
Mathematical
Inequalities

& Applications

Volume 22, Number 1 (2019), 65–75 doi:10.7153/mia-2019-22-05
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Abstract. In this paper, we derive a new variable exponent Picone identity for p(x) -Laplacian,
which contains some known Picone identities. As applications, a strict monotonicity of principal
eigenvalues with respect to domains for the eigenvalue problems to p(x) -Laplace equation, a
variable exponent Barta type inequality, a variable exponent Hardy type inequality with weight,
a Sturmian comparison principle to p(x) -Laplace equation and a Liouville type theorem to p(x) -
Laplace system are shown.

1. Introduction and main results

In recent years, variable exponent elliptic equations and systems with p(x) growth
conditions which arise from the image restoration and decomposition [6, 8, 10, 23],
electrotheological fluids [4, 5, 17, 21, 22] and nonlinear elasticity theory [26] etc., have
been considerably studied. A prototypical operator is so called p(x)-Laplacian

Δp(x)u = div
(
|∇u|p(x)−2∇u

)
, p(x) > 1;

if p(x) = p = constant, it becomes the usual p -Laplacian

Δpu = div
(
|∇u|p−2∇u

)
, p > 1.

Růžička [21] pointed out that p -Laplacian has the p homogeneity but p(x)-Laplacian
is nonhomogeneous. It reflects that p(x)-Laplacian has the more complex nonlinearity.
Since there is no strict equivalence relation between the norm ‖u‖p(x) and p(x) mod-

ular
∫

Ω |u|p(x)dx on the variable Lebesgue space Lp(x)(Ω) , where Ω ⊂ R
n (n � 3) is a

bounded domain with the Lipschitz continuous boundary ∂Ω , those efficient methods
to p -Laplacian are fail to p(x)-Laplacian. However, there exists some good inequality
relations between ‖u‖p(x) and

∫
Ω |u|p(x)dx :

(i) if ‖u‖p(x) � 1, then ‖u‖p−
p(x) �

∫
Ω |u|p(x)dx � ‖u‖p+

p(x) ;
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(ii) if ‖u‖p(x) < 1, then ‖u‖p+

p(x) �
∫

Ω |u|p(x)dx � ‖u‖p
p(x) ,

where
p− = ess inf

x∈Ω
p(x), p+ = esssup

x∈Ω
p(x).

These inequalities play a very important role in the study of energy functionals on
Lp(x)(Ω) , eigenvalue problems [15], existence and uniqueness of solutions [7, 14, 27],
multiplicity of solutions [18] to variable exponent elliptic equations. Also see Harjule-
hto et al. [16] for the symposium of p(x)-Laplace equations with non-standard growth
and therein references.

In 1910, Picone [20] considered the homogeneous linear second order differential
system {

(a1(x)u′)′ +b1(x)u = 0,

(a2(x)v′)′ +b2(x)v = 0,

where u and v are differentiable functions in x , and proved the following identity: for
v(x) �= 0 ,

(u
v

(
a1u

′v−a2uv′
))′

= (b2−b1)u2 +(a1−a2)u′2 +a2

(
u′ − v′

u
v

)2
; (1)

then a Sturmian comparison principle under the conditions a1(x) > a2(x),b2(x) >
b1(x) , and the oscilation theorem of solutions via (1) were obtained. Allegretto [1]
generalized (1) to Laplacian Δ : for differentiable functions v > 0 and u � 0,

(
∇u− u

v
∇v
)2

= |∇u|2 +
u2

v2 |∇v|2 −2
u
v

∇v ·∇u = |∇u|2−∇
(

u2

v

)
∇v. (2)

Allegretto and Huang [2] extended (2) to p-Laplacian: for differentiable functions v > 0
and u � 0,

|∇u|p +(p−1)
up

vp |∇v|p− p
up−1

vp−1 |∇v|p−2∇v ·∇u = |∇u|p−∇
(

up

vp−1

)
|∇v|p−2∇v, (3)

and established the Sturmian comparison principle, a Liouville’s theorem, a Hardy in-
equality and some profound results to p-Laplace equations and systems. An extension
of (3) to p-sub-Laplacian on the Heisenberg group sees Niu, Zhang and Wang [19].

