

∫ b

a

∫ η

a
f (η ,ξ )Δξ Δη =

∫ b

a

∫ b

σ(ξ )
f (η ,ξ )ΔηΔξ .

The proofs of the following two theorems are similar to the proofs in the nabla
cases, which will be mentioned in the next section, and therefore are omitted.
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THEOREM 4. Suppose f , g, and h are nonnegative functions, where h is defined
on [a,b]T , and f , g are defined on the range of h. Assume further that either f ◦ h or
g◦h is nondecreasing, f ◦h∈ C1

rd , g◦h∈ C1
rd , and ( f α ◦g)Δ(t) and (gβ ◦h)Δ(t) exist

for t ∈ [a,b]Tκ . If

∫ b

σ(t)
f β (h(τ))Δτ �

∫ b

σ(t)
gβ (h(τ))Δτ, ∀t ∈ [a,b]T and β > 0,

then ∫ b

a
f α+β (h(τ))Δτ �

∫ b

a
f α (h(τ))gβ (h(τ))Δτ

holds for all positive numbers α and β .

THEOREM 5. Suppose f , g, and h are nonnegative functions, where h is de-
fined on [a,b]T , and f , g are defined on the range of h. Assume further that g ◦ h is
nondecreasing, g ◦ h∈ C1

rd , f ◦ h ∈ Crd and (g−α ◦ h)Δ(t) exists for t ∈ [a,b]Tκ . If

∫ b

σ(t)
f β (h(τ))Δτ �

∫ b

σ(t)
gβ (h(τ))Δτ, ∀t ∈ [a,b]T and β > 0,

then ∫ b

a
f β−α(h(τ))Δτ �

∫ b

a
f β (h(τ))g−α(h(τ))Δτ

holds for all β > α > 0.

4. Nabla integral inequalities

In this section, we give some Feng-Qi type nabla-integral inequalities on time
scales. We begin with the following useful lemma.

LEMMA 15. Let p � 1 . Suppose f : R → R is continuously differentiable and
g : T → R is nabla differentiable for t ∈ Tκ , and assume f , f ′ , and g are nonnegative
and nondecreasing functions. Then

p f p−1(g(ρ(t))) f ′(g(ρ(t)))g∇(t) � ( f p ◦ g)∇(t) � p f p−1(g(t)) f ′(g(t))g∇(t).

Proof. Using Lemma 9, we obtain ( f p ◦g)∇(t) = ( f p ◦g)Δ(ρ(t)) . The rest of the
proof is similar to the proof of Lemma 12 and therefore is omitted. �

If g(t) = t in Lemma 15, then we have the following result:

COROLLARY 10. Let p � 1 . Suppose f : T → R is nabla differentiable for t ∈
Tκ , and assume f , f ′ are nonnegative and nondecreasing functions. Then

p f p−1(ρ(t)) f ′(ρ(t)) � ( f p)∇(t) � p f p−1(t) f ′(t).
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If f (t) = t in Lemma 15, then we have the following result ([7], Lemma4.1):

COROLLARY 11. Let p � 1 . Suppose g : T → R is nabla differentiable for t ∈
Tκ , and assume g is nonnegative and nondecreasing function. Then

pgp−1(ρ(t))g∇(t) � (gp)∇(t) � pgp−1(t)g∇(t).

For p = 1 in Lemma 15, we have the following result:

COROLLARY 12. Suppose f : R → R is continuously differentiable and g : T →
R is nabla differentiable for t ∈ Tκ , and assume g is nonnegative and f ′,g are non-
decreasing functions. Then

f ′(g(ρ(t)))g∇(t) � ( f ◦ g)∇(t) � f ′(g(t))g∇(t).

THEOREM 6. Let a,b ∈ T , α � γ + 1 , β � 2 , and γ > 0 . Suppose f : R → R

is continuously differentiable and g : T → R is nabla differentiable for t ∈ Tκ , and
assume f , f ′ , and g are nonnegative and increasing functions. If

(α − γ) f α−γ−1(g(ρ(t))) f ′(g(ρ(t)))g∇(t) � β (β −1) f γ(β−1)(g(t))(t −a)β−2

is satisfied, then ∫ b

a
f α (g(t))∇t �

(∫ b

a
f γ (g(t))∇t

)β
.

