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Abstract. In this paper we study the Triebel-Lizorkin space boundedness and continuity of max-
imal operators related to rough singular integrals associated to polynomial compound curves.
We prove that the above operators are bounded and continuous on the inhomogeneous Triebel-
Lizorkin space Fα

p,q(Rn) for all α ∈ (0,1) , p ∈ [2,∞) and q ∈ (2p/(p+2),∞) under the con-

ditions that the integral kernels are given by Ω ∈ L(log+ L)1/2(Sn−1)∪(∪1<r<∞B0,−1/2
r (Sn−1)) .

We also establish the boundedness and continuity of the above operators on the inhomogeneous
Besov space Bα

p,q(R
n) for α ∈ (0,1) , p ∈ [2,∞) and q ∈ (1,∞) . In addition, the corresponding

results for maximal operators related to parametric Marcinkiewicz integrals are also considered.

1. Introduction

Let R+ := (0,∞) and K2 be the set of all measurable functions h : R+ → R
with ‖h‖L2(R+,dr/r) � 1, where L2(R+,dr/r) is the set of all measurable functions
h : R+ → R that satisfy

‖h‖L2(R+,dr/r) :=
(∫ ∞

0
|h(r)|2r−1dr

)1/2
< ∞.

Let Rn (n � 2) be the n -dimensional Euclidean space and Sn−1 denote the unit sphere
in Rn equipped with the induced Lebesgue measure dσ . Assume that Ω is homoge-
neous of degree zero and integrable over Sn−1 and satisfies the cancellation condition∫

Sn−1
Ω(u)dσ(u) = 0. (1)

Suppose that P is a real polynomial on R of degree N and satisfies P(0) = 0. For a
suitable function ϕ : R+ → R , the corresponding maximal operator SΩ,P,ϕ along the
“polynomial compound curve” P(ϕ(|y|))y′ on Rn is defined by

SΩ,P,ϕ f (x) = sup
h∈K2

|Th,Ω,P,ϕ f (x)|, (2)
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where x ∈ Rn and Th,Ω,P,ϕ is the singular integral operator given by

Th,Ω,P,ϕ f (x) := p.v.

∫
Rn

f (x−P(ϕ(|y|))y′)h(|y|)Ω(y)
|y|n dy,

where y′ = y/|y| for any nonzero point y ∈ Rn .
It is a long time interesting topic to study the rough singular integral operators.

A celebrated work in this direction is due to Fefferman [12] who first introduced and
studied the singular integral operator with rough radial kernels h , which has been in-
vestigated extensively by many authors. Due to the presence of h , a class of maximal
operators related to the above rough singular integrals was first introduced by Chen and
Lin [11], which is denoted by SΩ and corresponds to the special case of SΩ,P,ϕ with
P(t) = ϕ(t) = t . Chen and Lin proved that if Ω ∈ C (Sn−1) , then SΩ is bounded on
Lp(Rn) for any p > 2n/(2n− 1) and the range of p is best possible. Subsequently,
the Lp mapping properties of SΩ have been discussed extensively by many authors.
For example, see [26] for the case Ω ∈ H1(Sn−1) (the Hardy space on Sn−1 ), [6, 7] for

the case Ω ∈ L(log+ L)1/2(Sn−1) , [3, 5] for the case Ω ∈ B(0,−1/2)
r (Sn−1) with some

r > 1 (the block space generated by r -blocks). See Appendix for these definitions and
relationships of the above rough kernels.

It is well known that the Triebel-Lizorkin spaces and Besov spaces contain many
important function spaces, such as Lebesgue spaces, Hardy spaces, Sobolev spaces and
Lipschitz spaces. During the last several years, a considerable amount of attention has
been given to investigate the boundedness for various kinds of integral operators on
Triebel-Lizorkin spaces and Besov spaces. For examples, see [1, 9, 10, 24] for singular
integrals, [17, 18, 19, 27, 28] for Marcinkiewicz integrals, [15, 20, 22] for maximal
operators. In this paper we shall establish the boundedness and continuity of maximal
operators associated to polynomial compound curves with rough integral kernels Ω ∈
L(log+ L)1/2(Sn−1)∪ (∪1<r<∞B0,−1/2

r (Sn−1)) on the above function spaces.
We now recall the definitions of Triebel-Lizorkin spaces and Besov spaces. Let

S ′(Rn) denote the tempered distribution class on Rn . For α ∈ R and 0 < p, q �
∞(p �= ∞) , we define the homogeneous Triebel-Lizorkin spaces Ḟα

p,q(R
n) and homo-

geneous Besov spaces Ḃα
p,q(Rn) by

Ḟα
p,q(R

n) :=
{

f ∈S ′(Rn) : ‖ f‖Ḟα
p,q(Rn) =

∥∥∥(
∑
i∈Z

2−iαq|Ψi ∗ f |q
)1/q∥∥∥

Lp(Rn)
< ∞

}
, (3)

Ḃα
p,q(R

n) :=
{

f ∈ S ′(Rn) : ‖ f‖Ḃα
p,q(Rn) =

(
∑
i∈Z

2−iαq‖Ψi ∗ f‖q
Lp(Rn)

)1/q
< ∞

}
, (4)

where Ψ̂i(ξ ) = φ(2iξ ) for i ∈ Z and φ ∈ C ∞
c (Rn) satisfies the conditions: 0 � φ(x) �

1; supp(φ) ⊂ {x : 1/2 � |x| � 2} ; φ(x) > c > 0 if 3/5 � |x| � 5/3. The inhomo-
geneous versions of Triebel-Lizorkin spaces and Besov spaces, which are denoted by
Fα

p,q(R
n) and Bα

p,q(R
n) , respectively, are obtained by adding the term ‖Θ ∗ f‖Lp(Rn) to

the right hand side of (3) or (4) with ∑i∈Z replaced by ∑i�1 , where Θ ∈ S (Rn) (the
Schwartz class), supp(Θ̂) ⊂ {ξ : |ξ | � 2} , Θ̂(x) > c > 0 if |x| � 5/3.
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The following properties are well known (see [13, 25] for example):

Ḟ0
p,2(R

n) = Lp(Rn) for 1 < p < ∞; (5)

Ḟα
p,p(R

n) = Ḃα
p,p(R

n) for α ∈ R and 1 < p < ∞; (6)

and for any 1 < p, q < ∞ and α > 0,

Fα
p,q(R

n) ∼ Ḟα
p,q(R

n)∩Lp(Rn) and ‖ f‖Fα
p,q(Rn) ∼ ‖ f‖Ḟα

p,q(Rn) +‖ f‖Lp(Rn); (7)

Bα
p,q(R

n) ∼ Ḃα
p,q(R

n)∩Lp(Rn) and ‖ f‖Bα
p,q(Rn) ∼ ‖ f‖Ḃα

p,q(Rn) +‖ f‖Lp(Rn). (8)

Recently, Liu [20] first studied the boundedness of maximal operators related to
singular integrals associated to polynomial compound mappings on Triebel-Lizorkin
spaces and Besov spaces. More precisely, let d � 1 and P = (P1, . . . ,Pd) with each Pj

being a real-valued polynomial on Rn and ϕ ∈ F1 or F2 , where F1 (resp., F2 ) is the
set of all functions φ : R+ → R+ satisfying the following condition (a) (resp., (b)),
where

(a) φ is an increasing C 1 function such that tφ ′(t) �Cφ φ(t) and φ(2t) � cφ φ(t)
for all t > 0, where Cφ and cφ are independent of t .