Recently, a nonlinear Picone identity for Laplacian was proved by Tyagi [24].
Bal [9] generalized Tyagi’s result with α = 1 to p-Laplacian. Furthermore, Dwivedi
[12] obtained a Picone identity for p-biharmonic operator. Afterward, this result was
extended to the Heisenberg group by Dwivedi and Tyagi [13]. Allegretto [3] considered
the Rayleigh quotient problem

Q(u) =

∫
Ω

|∇u|p(x)

p(x) dx∫
Ω

|u|p(x)

p(x) dx
, for 0 < u ∈C∞

0 (Ω),
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which corresponds to the functional

I(u) =
∫

Ω

|∇u|p(x)

p(x)
dx

with the Euler-Lagrange equation

div
(
|∇u|p(x)−2∇u

)
= 0,

and derived a variable exponent Picone identity: for differentiable function v > 0 on Ω
and for any 0 � u ∈C∞

0 (Ω) ,

|∇u|p(x)

p(x)
−∇

(
up(x)

p(x)vp(x)−1

)
|∇v|p(x)−2∇v

=
|∇u|p(x)

p(x)
−
(u

v

)p(x)−1|∇v|p(x)−2∇v ·∇u+
p(x)−1

p(x)

(u
v

)p(x)|∇v|p(x). (4)

where ∇v ·∇p(x)≡ 0. A similar Picone identity to (4) was also found by Yoshida [25].
In this paper, we derive another variable exponent Picone identity different from

(4), which contains some known Picone identities and can be used to give some new
applications not seen in [3]. Our main result is the following:

THEOREM 1. Let v > 0 be a differentiable function in Ω and 0 � u ∈ C1
0(Ω) ,

and denote

L(u,v) = |∇u|p(x)− up(x) ln u
v

vp(x)−1
|∇v|p(x)−2∇v ·∇p(x)− p(x)

up(x)−1

vp(x)−1
|∇v|p(x)−2∇v ·∇u

+(p(x)−1)
up(x)

vp(x) |∇v|p(x), (5)

R(u,v) = |∇u|p(x)−∇

(
up(x)

vp(x)−1

)
|∇v|p(x)−2∇v. (6)

Then
R(u,v) = L(u,v). (7)

Moreover, there holds
L(u,v) � 0,

if ∇v ·∇p(x) ≡ 0 . Furthermore, L(u,v) = 0 a.e. in Ω if and only if

∇
(u

v

)
= 0

a.e. in Ω .

REMARK 1. If p(x) = 2 in (5) and (6), we have (2); if p(x) = p in (5) and (6), it
follows (3).



68 T. FENG AND J. HAN

This paper is organized as follows: The proof of Theorem 1 is given in Section
2; Section 3 is devoted to applications of Theorem 1 including a strict monotonicity
of principal eigenvalues with respect to domains for the eigenvalue problems to p(x)-
Laplace equation, a variable exponent Barta type inequality, a variable exponent Hardy
type inequality with weight, a Sturmian comparison principle to p(x)-Laplace equation
and a Liouville type theorem to p(x)-Laplace system.

2. Proof of Theorem 1

Proof of Theorem 1. We see with a direct computation that

R(u,v) = |∇u|p(x)−
vp(x)−1∇

(
up(x)

)
−up(x)∇

(
vp(x)−1

)
[
vp(x)−1

]2 |∇v|p(x)−2∇v

= |∇u|p(x)−
∇
(
up(x)

)
vp(x)−1

|∇v|p(x)−2∇v+
up(x)∇

(
vp(x)−1

)
[
vp(x)−1

]2 |∇v|p(x)−2∇v

= |∇u|p(x)− up(x) lnu∇p(x)+ p(x)up(x)−1∇u

vp(x)−1
|∇v|p(x)−2∇v

+
up(x)