Proof. For each t ∈ [a,b]T let

F(t) :=
∫ t

a
f α(g(τ))∇τ −

(∫ t

a
f γ (g(τ))∇τ

)β
.

Using Corollary 11, we have

F∇(t) � f α(g(t))−β
(∫ t

a
f γ (g(τ))∇τ

)β−1

f γ (g(t))

= f γ (g(t))

(
f α−γ(g(t))−β

(∫ t

a
f γ (g(τ))∇τ

)β−1
)

= f γ (g(t))h(t),

where

h(t) := f α−γ (g(t))−β
(∫ t

a
f γ (g(τ))∇τ

)β−1

.

Now, using Lemma 15 and Corollary 11,

h∇(t) =( f α−γ (g(t)))∇ −β

((∫ t

a
f γ (g(τ))∇τ

)β−1
)∇

�(α − γ) f α−γ−1(g(ρ(t))) f ′(g(ρ(t)))g∇(t)

−β (β −1)
(∫ t

a
f γ (g(τ))∇τ

)β−2

f γ (g(t)).
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Since γ > 0 and f , g are increasing, we have that f γ ◦ g is increasing. It follows that

∫ t

a
f γ (g(τ))∇τ � f γ (g(t))(t−a).

Hence we obtain

h∇(t) �(α − γ) f α−γ−1(g(ρ(t))) f ′(g(ρ(t)))g∇(t)

−β (β −1) f γ(β−1)(g(t))(t −a)β−2

�0.

Therefore, h(t) is nondecreasing. But h(a) = f α−γ (g(a)) � 0. Then h(t) � h(a) � 0,
and it follows that F∇(t) � 0. So F(t) � F(a) = 0, which completes the proof. �

If we let g(t) = t in Theorem 6, we get the following result:

COROLLARY 13. Let a,b ∈ T , α � γ +1 , β � 2 , and γ > 0 . Suppose f , f ′ are
nonnegative and increasing functions. If

(α − γ) f α−γ−1(ρ(t)) f ′(ρ(t)) � β (β −1) f γ(β−1)(t)(t−a)β−2

is satisfied, then ∫ b

a
f α (t)∇t �

(∫ b

a
f γ (t)∇t

)β
.

If we let f (t) = t in Theorem 6, then we get the following result:

COROLLARY 14. Let α � γ +1 , β � 2 , and γ > 0 . Suppose g : T → R is nabla
differentiable for t ∈ Tκ , and assume g is a nonnegative and increasing function. If

(α − γ)gα−γ−1(ρ(t))g∇(t) � β (β −1)gγ(β−1)(t)(t−a)β−2

is satisfied, then ∫ b

a
gα(t)∇t �

(∫ b

a
gγ(t)∇t

)β
.

If γ = 1, β = α −1 in Corollary 14, we obtain the following result:

COROLLARY 15. Let a,b ∈ T , α � 3 . Suppose f is a nonnegative and increas-
ing function, and assume f : T → R is nabla differentiable for t ∈ Tκ . If

f α−2(ρ(t)) f ∇(t) � (α −2) f α−2(t)(t−a)α−3

is satisfied, then ∫ b

a
f α (t)∇t �

(∫ b

a
f (t)∇t

)α−1

.
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REMARK 3. The result in Theorem 4.3 of [7] is a special case of the above corol-
lary but does not follow from its conditions.

THEOREM 7. Let ρm(a) , b∈T , m∈ N0 , α � γ +1 , β � 2 , and γ > 0 . Suppose
f : R → R is continuously differentiable and g : T → R is nabla differentiable for
t ∈ Tκ , and assume f , f ′ , and g are nonnegative and increasing functions. If

f ′(g(ρ(t)))g∇(t) >
β (β −1)

α − γ
f γβ−α+1(g(ρm(t)))(t −a)β−2

is satisfied, then ∫ b

a
f α(g(t))∇t �

(∫ b

a
f γ (g(ρm(t)))∇t

)β
.

Proof. For each t ∈ [a,b]T let

F(t) :=
∫ t

a
f α (g(τ))∇τ −

(∫ t

a
f γ (g(ρm(τ)))∇τ

)β
.