(b) φ is a decreasing C 1 function such that tφ ′(t)�−Cφ φ(t) and φ(t)� cφ φ(2t)
for all t > 0, where Cφ and cφ are independent of t .

Define the maximal operators related to singular integrals associated to polynomial
compound mappings SΩ,P,ϕ by

SΩ,P,ϕ f (x) = sup
h∈K2

∣∣∣p.v.
∫

Rn
f (x−P(ϕ(|y|)y′))h(|y|)Ω(y)

|y|n dy
∣∣∣.

We now introduce the main result of [20] as follows.

THEOREM A. ([20]) Let Ω ∈ H1(Sn−1)∪ L(log+ L)1/2(Sn−1) and satisfy (1).
Then

(i) SΩ,P,ϕ is bounded on Ḟα
p,q(R

n) for α ∈ (0,1) and (1/p,1/q) ∈ R . Here R

denotes the set of all interiors of the convex hull of two squares (0,1/2)2 and (1/2,1)2 ;
(ii) SΩ,P,ϕ is bounded on Ḃα

p,q(Rn) for α ∈ (0,1) , p ∈ [2,∞) and q ∈ (1,∞) .
The bounds of SΩ,P,ϕ given above re independent of the coefficients of Pj for

1 � j � d .

REMARK 1. We remark that the class F1 was first introduced by Al-Salman [4]
who investigated the Lp bounds for the parabolic Marcinkiewicz integrals along sur-
faces on product domains. There are some model examples for the class F1 , such as
tα lnβ (1+ t) (α > 0, β � 0) , t ln ln(e+ t) , real-valued polynomials P on R with pos-
itive coefficients and P(0) = 0 and so on. The model examples for function ϕ ∈ F2 are
tδ (δ < 0) , t−1 ln(1+ 1/t) . It should be pointed out that if ϕ ∈ F1 (or ϕ ∈ F2 ), there
exist a constant Bϕ > 1 such that ϕ(2t) � Bϕϕ(t) (or ϕ(t) � Bϕ ϕ(2t)) (see [4]).

In light of the aforementioned facts concerning the above maximal operators, a
question that arises naturally is the following
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QUESTION. Is SΩ,P,ϕ bounded and continuous on the Triebel-Lizorkin spaces
and Besov spaces under the condition that Ω ∈ L(log+ L)1/2(Sn−1) and ϕ ∈ F1 or
F2 ?

In this paper we will give an affirmative answer to the above question by proving
the following results.

THEOREM 1. Let P be a real polynomial on R of degree N and satisfy P(0) = 0
and ϕ ∈ F1 or F2 . Let Ω ∈ Ls(Sn−1) for some s ∈ (1,2] and satisfy (1) and R be
given as in Theorem A. Then

(i) For α ∈ (0,1) and (1/p,1/q)∈ R , there exists C > 0 such that

‖SΩ,P,ϕ f‖Ḟα
p,q(Rn) � C(s−1)−1/2‖Ω‖Ls(Sn−1)‖ f‖Ḟα

p,q(Rn),

where C is independent of s, Ω and the coefficients of P, but may depend on n, α, p, q, ϕ
and N ;

(ii) SΩ,P,ϕ is continuous from Fα
p,q(R

n) to Ḟα
p,q(R

n) for all α ∈ (0,1) , p ∈ [2,∞)
and q ∈ (2p/(p+2),∞) .

THEOREM 2. Let P be a real polynomial on R of degree N and satisfy P(0) = 0

and ϕ ∈ F1 or F2 . Let Ω ∈ L(log+ L)1/2(Sn−1)∪(∪1<r<∞B(0,−1/2)
r (Sn−1)) and satisfy

(1). Then
(i) SΩ,P,ϕ is bounded on Ḟα

p,q(Rn) for α ∈ (0,1) and (1/p,1/q) ∈ R . Here R
is given as in Theorem A;

(ii) SΩ,P,ϕ is continuous from Fα
p,q(R

n) to Ḟα
p,q(R

n) for all α ∈ (0,1) , p ∈ [2,∞)
and q ∈ (2p/(p+2),∞) .

REMARK 2. We point out that the introduce of the polynomial compound curves
P(ϕ(|y|))y′ is greatly motivated by the Al-Salman’s work [8], Liu and Zhang’s work
[23] and Liu et al.’s work [21]. In [8], Al-Salman established the Lp boundedness for
the parabolic Marcinkiewicz integrals along surfaces P(|y|)y′ and ϕ(|y|)y′ provided
that Ω belongs to the Grafakos-Stefanov class. In [23], Liu and Zhang proved cer-
tain Lp bounds for the parabolic Marcinkiewicz integrals associated to polynomials
compound curves P(ϕ(|y|))y′ under the condition that Ω ∈ L(log+ L)α (Sn−1) with
α = 1 or α = 1/2. In [21], Liu et al. established certain Lp estimates for the para-
metric Marcinkiewicz integrals along compound curves Φ(ϕ(|y|))y′ with Φ satisfy-
ing certain growth conditions and ϕ ∈ F1 or ϕ ∈ F2 provided that Ω ∈ H1(Sn−1) or
Ω ∈ L(log+ L)1/2(Sn−1) .

REMARK 3. When ϕ(t) = t , Al-Salman [7] proved that SΩ,P,ϕ is of type (p, p)
for 2 � p < ∞ if Ω ∈ L(log+ L)1/2(Sn−1) . By (20), (24)–(25) in Section 3 and applying
the arguments similar to those used in deriving Theorem 2.3 in [7], we can obtain

‖SΩ,P,ϕ f‖Lp(Rn) � C(s−1)−1/2‖Ω‖Ls(Sn−1)‖ f‖Lp(Rn) (9)
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for 2 � p < ∞ if Ω ∈ Ls(Sn−1) for some s ∈ (1,2] and satisfies (1). Here C > 0
is independent of s, Ω and the coefficients of P . Applying (9) and an extrapolation
argument (see [2]), we can get the following

‖SΩ,P,ϕ f‖Lp(Rn) � C‖ f‖Lp(Rn) (10)

for 2 � p < ∞ if Ω ∈ L(log+ L)1/2(Sn−1)∪ (∪1<r<∞B(0,−1/2)
r (Sn−1)) .

In what follows, we set Δζ f (x) = f (x+ζ )− f (x) for all x, ζ ∈ Rn . On can easily
check that

Δζ (SΩ,P,ϕ f )(x) � SΩ,P,ϕ (Δζ f )(x) ∀x, ζ ∈ Rn; (11)

|SΩ,P,ϕ f −SΩ,P,ϕg| � |SΩ,P,ϕ ( f −g)| (12)

for arbitrary function f , g defined on Rn .
Applying (11)–(12), Remark 3 and Lemma 5, we can obtain the following theo-

rem.

THEOREM 3. Let P, ϕ , Ω be given as in Theorem 2 . Then
(i) SΩ,P,ϕ is bounded on Ḃα

p,q(Rn) for α ∈ (0,1) , p ∈ [2,∞) and q ∈ (1,∞);
(ii) SΩ,P,ϕ is continuous from Bα

p,q(R
n) to Ḃα

p,q(R
n) for α ∈ (0,1) , p ∈ [2,∞)

and q ∈ (1,∞) .