(
vp(x)−1 lnv∇p(x)+ (p(x)−1)vp(x)−2∇v

)
[
vp(x)−1

]2 |∇v|p(x)−2∇v

= |∇u|p(x)− up(x) lnu

vp(x)−1
|∇v|p(x)−2∇v ·∇p(x)− p(x)

up(x)−1

vp(x)−1
|∇v|p(x)−2∇v ·∇u

+
up(x) lnv

vp(x)−1
|∇v|p(x)−2∇v ·∇p(x)+ (p(x)−1)

up(x)

vp(x) |∇v|p(x)

= L(u,v),

which proves (7). Next we check L(u,v) � 0. Rewriting L(u,v) by

L(u,v) = p(x)

⎡
⎣ 1

p(x)
|∇u|p(x) +

p(x)−1
p(x)

((u
v
|∇v|

)p(x)−1
) p(x)

p(x)−1

⎤
⎦

− p(x)
up(x)−1

vp(x)−1
|∇v|p(x)−1 |∇u|

+ p(x)
up(x)−1

vp(x)−1
|∇v|p(x)−2 {|∇v| |∇u|−∇v ·∇u}

− up(x) ln u
v

vp(x)−1
|∇v|p(x)−2∇v ·∇p(x)

:=I + II + III, (8)
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where

I = p(x)

⎡
⎣ 1

p(x)
|∇u|p(x) +

p(x)−1
p(x)

((u
v
|∇v|

)p(x)−1
) p(x)

p(x)−1

⎤
⎦

− p(x)
up(x)−1

vp(x)−1
|∇v|p(x)−1 |∇u| ,

II = p(x)
up(x)−1

vp(x)−1
|∇v|p(x)−2 {|∇v| |∇u|−∇v ·∇u} ,

III = −up(x) ln u
v

vp(x)−1
|∇v|p(x)−2∇v ·∇p(x).

Recalling Young’s inequality (see [11, 21]): for a � 0, b � 0, p(x) > 1, q(x) > 1 and
1

p(x) + 1
q(x) = 1,

ab � ap(x)

p
+

bq(x)

q
,

and the equality holds if and only if ap(x) = bq(x) , we now take a = |∇u| and b =(
u
v |∇v|)p(x)−1

to follow

p(x) |∇u|
(u

v
|∇v|

)p(x)−1
� p(x)

⎡
⎣ 1

p(x)
|∇u|p(x) +

p(x)−1
p(x)

((u
v
|∇v|

)p(x)−1
) p(x)

p(x)−1

⎤
⎦ ,

and so I � 0. Clearly, II � 0 in virtue of |∇v| |∇u|−∇v ·∇u � 0. By ∇v ·∇p(x) ≡ 0,
we immediately have III ≡ 0. Hence L(u,v) � 0 from (8).

If ∇
(

u
v

)
= 0, then u = cv and then L(u,v) = 0. Now we conclude that L(u,v) = 0

implies ∇
(

u
v

)
= 0. In fact, if L(u,v)(x0) = 0,x0 ∈ Ω , we consider two cases respec-

tively.
(a) If u(x0) �= 0, then I = 0, II = 0 and III = 0. It shows by I = 0,

|∇u| = u
v
|∇v| ; (9)

and by II = 0,

∇u = c∇v, (10)

where c is a positive constant. Putting (10) into (9) yields u = cv , namely ∇
(

u
v

)
= 0.

(b) If u(x0) = 0, denote S = {x ∈ Ω |u(x) = 0} and then ∇u = 0 a.e. in S . Thus

∇
(u

v

)
=

v∇u−u∇v
v2 = 0.
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3. Some applications

Before giving some applications, we first describe variable exponent Lebesgue
spaces and Sobolev spaces, see [11, 15, 22]. Assume that p(x) : Ω → (1,∞) is a Lip-
schitz continuous function. A variable exponent Lebesgue space Lp(x)(Ω) is defined
by

Lp(x)(Ω) =
{

u;
∫

Ω
|u(x)|p(x)dx < ∞

}
with the norm

‖u‖Lp(x)(Ω) = ‖u‖p(x) = inf

{
λ > 0;

∫
Ω

∣∣∣∣u(x)
λ

∣∣∣∣dx � 1

}
.

A variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω);∇u ∈ Lp(x)(Ω)
}

with the norm
‖u‖W1,p(x)(Ω) = ‖u‖1,p(x) = ‖u‖p(x) +‖∇u‖p(x).