Using Corollary 11, we have

F∇(t) � f α (g(t))−β
(∫ t

a
f γ (g(ρm(τ)))∇τ

)β−1

f γ (g(ρm(t)))

� f α (g(t))−β
(∫ t

a
f γ (g(ρm(τ)))∇τ

)β−1

f γ (g(t))

= f γ (g(t))

(
f α−γ (g(t))−β

(∫ t

a
f γ (g(ρm(τ)))∇τ

)β−1
)

= f γ (g(t))h(t),

where

h(t) := f α−γ (g(t))−β
(∫ t

a
f γ (g(ρm(τ)))∇τ

)β−1

.

Now, using Lemma 15 and Corollary 11,

h∇(t) =( f α−γ (g(t)))∇ −β

((∫ t

a
f γ (g(ρm(τ)))∇τ

)β−1
)∇

�(α − γ) f α−γ−1(g(ρ(t))) f ′(g(ρ(t)))g∇(t)

−β (β −1)
(∫ t

a
f γ (g(ρm(τ)))∇τ

)β−2

f γ (g(ρm(t))).

Since γ > 0 and f , g are increasing, we have that f γ ◦ g is increasing. It follows that∫ t

a
f γ (g(ρm(τ)))∇τ � f γ (g(ρm(t)))(t−a).
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Hence we obtain

h∇(t) �(α − γ) f α−γ−1(g(ρ(t))) f ′(g(ρ(t)))g∇(t)

−β (β −1) f γ(β−1)(g(ρm(t)))(t −a)β−2

�(α − γ) f α−γ−1(g(ρm(t))) f ′(g(ρ(t)))g∇(t)

−β (β −1) f γ(β−1)(g(ρm(t)))(t −a)β−2

=(α − γ) f α−γ−1(g(ρm(t)))
(

f ′(g(ρ(t)))g∇(t)

− β (β −1)
α − γ

f γβ−α+1(g(ρm(t)))(t −a)β−2
)

�0.

Therefore, h is nondecreasing. But h(a) = f α−γ (g(a)) � 0, so h(t) � h(a) � 0 and it
follows that F∇(t) � 0. So F(t) � F(a) = 0, which completes the proof. �

If f (t) = t in Theorem 7, we have the following result:

COROLLARY 16. Let ρm(a) , b ∈ T , m ∈ N0 , α � γ + 1 , β � 2 , and γ > 0 .
Suppose g : T → R is nabla differentiable for t ∈ Tκ , and assume g is a nonnegative
and increasing function. If

g∇(t) >
β (β −1)

α − γ
gγβ−α+1(ρm(t))(t −a)β−2

is satisfied, then ∫ b

a
gα(t)∇t �

(∫ b

a
gγ(ρm(t))∇t

)β
.

If g(t) = t in Theorem 7, we have the following result:

COROLLARY 17. Let ρm(a) , b ∈ T , m ∈ N0 , α � γ + 1 , β � 2 , and γ > 0 .
Suppose f , f ′ are nonnegative and increasing functions. If

f ′(ρ(t)) >
β (β −1)

α − γ
f γβ−α+1(ρm(t))(t −a)β−2

is satisfied, then ∫ b

a
f α(t)∇t �

(∫ b

a
f γ (ρm(t))∇t

)β
.

LEMMA 16. Suppose ϕ is nonnegative and nondecreasing on [a,b]T , and as-
sume ϕ : T → R is nabla differentiable for t ∈ Tκ . If

∫ b

ρ(t)
ψ(τ)∇τ � 0, ∀t ∈ [a,b]T, (4)
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then ∫ b

a
ϕ(t)ψ(t)∇t � 0. (5)

If inequality (4) is reversed, then inequality (5) is also reversed.

Proof. By the product rule,

[
ϕ(t)

∫ b

t
ψ(τ)∇τ

]∇
= −ψ(t)ϕ(t)+

(∫ b

ρ(t)
ψ(τ)∇τ

)
ϕ∇(t),∀t ∈ [a,b]T.