It follows from (10) and (12) that SΩ,P,ϕ is bounded and continuous on Lp(Rn)
for all 2 � p < ∞ if Ω ∈ L(log+ L)1/2(Sn−1)∪(∪1<r<∞B(0,−1/2)

r (Sn−1)) . This together
with (7)–(8) and Theorems 2-3 yields the following result.

COROLLARY 1. Let P, ϕ , Ω be given as in Theorem 2 . Then
(i) SΩ,P,ϕ is bounded and continuous on Fα

p,q(R
n) for all α ∈ (0,1) , p ∈ [2,∞)

and q ∈ (2p/(p+2),∞) .
(ii) SΩ,P,ϕ is bounded and continuous on Bα

p,q(R
n) for all α ∈ (0,1) , p ∈ [2,∞)

and q ∈ (1,∞) .

REMARK 4. We remark that all of our continuity results are new, even in the spe-
cial case P(t) = ϕ(t) = t . Also, all of our boundedness results are new, even in the
special case ϕ(t) = t .

The paper is organized as follows. Section 2 contains some auxiliary lemmas. The
proofs of Theorems 1 and 2 will be given in Section 3. Finally, we present the corre-
sponding results for the maximal operators related to the parametric Marcinkiewicz in-
tegrals in Section 4. We would like to remark that the main methods and ideas employed
in this paper is a combination of ideas and arguments from [1, 2, 16, 17, 22, 27], among
others. Due to the application of some useful characterizations of Triebel-Lizorkin
spaces (see Lemma 2), it makes that the proof of Triebel-Lizorkin space boundedness
for maximal operators can be reduced to prove certain vector-valued inequalities, which
can be deduced by certain Fourier transform estimates, maximal inequalities and inter-
polation arguments. The continuity part in Theorem 1 are motivated by the idea in [22].
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It should be also pointed out that the proof of Theorem 2 is based on Theorem 1 and an
extrapolation method (see [2]).

Throughout the paper, we denote p′ by the conjugate index of p , which satisfies
1/p+ 1/p′ = 1. The letter C or c , sometimes with certain parameters, will stand for
positive constants not necessarily the same one at each occurrence, but are independent
of the essential variables. In what follows, we set Rn = {ζ ∈ Rn; 1/2 < |ζ | � 1} .

2. Preliminary Lemmas

Let us recall the following estimate of oscillatory integrals, which will play a key
role in the estimates about Fourier transforms of some measures on Rn .

LEMMA 1. ([16]) Let PN(t) = ∑N
i=1 aiti with ai �= 0 for all 1 � i � N . Suppose

Ω ∈ Ls(Sn−1) for some s > 1 . Then, for any r > 0 and 0 < ε < min{1/s′,1/N} , there
exists a constant C > 0 such that

∫ r

r/2

∣∣∣∫
Sn−1

Ω(u′)e−iPN(ϕ(t))ξ ·u′dσ(u′)
∣∣∣2 dt

t
� C‖Ω‖2

Ls(Sn−1)|ϕ(r)NaNξ |−ε if ϕ ∈ F1;

∫ r

r/2

∣∣∣∫
Sn−1

Ω(u′)e−iPN(ϕ(t))ξ ·u′dσ(u′)
∣∣∣2 dt

t
� C‖Ω‖2

Ls(Sn−1)|ϕ(r/2)NaNξ |−ε if ϕ ∈ F2.

Here C > 0 is independent of s, Ω and the coefficients of PN , but depends on ϕ .

The following result is some useful characterizations of Triebel-Lizorkin spaces
and Besov spaces, which are followed from [27].

LEMMA 2. ([27]) (i) Let α ∈ (0,1) , p∈ (1,∞) , q∈ (1,∞] and r∈ [1,min{p,q}) .
Then

‖ f‖Ḟα
p,q(Rn) ∼

∥∥∥(
∑
l∈Z

2lqα
(∫

Rn

|Δ2−lζ f |rdζ
)q/r)1/q∥∥∥

Lp(Rn)
.

(ii) Let p ∈ [1,∞) , q ∈ [1,∞] and r ∈ [1, p] . Then

‖ f‖Ḃα
p,q(Rn) ∼

(
∑
l∈Z

2lqα
∥∥∥(∫

Rn

|Δ2−lζ f |rdζ
)1/r∥∥∥q

Lp(Rn)

)1/q
.

The results for the following vector-valued inequalities of the Hardy-Littlewood
maximal functions will also be needed in our proofs.

LEMMA 3. ([17]) Let M(n) be the Hardy-Littlewood maximal operator on Rn

and MP denote the Hardy-Littlewood maximal operator supported by polynomial
mappings P defined by MP f (x) = supr>0

1
rn

∫
|y|�r | f (x − P(y))|dy, where P =

(P1, . . . ,Pn) with each Pj being a real-valued polynomial in Rn . Then the following
results are valid:
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(i) For any pair (p,q,r) ∈ (1,∞)3 , it holds that∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

|M(n)g j,ζ ,k|2
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

� C
∥∥∥(

∑
j∈Z

∥∥∥(
∑
k∈Z

|g j,ζ ,k|2
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

;
(13)

(ii) For any pair (p,q,r) ∈ (1,∞)3 , it holds that∥∥∥(
∑
j∈Z

‖MP f j,ζ ‖q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

� C
∥∥∥(

∑
j∈Z

‖ f j,ζ ‖q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

,

where C > 0 is independent of the coefficients of Pj for all 1 � j � n.

Let Ω be given as in (2) and Γ : Rn →Rn be a suitable mapping. Define the family
of measures {σt,Γ}t>0 and {|σt,Γ|}t>0 on Rn by

σ̂t,Γ(x) =
∫

Sn−1
e−2π iΓ(ty′)·xΩ(y′)dσ(y′), (14)

|̂σt,Γ|(x) =
∫

Sn−1
e−2π iΓ(ty′)·x|Ω(y′)|dσ(y′). (15)

LEMMA 4. Let v � 1 , Ω ∈ L1(Sn−1) and Γ(y) = P(ϕ(|y|))y′ , where ϕ ∈ F1 or
F2 and P(·) is a real-valued polynomial on R+ . If (1/p, 1/q, 1/r) belongs to the
interior of the convex hull of two cubes (0,1/2)3 and (1/2,1)3 , then∥∥∥(

∑
j∈Z

(∫
Rn

(
∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σt,Γ| ∗ g j,ζ ,k

∣∣2 dt
t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

� Cv1/2‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

|g j,ζ ,k|2
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

,

(16)

where C > 0 is independent of v , Ω and the coefficients of P.

Proof. We only consider the case ϕ ∈ F1 and another case is analogous. By
Hölder’s inequality, (16) reduces to the following∥∥∥(

∑
j∈Z

∥∥∥(
∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σt,Γ| ∗ g j,ζ ,k

∣∣2 dt
t

)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

� Cv1/2‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

|g j,ζ ,k|2
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

(17)

for (1/p, 1/q, 1/r) belonging to the interior of the convex hull of two cubes (0,1/2)3

and (1/2,1)3 . We first prove that for any pair (p,q,r) ∈ (1,∞)3 ,∥∥∥(
∑
j∈Z

∥∥∥sup
k∈Z

∫ 2(k+1)v

2kv

∣∣|σt,Γ| ∗ f j,ζ
∣∣dt

t

∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

� C(ϕ)v‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

‖ f j,ζ‖q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

.

(18)
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Let [v] = max{k ∈ Z : k � v} . By a change of variable and Fubini’s theorem,

sup
k∈Z

∫ 2(k+1)v

2kv

∣∣|σt,Γ| ∗ f j,ζ (x)
∣∣dt

t

� sup
k∈Z

∫ 2(k+1)v

2kv

∫
Sn−1

| f j,ζ (x−Γ(ty′))||Ω(y′)|dσ(y′)
dt
t

�
∫

Sn−1
|Ω(y′)|sup

k∈Z

∫ 2(k+1)v

2kv
| f j,ζ (x−Γ(ty′))|dt

t
dσ(y′)

�
∫

Sn−1
|Ω(y′)|

[v]

∑
i=0

sup
k∈Z

∫ 2kv+i+1

2kv+i
| f j,ζ (x−Γ(ty′))|dt

t
dσ(y′)

�
∫

Sn−1
|Ω(y′)|

[v]

∑
i=0

sup
k∈Z

∫ ϕ(2kv+i+1)

ϕ(2kv+i)
| f j,ζ (x−Γ(ϕ−1(t)y′))| dt

ϕ−1(t)ϕ ′(ϕ−1(t))
dσ(y′)

� C(ϕ)v
∫

Sn−1
|Ω(y′)|sup

r>0

1
r

∫
|t|�r

| f j,ζ (x−Γ(ϕ−1(t)y′))|dtdσ(y′),

which combining (ii) of Lemma 3 with Minkowski’s inequality yields (18).

By duality, we have that, for any 1 < p, q, r < ∞ , there exist functions { f j,ζ} j,ζ
with ‖{ f j,ζ}‖Lp′ (Rn,�q′ (Lr′ (Rn)))

= 1 such that

∥∥∥(
∑
j∈Z

∥∥∥ ∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σt,Γ| ∗ g j,ζ ,k

∣∣dt
t

∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

= ∑
j∈Z

∫
Rn

∫
Rn

∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σt,Γ| ∗ g j,ζ ,k(x)
∣∣dt

t
| f j,ζ (x)|dζdx

� ∑
j∈Z

∫
Rn

∫
Rn

∑
k∈Z

|g j,ζ ,k(x)|
∫ 2(k+1)v

2kv
|σt,Γ| ∗ |̃ f j,ζ |(−x)

dt
t

dζdx,

where f̃ j,ζ (x) = f j,ζ (−x) . This together with Hölder’s inequality and (18) implies that

∥∥∥(
∑
j∈Z

∥∥∥ ∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σt,Γ| ∗ g j,ζ ,k

∣∣dt
t

∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

�
∥∥∥(

∑
j∈Z

∥∥∥ ∑
k∈Z

|g j,ζ ,k|
∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

×
∥∥∥(

∑
j∈Z

∥∥∥sup
k∈Z

∫ 2(k+1)v

2kv
||σt,Γ| ∗ |̃ f j,ζ ||

dt
t

∥∥∥q′

Lr′ (Rn)

)1/q′∥∥∥
Lp′ (Rn)

� C(ϕ)v‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥ ∑
k∈Z

|g j,ζ ,k|
∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

,

(19)
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On the other hand, we get by Hölder’s inequality that

∣∣|σt,Γ| ∗ g j,ζ ,k(x)
∣∣ �

∫
Sn−1

|g j,ζ ,k(x−Γ(ty′))||Ω(y′)|dσ(y′)

= ‖Ω‖1/2
L1(Sn−1)(|σt,Γ| ∗ |g j,ζ ,k|2(x))1/2.

Combining this inequality with (19) yields that

∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σt,Γ| ∗ g j,ζ ,k

∣∣2 dt
t

)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

� C‖Ω‖1/2
L1(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σt,Γ| ∗ |g j,ζ ,k|2
∣∣dt

t

∥∥∥q/2

Lr/2(Rn)

)2/q∥∥∥1/2

Lp/2(Rn)

� C(ϕ)‖Ω‖1/2
L1(Sn−1)v

1/2‖Ω‖1/2
L1(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥ ∑
k∈Z

|g j,ζ ,k|2
∥∥∥q/2

Lr/2(Rn)

)2/q∥∥∥1/2

Lp/2(Rn)

� C(ϕ)v1/2‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

|g j,ζ ,k|2
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

for (p,q,r) ∈ (2,∞)3 . This gives (17) for (p,q,r) ∈ (2,∞)3 . By duality we have
(17) for (p,q,r) ∈ (1,2)3 . Interpolating these two cases, we see that (17) holds for
(1/p,1/q,1/r) belonging to the interior of the convex hull of two cubes (0,1/2)3 and
(1/2,1)3 . This finishes the proof of Lemma 4. �

We end this section by the following criterion on the boundedness and continuity
of a class of sublinear operators on Besov spaces.

LEMMA 5. ([22]) Let T be a sublinear operator. Assume that T : Lp(Rn) →
Lp(Rn) for some p ∈ (1,∞) . If

|Δζ (T f )(x)| � |T (Δζ ( f ))(x)|

for any x, ζ ∈ Rn . Then T is bounded on Ḃs
p,q(R

n) for any s ∈ (0,1) and q ∈ (1,∞) .
Specially, if T also satisfies the following

|T f −Tg| � |T ( f −g)|

for arbitrary function f , g defined on Rn . Then T is continuous from Bs
p,q(R

n) to
Ḃs

p,q(Rn) for any s ∈ (0,1) and q ∈ (1,∞) .

3. Proofs of Theorems 1–2

Proof of Theorem 1 . Let Ω ∈ Ls(Sn−1) for some 1 < s � 2 and P(t) = ∑N
i=1 biti .

Without loss of generality we may assume that bi �= 0 for all 1 � i � N . Let σt,Γ and
|σt,Γ| be defined as in (14) and (15), respectively. We only prove Theorem 1 for the
case ϕ ∈ F1 by the following two steps and the other case is analogous.
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Step 1. Proof of (i) of Theorem 1. Define Γ0, Γ1, . . . ,ΓN by Γ0(y) = (0, . . . ,0)
and Γλ (y) = Pλ (ϕ(|y|))y′ for 1 � λ � N , where Pλ (t) = ∑λ

i=1 biti . For t > 0 and
0 � λ � N , we denote σt,λ = σt,Γλ and |σt,λ | = |σt,Γλ | . By a change of variables and
Hölder’s inequality, it is no difficult to see that

SΩ,P,ϕ f (x) �
(∫ ∞

0
|σt,N ∗ f (x)|2 dt

t

)1/2
. (20)

By (20), (11) and (i) of Lemma 2, we obtain

‖SΩ,P,ϕ f‖Ḟα
p,q(Rn)

� C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

|Δ2−lζ (SΩ,P,ϕ f )|dζ
)q)1/q∥∥∥

Lp(Rn)

� C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

|SΩ,P,ϕ (Δ2−lζ f )|dζ
)q)1/q∥∥∥

Lp(Rn)

� C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

(∫ ∞

0
|σt,N ∗Δ2−lζ f |2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

(21)

for α ∈ (0,1) and (p,q) ∈ (1,∞)2 . Hence, to prove (i) of Theorem 1, it suffices to
show that

∥∥∥(
∑
l∈Z

2lqα
(∫

Rn

(∫ ∞

0
|σt,N ∗Δ2−lζ f |2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

� C(s−1)−1/2‖Ω‖Ls(Sn−1)‖ f‖Ḟα
p,q(Rn)

(22)

for α ∈ (0,1) and (1/p,1/q) belonging to the set of all interiors of the convex hull
of two squares (0,1/2)2 and (1/2,1)2 . Here C > 0 is independent of s, Ω and the
coefficients of P .