Therefore,

∫ b

a
ψ(t)ϕ(t)∇t =

∫ b

a

(∫ b

ρ(t)
ψ(τ)∇τ

)
ϕ∇(t)∇t + ϕ(a)

∫ b

a
ψ(τ)∇τ � 0

being the sum of two nonnegative terms. �

THEOREM 8. Suppose f , g, and h are nonnegative functions, where h is defined
on [a,b]T , and f , g are defined on the range of h. Assume further that f , h are
nondecreasing. If

∫ b

ρ(t)
f β (h(τ))∇τ �

∫ b

ρ(t)
gβ (h(τ))∇τ, ∀t ∈ [a,b]T and β > 0,

then ∫ b

a
f α+β (h(t))∇t �

∫ b

a
f α (h(t))gβ (h(t))∇t, α � 0.

Proof. The proof follows from Lemma 16 by putting

ϕ(t) := f α (h(t)), and ψ(t) := f β (h(t))−gβ (h(t)). �

LEMMA 17. Assume that a,b ∈ T and f ∈ Cld(T×T,R) , then

∫ b

a

∫ η

a
f (η ,ξ )∇ξ ∇η =

∫ b

a

∫ b

ρ(ξ )
f (η ,ξ )∇η∇ξ . (6)

Proof. The proof of this lemma is similar to the proof of Lemma 14, and therefore
is omitted. �

THEOREM 9. Suppose f , g, and h are nonnegative functions, where h is defined
on [a,b]T , and f , g are defined on the range of h. Assume further that either f ◦ h or
g◦h is nondecreasing, f ◦h∈ C1

ld , g◦h∈ C1
ld , and ( f α ◦h)∇(t) and (gβ ◦h)∇(t) exist

for t ∈ [a,b]Tκ . If

∫ b

ρ(t)
f β (h(τ))∇τ �

∫ b

ρ(t)
gβ (h(τ))∇τ, ∀t ∈ [a,b]T and β > 0, (7)
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then ∫ b

a
f α+β (h(τ))∇τ �

∫ b

a
f α (h(τ))gβ (h(τ))∇τ

holds for all positive numbers α and β .

Proof. Suppose that f ◦ h is nondecreasing. Using the Fundamental Theorem for
nabla case and Lemma 11, we have

∫ b

a
f α+β (h(τ))∇τ

=
∫ b

a
f β (h(τ)) f α (h(τ))∇τ

=
∫ b

a
f β (h(τ))

(∫ τ

a
( f α ◦ h)∇(t)∇t + f α(h(a))

)
∇τ

(6)
=
∫ b

a

(
( f α ◦ h)∇(t)

∫ b

ρ(t)
f β (h(τ))∇τ

)
∇t + f α(h(a))

∫ b

a
f β (h(τ))∇τ

(7)
�
∫ b

a

(
( f α ◦ h)∇(t)

∫ b

ρ(t)
gβ (h(τ))∇τ

)
∇t + f α(h(a))

∫ b

a
gβ (h(τ))∇τ

(6)
=
∫ b

a
gβ (h(τ))

(∫ τ

a
( f α ◦ h)∇(t)∇t + f α(h(a))

)
∇τ

=
∫ b

a
f α (h(τ))gβ (h(τ))∇τ.

Now suppose g ◦ h is nondecreasing. Notice that α,β > 0, so from (7) we have

∫ b

ρ(t)
f α (h(τ))∇τ �

∫ b

ρ(t)
gα(h(τ))∇τ, ∀t ∈ [a,b]T and α > 0. (8)

Using the Fundamental Theorem for nabla case, we have

∫ b

a
f α (h(τ))gβ (h(τ))∇τ (9)

=
∫ b

a
f α (h(τ))

(∫ τ

a
(gβ ◦ h)∇(t)∇t +gβ (h(a))

)
∇τ

(6)
=
∫ b

a

(
(gβ ◦ h)∇(t)

∫ b

ρ(t)
f α (h(τ))∇τ

)
∇t +gβ (h(a))

∫ b

a
f α (h(τ))∇τ

(8)
�
∫ b

a

(
(gβ ◦ h)∇(t)

∫ b

ρ(t)
gα(h(τ))∇τ

)
∇t +gβ (h(a))

∫ b

a
gα(h(τ))∇τ

(6)
=
∫ b

a
gα(h(τ))

(∫ τ

a
(gβ ◦ h)∇(t)∇t +gβ (h(a))

)
∇τ

=
∫ b

a
gβ+α(h(τ))∇τ.
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Using the weighted AM-GM inequality, we have

α
α + β

f α+β (h(τ))+
β

α + β
gα+β (h(τ)) � f α(h(τ))gβ (h(τ)).