Below we shall prove (22). By a change of variable and Hölder’s inequality,

(∫ 2(k+1)s′

2ks′
|σ̂t,λ (ξ )− σ̂t,λ−1(ξ )|2 dt

t

)1/2

�
(∫ 2(k+1)s′

2ks′

(∫
Sn−1

|Ω(y′)||e−2π iPλ (ϕ(t))ξ ·y′ − e−2π iPλ−1(ϕ(t))ξ ·y′ |dσ(y′)
)2 dt

t

)1/2

� C
(∫ 2(k+1)s′

2ks′
(min{1, |ϕ(t)λ bλ ξ |})2 dt

t
‖Ω‖2

L1(Sn−1)

)1/2

� C(s−1)−1/2‖Ω‖Ls(Sn−1)|ϕ(2(k+1)s′)λ bλ ξ |1/(2λ s′).
(23)

Since 1 < s � 2, then s′ � 2(s− 1)−1 . Choose v ∈ Z such that v < s′ � v+ 1. By a



MAXIMAL OPERATORS ASSOCIATED TO POLYNOMIAL COMPOUND CURVES 35

change of variables again and Lemma 1,

(∫ 2(k+1)s′

2ks′
|σ̂t,λ (ξ )|2 dt

t

)1/2

�
( v

∑
j=0

∫ 2ks′+ j+1

2ks′+ j

∣∣∣∫
Sn−1

Ω(y′)e−2π iPλ (ϕ(t))ξ ·y′dσ(y′)
∣∣∣2 dt

t

)1/2

�
( v

∑
j=0

C(ϕ)‖Ω‖2
Ls(Sn−1) min{1, |ϕ(2ks′+ j+1)λ bλ ξ |−1/(λ s′)}

)1/2

� C(ϕ)(s−1)−1/2‖Ω‖Ls(Sn−1) min{1, |ϕ(2ks′)λ bλ ξ |−1/(2λ s′)}.

(24)

Let ψ ∈ C ∞
0 (R) be supported in {|t| � 1} and ψ(t) ≡ 1 for |t| < 1/2. For 1 �

λ � N , define the family of measures {ωt,λ}t>0 by

ω̂t,λ (ξ ) = σ̂t,λ (ξ )
N

∏
j=λ+1

ψ(|ϕ(t) jb jξ |)− σ̂t,λ−1(ξ )
N

∏
j=λ

ψ(|ϕ(t) jb jξ |). (25)

Note that σt,0 = 0 by (1). One can easily get from (23)–(25) that

σt,N =
N

∑
λ=1

ωt,λ ; (26)

(∫ 2(k+1)s′

2ks′
|ω̂t,λ (ξ )|2 dt

t

)1/2

� C(ϕ)(s−1)−1/2‖Ω‖Ls(Sn−1) min{1, |ϕ(2(k+1)s′)λ bλ ξ |, |ϕ(2ks′)λ bλ ξ |−1}1/(λ s′).
(27)

By (26) and Minkowski’s inequality,

∥∥∥(
∑
l∈Z

2lqα
(∫

Rn

(∫ ∞

0
|σt,N ∗Δ2−lζ f |2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

=
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

(∫ ∞

0

∣∣∣ N

∑
λ=1

ωt,λ ∗Δ2−lζ f
∣∣∣2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

�
N

∑
λ=1

∥∥∥(
∑
l∈Z

2lqα
(∫

Rn

(∫ ∞

0
|ωt,λ ∗Δ2−lζ f |2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

=:
N

∑
λ=1

Aλ .

(28)

Therefore, to prove (22), it suffices to show that

Aλ � C(s−1)−1/2‖Ω‖Ls(Sn−1)‖ f‖Ḟα
p,q(Rn) (29)

for any 1 � λ � N . Here C > 0 is independent of s, Ω and the coefficients of P .
Let η0 ∈ C ∞(R) be an even function satisfying 0 � η0(t) � 1, η0(0) = 1 and

η0(t) = 0 for |t| � 1. Set η(ξ ) = 1 for |ξ | � 1, η(ξ ) = η0(
|ξ |−1
a−1 ) , where a =
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Bλ (s′−1)
ϕ > 1 and Bϕ is given as in Remark 1. Then, η satisfies χ|ξ |�1(ξ ) � η(ξ ) �

χ|ξ |�a(ξ ) and |∂ α η(ξ )| � cα(a− 1)−|α | for ξ ∈ Rn and α ∈ Nn , where cα is inde-

pendent of a . Let ak = ϕ(2−ks′)−λ |bλ |−1 . Note that infk∈Z
ak+1
ak

� a . We define the
sequence of functions {ψk}k∈Z on Rn by

ψk(ξ ) = η(a−1
k+1ξ )−η(a−1

k ξ ), ξ ∈ Rn.

Observing that supp(ψk)⊂{ak � |ξ |� aak+1} , supp(ψk)∩supp(ψ j) = /0 for | j−k|�
2 and ∑k∈Z ψk(ξ ) = 1 for ξ ∈ Rn \ {0} .

Define the multiplier operator Sk,λ on Rn by

Ŝk,λ f (ξ ) = ψk(|ξ |) f̂ (ξ ).

We get by Minkowski’s inequality that

Aλ

=
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

(
∑
k∈Z

∫ 2(k+1)s′

2ks′

∣∣∣ωt,λ ∗ ∑
j∈Z

S j−k,λ Δ2−lζ f
∣∣∣2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

� ∑
j∈Z

∥∥∥(
∑
l∈Z

2lqα
(∫

Rn

(
∑
k∈Z

∫ 2(k+1)s′

2ks′
|ωt,λ ∗ S j−k,λ Δ2−lζ f |2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

.

(30)
Define the mixed norm ‖ ·‖Eα

p,q
for measurable functions on Rn×Rn×Z×Z×R+ by

‖g‖Eα
p,q

:=
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

(
∑
k∈Z

∫ ∞

0
|g(t,x,ζ , l,k)|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

.

For any j ∈ Z , let

Vj,λ ( f )(t,x,ζ , l,k) := ωt,λ ∗ S j−k,λ Δ2−lζ f (x)χ[2ks′ ,2(k+1)s′ ](t).

Then we have

Aλ � ∑
j∈Z

‖Vj,λ ( f )‖Eα
p,q

. (31)

By (27), (6), (ii) of Lemma 2, Hölder’s inequality, Minkowski’s inequality, Fubini’s
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theorem and Plancherel’s theorem, we have that

‖Vj,λ ( f )‖Eα
2,2

=
(∫

Rn
∑
l∈Z

22lα
(∫

Rn

(
∑
k∈Z

∫ 2(k+1)s′

2ks′
|ωt,λ ∗ S j−k,λ Δ2−lζ f (x)|2 dt

t

)1/2
dζ

)2
dx

)1/2

� C
(

∑
l∈Z

22lα
∫

Rn
∑
k∈Z

∫ 2(k+1)s′

2ks′

∫
Rn

|ωt,λ ∗ S j−k,λ Δ2−lζ f (x)|2dx
dt
t

dζ
)1/2

� C
(

∑
l∈Z

22lα
∫

Rn
∑
k∈Z

∫
Ej−k,s

∫ 2(k+1)s′

2ks′
|ω̂t,λ (x)|2 dt

t
|Δ̂2−lζ f (x)|2dxdζ

)1/2

� C(ϕ)(s−1)−1/2‖Ω‖Ls(Sn−1)B
−| j|
ϕ

(
∑
l∈Z

2lqα
∥∥∥(∫

Rn

|Δ2−lζ f |2dζ
)1/2∥∥∥2

L2(Rn)

)1/2

� C(ϕ)(s−1)−1/2‖Ω‖Ls(Sn−1)B
−| j|
ϕ ‖ f‖Ḟα

2,2(R
n).

(32)
Here Ej−k,λ = {x ∈ Rn : ϕ(2(k− j)s′)−λ � |bλ ξ | � Bλ s′

ϕ ϕ(2(k− j−1)s′)−λ} and C > 0 is
independent of s, Ω and the coefficients of P .

Below we shall prove that

‖Vj,λ ( f )‖Eα
p,q

� C(s−1)−1/2‖Ω‖Ls(Sn−1)‖ f‖Ḟα
p,q(Rn) (33)

for (1/p,1/q) belonging to the set of all interiors of the convex hull of two squares
(0,1/2)2 and (1/2,1)2 . Here C > 0 is independent of s, Ω and the coefficients of P . In
fact, interpolating between (32) and (33) implies that for any α ∈ (0,1) and (1/p,1/q)
belonging to the set of all interiors of the convex hull of two squares (0,1/2)2 and
(1/2,1)2 , there exists θ ∈ (0,1) such that

‖Vj,λ ( f )‖Eα
p,q

� C(s−1)−1/2‖Ω‖Ls(Sn−1)B
−θ | j|
ϕ ‖ f‖Ḟα

p,q(Rn), (34)

where C is independent of s, Ω and the coefficients of P . Then (29) follows from (31)
and (34).

We now prove (33). For 1 � λ � N , let Φλ be a radial function in S (Rn) defined

by Φ̂λ (x) = ψ(|x|) , where x ∈ Rn and ψ is given as in (25). Define Xλ by

Xλ f (x) = sup
k∈Z

sup
t∈[2ks′ ,2(k+1)s′ ]

|Xk,t;λ f (x)|,

where Xk,t;λ f (x) = (ϕ(t)λ bλ )−nΦλ ((ϕ(t)λ bλ )−1x) . One can easily check that

|Xλ f (x)| � CM(n) f (x),

which together with (i) of Lemma 3 yields∥∥∥(
∑
l∈Z

∥∥∥(
∑
k∈Z

|Xλ gl,ζ ,k|2
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

� C
∥∥∥(

∑
l∈Z

∥∥∥(
∑
k∈Z

|gl,ζ ,k|2
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

(35)
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for 1 � λ � N and (p,q,r) ∈ (1,∞)3 . For convenience, define Xλ f = Xλ ◦Xλ+1◦ · · · ◦
XN f for 1 � λ � N . Then (35) yields that

∥∥∥(
∑
l∈Z

∥∥∥(
∑
k∈Z

|Xλ gl,ζ ,k|2
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

� C
∥∥∥(

∑
l∈Z

∥∥∥(
∑
k∈Z

|gl,ζ ,k|2
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

(36)

for 1 � λ � N and (p,q,r) ∈ (1,∞)3 . On the other hand, by the definition of Xk,t;λ ,

ωt,λ ∗ f = σt,λ ∗ (Xk,t;λ+1 ◦Xk,t;λ+2 ◦ · · · ◦Xk,t;N f )
−σt,λ−1 ∗ (Xk,t;λ ◦Xk,t;λ+1 ◦ · · · ◦Xk,t;N f ).

It follows that

∫ 2(k+1)s′

2ks′
|ωt,1 ∗ f |2 dt

t
�

∫ 2(k+1)s′

2ks′
∣∣|σt,1| ∗X2 f

∣∣2 dt
t

; (37)

∫ 2(k+1)s′

2ks′
|ωt,λ ∗ f |2 dt

t
� 2

∫ 2(k+1)s′

2ks′
∣∣|σt,λ | ∗Xλ+1 f

∣∣2 dt
t

+2
∫ 2(k+1)s′

2ks′
∣∣|σt,λ−1| ∗Xλ f

∣∣2 dt
t

(38)
for 2 � λ � N . We get by Lemma 4 that for any 1 � λ � N and (1/p, 1/q, 1/r)
belonging to the interior of the convex hull of two cubes (0,1/2)3 and (1/2,1)3 , there
exists C > 0 independent of s, Ω and the coefficients of P such that

∥∥∥(
∑
l∈Z

(∫
Rn

(
∑
k∈Z

∫ 2(k+1)s′

2ks′
∣∣|σt,λ | ∗ gl,ζ ,k

∣∣2 dt
t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

� C(s−1)−1/2‖Ω‖Ls(Sn−1)

∥∥∥(
∑
l∈Z

∥∥∥(
∑
k∈Z

|gl,ζ ,k|2
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

.

(39)

By (36)–(39), there exists C > 0 independent of s, Ω and the coefficients of P such
that

∥∥∥(
∑
l∈Z

(∫
Rn

(
∑
k∈Z

∫ 2(k+1)s′

2ks′
|ωt,λ ∗ gl,ζ ,k|2

dt
t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

� C(s−1)−1/2‖Ω‖Ls(Sn−1)

∥∥∥(
∑
l∈Z

∥∥∥(
∑
k∈Z

|gl,ζ ,k|2
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

.

(40)

for 1 � λ � N and (1/p, 1/q, 1/r) belonging to the interior of the convex hull of two
cubes (0,1/2)3 and (1/2,1)3 . Let α ∈ (0,1) and (1/p,1/q) belong to the set of all
interiors of the convex hull of two squares (0,1/2)2 and (1/2,1)2 . We can choose
a positive integer r such that 1 � r < min{p,q} and (1/p, 1/q, 1/r) belongs to the
interior of the convex hull of two cubes (0,1/2)3 and (1/2,1)3 . Then (40) together
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with (i) of Lemma 2 and Lemma 2.5 in [27] implies that

‖Vj,λ ( f )‖Eα
p,q

=
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

(
∑
k∈Z

∫ 2(k+1)s′

2ks′
|ωt,λ ∗ S j−k,λ Δ2−lζ f |2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

� C(s−1)−1/2‖Ω‖Ls(Sn−1)

∥∥∥(
∑
l∈Z

2lqα
∥∥∥(

∑
k∈Z

|S j−k,λ Δ2−lζ f |2
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

� C(s−1)−1/2‖Ω‖Ls(Sn−1)

( Bλ s′
ϕ

Bλ s′
ϕ −1

)n+2∥∥∥(
∑
l∈Z

2lqα‖Δ2−lζ f‖q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

� C
( Bλ

ϕ

Bλ
ϕ −1

)n+2
(s−1)−1/2‖Ω‖Ls(Sn−1)‖ f‖Ḟα

p,q(Rn).