Integrating the above inequality gives

∫ b

a
f α (h(τ))gβ (h(τ))∇τ

� α
α + β

∫ b

a
f α+β (h(τ))∇τ +

β
α + β

∫ b

a
gα+β (h(τ))∇τ

(9)
� α

α + β

∫ b

a
f α+β (h(τ))∇τ +

β
α + β

∫ b

a
f α (h(τ))gβ (h(τ))∇τ.

It is easy to see that the result follows from the last inequality. �

Let h(t) = t , g(t) = t , a = 0, and [a,b]T = [a,b]q = {bqk : 0 � k � n,0 < q < 1} .
We get the following result.

COROLLARY 18. If f is a nonnegative function on [0,b]q and satisfies

∫ b

qt
f β (τ)dqτ �

∫ b

qt
τβ dqτ

for all t ∈ [0,b]q and β > 0 , then the inequality

∫ b

0
f β+α(τ)dqτ �

∫ b

0
f α (τ)τβ dqτ

holds for all positive numbers α and β .

REMARK 4. A similar result can be found in Theorem 3 in [12], where the suffi-
cient condition seems to be incorrect due to the improper use of Lemma 17.

THEOREM 10. Suppose f ,g, and h are nonnegative functions, where h is de-
fined on [a,b]T , and f , g are defined on the range of h. Assume further that g ◦ h is
decreasing, g◦ h∈ C1

ld , f ◦ h ∈ Cld and (g−α ◦ h)∇(t) exists for t ∈ [a,b]Tκ . If

∫ b

ρ(t)
f β (h(τ))∇τ �

∫ b

ρ(t)
gβ (h(τ))∇τ, ∀t ∈ [a,b]T and β > 0, (10)

then ∫ b

a
f β−α(h(τ))∇τ �

∫ b

a
f β (h(τ))g−α(h(τ))∇τ

holds for all β > α > 0.
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Proof. Using the Fundamental Theorem for the nabla case and Lemma 11, we
have

∫ b

a
f β (h(τ))g−α(h(τ))∇τ (11)

=
∫ b

a
f β (h(τ))

(∫ τ

a
(g−α ◦ h)∇(t)∇t +g−α(h(a))

)
∇τ

(6)
=
∫ b

a

(
(g−α ◦ h)∇(t)

∫ b

ρ(t)
f β (h(τ))∇τ

)
∇t +g−α(h(a))

∫ b

a
f β (h(u))∇u

(10)
�
∫ b

a

(
(g−α ◦ h)∇(t)

∫ b

ρ(t)
gβ (h(τ))∇τ

)
∇t +g−α(h(a))

∫ b

a
gβ (h(τ))∇τ

(6)
=
∫ b

a
gβ (h(τ))

(∫ τ

a
(g−α ◦ h)∇(t)∇t +g−α(h(a))

)
∇τ

=
∫ b

a
gβ−α(h(τ))∇τ.

Using the weighted AM-GM inequality, we get

f α1(h(τ))gβ1(h(τ)) � α1

α1 + β1
f α1+β1(h(τ))+

β1

α1 + β1
gα1+β1(h(τ)), α1,β1 > 0.

Let α1 + β1 = β , β1 = α. Then β > α > 0,

f β−α(h(τ)) � β −α
β

f β (h(τ))g−α(h(τ))+
α
β

gβ−α(h(τ)).

Integrating the above inequality yields

∫ b

a
f β−α(h(τ))∇τ

�β −α
β

∫ b

a
f β (h(τ))g−α(h(τ))∇τ +

α
β

∫ b

a
gβ−α(h(τ))∇τ

(11)
� β −α

β

∫ b

a
f β (h(τ))g−α(h(τ))∇τ +

α
β

∫ b

a
f β (h(τ))g−α(h(τ))∇τ

=
∫ b

a
f β (h(τ))g−α(h(τ))∇τ. �
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