This proves (33) and completes the proof of (i) of Theorem 1.

Step 2. Proof of (ii) of Theorem 1. Let α ∈ (0,1) , p ∈ [2,∞) and q ∈ (2p/(p+
2),∞) . Let f j → f in Fα

p,q(Rn) as j → ∞ . By (7), we see that f j → f in Ḟα
p,q(Rn)

and in Lp(Rn) as j → ∞ . We notice that SΩ,P,ϕ f j → SΩ,P,ϕ f in Lp(Rn) as j → ∞ .
Below we want to show that SΩ,P,ϕ f j → SΩ,P,ϕ f in Ḟα

p,q(R
n) as j → ∞ . We shall

prove this claim by contradiction. Without loss of generality we may assume that there
exists c > 0 such that

‖SΩ,P,ϕ f j −SΩ,P,ϕ f‖Ḟα
p,q(Rn) > c

for every j .
By Minkowski’s inequality and the fact that ‖Δ2−kζ g‖Lp(Rn) � 2‖g‖Lp(Rn) , we

have (∫
Rn

(∫
Rn

|Δ2−kζ (SΩ,P,ϕ f j −SΩ,P,ϕ f )(x)|dζ
)p

dx
)1/p

�
∫

Rn

(∫
Rn

|Δ2−kζ (SΩ,P,ϕ f j −SΩ,P,ϕ f )(x)|pdx
)1/p

dζ

� 2
∫

Rn

‖SΩ,P,ϕ f j −SΩ,P,ϕ f‖Lp(Rn)dζ

= 2|Rn|‖SΩ,P,ϕ f j −SΩ,P,ϕ f‖Lp(Rn).

Since SΩ,P,ϕ f j → SΩ,P,ϕ f in Lp(Rn) as j → ∞ , we see that by extracting a subse-
quence we may assume that∫

Rn

|Δ2−lζ (SΩ,P,ϕ f j −SΩ,P,ϕ f )(x)|dζ → 0 as j → ∞ (41)

for every l ∈ Z and almost every x ∈ Rn . On the other hand, by (11) and (12), it holds
that

|Δ2−lζ (SΩ,P,ϕ f j −SΩ,P,ϕ f )(x)| � 2SΩ,P,ϕ(Δ2−lζ f )(x)+SΩ,P,ϕ (Δ2−lζ ( f j − f ))(x)

for (x, l,ζ ) ∈ Rn×Z×Rn . For convenience we set

‖g‖p,q,α :=
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

|g(x, l,ζ )|dζ
)q)1/q∥∥∥

Lp(Rn)
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for α ∈ R and (p,q) ∈ (1,∞)2 . It follows from (i) of Lemma 2 that ‖ f‖Ḟα
p,q(Rn) ∼

‖Δ2−lζ f‖p,q,α for α ∈ (0,1) and (p,q) ∈ (1,∞)2 . By (21) and (22), we obtain

‖SΩ,P,ϕ(Δ2−lζ f )‖p,q,α � C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rd

|SΩ,P,ϕ (Δ2−lζ f )|dζ
)q)1/q∥∥∥

Lp(Rn)

� C(s−1)−1/2‖Ω‖Ls(Sn−1)‖ f‖Ḟα
p,q(Rn).

It follows that ‖SΩ,P,ϕ(Δ2−lζ ( f j − f ))‖p,q,α � C‖ f j − f‖Ḟα
p,q(Rn) → 0 as j → ∞ . One

can extract a subsequence such that ∑∞
j=1 ‖SΩ,P,ϕ(Δ2−lζ ( f j − f ))‖p,q,α < ∞ . Define a

function G : Rn ×Z×Rn → R by

G(x, l,ζ ) =
∞

∑
j=1

SΩ,P,ϕ(Δ2−lζ ( f j − f ))(x)+2SΩ,P,ϕ(Δ2−lζ f )(x).

One can easily check that ‖G‖p,q,α < ∞ and

|Δ2−lζ (SΩ,P,ϕ f j −SΩ,P,ϕ f )(x)| � G(x, l,ζ ) for almost every (x, l,ζ ) ∈ Rn×Z×Rn.
(42)

It follows that∫
Rn

|Δ2−lζ (SΩ,P,ϕ f j −SΩ,P,ϕ f )(x)|dζ �
∫

Rn

G(x, l,ζ )dζ (43)

for almost every x ∈ Rn and l ∈ Z . Since ‖G‖p,q,α < ∞ , then

(
∑
l∈Z

(∫
Rn

G(x, l,ζ )dζ
)q)1/q

< ∞ (44)

for almost every x∈Rn . It follows from (41), (43)–(44) and the dominated convergence
theorem that(

∑
l∈Z

(∫
Rn

|Δ2−lζ (SΩ,P,ϕ f j −SΩ,P,ϕ f )(x)|dζ
)q)1/q → 0 as j → ∞ (45)

for almost every x ∈ Rn . By (42) again,

(
∑
l∈Z

(∫
Rn

|Δ2−lζ (SΩ,P,ϕ f j −SΩ,P,ϕ f )(x)|dζ
)q)1/q

�
(

∑
l∈Z

(∫
Rn

|G(x, l,ζ )|dζ
)q)1/q (46)

for almost every x ∈ Rn . By (45)–(46), the fact ‖G‖p,q,α < ∞ and the dominated
convergence theorem,

‖Δ2−lζ (SΩ,P,ϕ f j −SΩ,P,ϕ f )‖p,q,α → 0 as j → ∞.

This yields ‖SΩ,P,ϕ f j −SΩ,P,ϕ f‖Ḟα
p,q(Rn) → 0 as j → ∞ and get a contradiction. �
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Proof of Theorem 2 . Let Ω ∈ L(log+ L)1/2(Sn−1)∪ (∪1<r<∞B(0,−1/2)
r (Sn−1)) .

(20) together with (21)–(22) and the extrapolation argument as in the proof of Theorem
2.3 in [2] yields

‖SΩ,P,ϕ f‖Ḟα
p,q(Rn)

� C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

|Δ2−lζ (SΩ,P,ϕ f )|dζ
)q)1/q∥∥∥

Lp(Rn)

� C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

|SΩ,P,ϕ (Δ2−lζ f )|dζ
)q)1/q∥∥∥

Lp(Rn)

� C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

(∫ ∞

0
|σt,N ∗Δ2−lζ f |2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rn)

� C‖ f‖Ḟα
p,q(Rn)

(47)

for 0 < α < 1 and (1/p,1/q) ∈ R . This yields (i) of Theorem 2. (ii) of Theorem 2
follows from (47) and the similar arguments as in the proof of (ii) of Theorem 1. �

4. Additional results

Let h ∈K2 , ϕ ∈ F1 or F2 and Ω, P be given as in (2). For ρ = σ + iτ (σ , τ ∈ R
with σ > 0), we define the maximal operator M

ρ
Ω,P,ϕ by

M ρ
Ω,P,ϕ f (x) = sup

h∈K2

|Mρ
h,Ω,P,ϕ f (x)|,

where M
ρ
h,Ω,P,ϕ is the parametric Marcinkiewicz integral operator

M
ρ
h,Ω,P,ϕ f (x) :=

(∫ ∞

0

∣∣∣ 1
tρ

∫
|y|�t

h(|y|)Ω(y)
|y|n−ρ f (x−P(ϕ(|y|))y′)dy

∣∣∣2 dt
t

)1/2
.

For P(t)= ϕ(t) = t , we shall simply denote M
ρ
Ω,P,ϕ by M

ρ
Ω . Al-Qassem et al. [1]

showed that MΩ,ρ is bounded on Lp(Rn) for 2 � p < ∞ if Ω ∈ L(log+ L)1/2(Sn−1)∪
(∪1<r<∞B(0,−1/2)

r (Sn−1)) . Recently, the boundedness for Marcinkiewicz integral on
Tribel-Lizorkin spaces and Besov spaces has been investigated by many authors (see
[17, 18, 19, 27, 28] for example). In this paper we shall establish the boundedness and
continuity for maximal operator M

ρ
Ω,P,ϕ on the above function spaces.

THEOREM 4. Let P, ϕ , Ω be given as in Theorem 2 . Then
(i) M ρ

Ω,P,ϕ is bounded and continuous on Fα
p,q(R

n) for all α ∈ (0,1) , p ∈ [2,∞)
and q ∈ (2p/(p+2),∞);

(ii) M
ρ
Ω,P,ϕ is bounded and continuous on Bα

p,q(R
n) for all α ∈ (0,1) , p ∈ [2,∞)

and q ∈ (1,∞) .

Proof. By arguments similar to those used in deriving (33) and (35) in [1], one
can obtain

M
ρ
Ω,P,ϕ f (x) � C(ρ)SΩ,P,ϕ f (x) ∀x ∈ Rn. (48)
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Observe that

|Δζ (M ρ
Ω,P,ϕ f )(x)| � |M ρ

Ω,P,ϕ (Δζ f )(x)| ∀x, ζ ∈ Rn. (49)

By (48), (49), (47) and (i) of Lemma 2,

‖M ρ
Ω,P,ϕ f‖Ḟα

p,q(Rn) � C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

|Δ2−lζ (M ρ
Ω,P,ϕ f )|dζ

)q)1/q∥∥∥
Lp(Rn)

� C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

|M ρ
Ω,P,ϕ(Δ2−lζ f )|dζ

)q)1/q∥∥∥
Lp(Rn)

� C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rn

|SΩ,P,ϕ (Δ2−lζ f )|dζ
)q)1/q∥∥∥

Lp(Rn)

� C‖ f‖Ḟα
p,q(Rn)

(50)

for 0 < α < 1 and (1/p,1/q) ∈ R . Here R is given as in Theorem A . On the other
hand, by (48) and (10), we see that

‖M ρ
Ω,P,ϕ f‖Lp(Rn) � C‖ f‖Lp(Rn) (51)

for 2 � p < ∞ . From (7), (50) and (51) we see that M ρ
Ω,P,ϕ is bounded on Fα

p,q(R
n) for

α ∈ (0,1) , p ∈ [2,∞) and q ∈ (2p/(p+2),∞) . One can easily check that

|M ρ
Ω,P,ϕ f −M

ρ
Ω,P,ϕg| � |M ρ

Ω,P,ϕ( f −g)| (52)

for arbitrary functions f , g defined on Rn . Using (50)–(52) and the arguments similar
to those used in deriving (ii) of Theorem 1, we can obtain that M

ρ
Ω,P,ϕ is continuous

from Fα
p,q(Rn) to Ḟα

p,q(Rn) for all α ∈ (0,1) , p ∈ [2,∞) and q ∈ (2p/(p + 2),∞) .
Observe from (51)–(52) that M

ρ
Ω,P,ϕ is bounded and continuous on Lp(Rn) for all

p ∈ [2,∞) . This together with (7) yields (i) of Theorem 4. (ii) of Theorem 4 follows
from (8), (48)–(49), (51)–(52) and Lemma 5. �

5. Appendix

In this section we give the definitions of several rough kernels we used. Re-
call that the Hardy space H1(Sn−1) is the set of all L1(Sn−1) functions which satisfy
‖ f‖H1(Sn−1) < ∞ , where

‖Ω‖H1(Sn−1) :=
∫

Sn−1
sup

0�r<1

∣∣∣∫
Sn−1

Ω(θ )
1− r2

|rw−θ |n dσ(θ )
∣∣∣dσ(w).

The class L(log+ L)α (Sn−1) (for α > 0) denotes the class of all measurable func-
tions Ω on Sn−1 which satisfy

‖Ω‖L(log+ L)α (Sn−1) :=
∫

Sn−1
|Ω(θ )| logα(|Ω(θ )|+2)dσ(θ ) < ∞.
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The block spaces in Rn originated from the work of Taibleson and Weiss on the
convergence of the Fourier series in connection with developments of the real Hardy
spaces. The block spaces on Sn−1 was introduced by Jiang and Lu [14] in studying the
homogeneous singular integral operators. A q -block on Sn−1 is an Lq(Sn−1) (1 < q �
∞) function b which satisfies supp(b) = I and ‖b‖q � |I|1−1/q , where |I| = σ(I) , and

I = {x∈ Sn−1 : |x−x0|< α} for some α ∈ (0,1] and x0 ∈ Sn−1 . The block B(0,v)
q (Sn−1)

is defined by

B(0,v)
q (Sn−1) := {Ω ∈ L1(Sn−1) : Ω =

∞

∑
μ=1

λμbμ , M(0,v)
q ({λμ}) < ∞},

where v > −1, λμ ∈ C , bμ is a q -block supported on a cap Iμ on Sn−1 and

M(0,v)
q ({λμ}) =

∞

∑
μ=1

|λμ |
(
1+ log(v+1)(|Iμ |−1)

)
.

The norm of B(0,v)
q (Sn−1) is given by

‖Ω‖
B(0,v)

q (Sn−1)
:= N(0,v)

q (Ω) = inf{M(0,v)
q ({λμ})},

where the infimum is taken over all q -block decompositions of Ω .
We notice that the following inclusion relations are valid:

Lr(Sn−1) � L(log+ L)β1(Sn−1) � L(log+ L)β2(Sn−1) ∀r > 1 and 0 < β2 < β1;

L(log+ L)β (Sn−1) � H1(Sn−1) ∀β � 1;

L(log+ L)β (Sn−1) � H1(Sn−1) � L(log+ L)β (Sn−1) ∀0 < β < 1.⋃
r>1

Lr(Sn−1) � B(0,v)
q (Sn−1) ∀q > 1 and v > −1;

B(0,v2)
q (Sn−1) � B(0,v1)

q (Sn−1) ∀q > 1 and v2 > v1 > −1;⋃
q>1

B(0,v)
q (Sn−1) �

⋃
r>1

Lr(Sn−1) ∀v > −1;

B(0,v)
q (Sn−1) ⊂ H1(Sn−1)+L(log+ L)1+v(Sn−1) ∀q > 1 and v > −1.
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