Denote by W 1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω) under the norm

‖u‖
W 1,p(x)

0 (Ω)
= ‖∇u‖p(x).

It is well known that W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are both separable and reflexive Ba-

nach spaces.
We consider the Dirichlet problem of p(x)-Laplacian{−Δp(x)u = λ |u|p(x)−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(11)

DEFINITION 1. Let λ ∈ R and u ∈W 1,p(x)
0 (Ω) , (u,λ) is called a solution to (11)

if for any φ ∈W 1,p(x)
0 (Ω) ,∫

Ω
|∇u|p(x)−2∇u∇φdx = λ

∫
Ω
|u|p(x)−2uφdx.

If (u,λ ) is a solution to (11) and u �= 0, we call that λ is an eigenvalue to (11) and u
is an eigenfunction corresponding to λ .

For a solution (u,λ ) to (11) and u �= 0, it is easy to yields

λ =
∫

Ω |∇u|p(x)dx∫
Ω |u|p(x)dx

, (12)

and λ > 0. From (12), the principal eigenvalue to (11) is defined by
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λ1 = inf
u∈W

1,p(x)
0 (Ω)\{0}

∫
Ω |∇u|p(x)dx∫
Ω |u|p(x)dx

and existence of λ1 was obtained by Fan, Zhang and Zhao [15].
Using Theorem 1, we can obtain the strict monotonicity of principal eigenvalues

with respect to domains, which enrich the results on principal eigenvalues.

PROPOSITION 1. Suppose that Ω1 ⊂ Ω2 and Ω1 �= Ω2 . If both λ1 (Ω1) and
λ1 (Ω2) exist, and u1 and u2 are positive eigenfunctions corresponding to λ1 (Ω1) and
λ1 (Ω2) , respectively, satisfying⎧⎨

⎩
−Δp(x)u1 = λ1 (Ω1) |u1|p(x)−2u1, x ∈ Ω1,

u1 > 0, x ∈ Ω1,
u1 = 0, x ∈ ∂Ω1,

(13)

and ⎧⎨
⎩

−Δp(x)u2 = λ1 (Ω2) |u2|p(x)−2u2, x ∈ Ω2,
u2 > 0, x ∈ Ω2,
u2 = 0, x ∈ ∂Ω2,

(14)

with ∇u1 ·∇p(x) ≡ 0 , ∇u2 ·∇p(x) ≡ 0 , then

λ1 (Ω1) > λ1 (Ω2) . (15)

Proof. It follows from (13), (14) and (7) that

0 �
∫

Ω
L(u1,u2)dx =

∫
Ω

R(u1,u2)dx

=
∫

Ω1

|∇u1|p(x)dx−
∫

Ω1

∇

(
u1

p(x)

u2
p(x)−1

)
|∇u2|p(x)−2∇u2dx

=
∫

Ω1

|∇u1|p(x)dx +
∫

Ω1

u1
p(x)

u2
p(x)−1

Δp(x)u2dx

=
∫

Ω1

|∇u1|p(x)dx−λ1 (Ω2)
∫

Ω1

u1
p(x)dx

= (λ1 (Ω1)−λ1 (Ω2))
∫

Ω1

u1
p(x)dx,

which gives
λ1 (Ω1)−λ1 (Ω2) � 0.

Noting that λ1 (Ω1) �= λ1 (Ω2) because of Ω1 ⊂ Ω2 and Ω1 �= Ω2 , this concludes
(15). �

The next is a variable exponent Barta type inequality.
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PROPOSITION 2. Suppose that u∈W 1,p(x)
0 (Ω) ia a positive solution to (11). Then

for any differentiable function v > 0 in Ω with Δp(x)v ∈C
(
Ω
)

and ∇v ·∇p(x) ≡ 0 , we
have

λ1 � inf
x∈Ω

−Δp(x)v

vp(x)−1
. (16)

Proof. Using (7), it leads to

0 �
∫

Ω
L(u,v)dx =

∫
Ω

R(u,v)dx

=
∫

Ω
|∇u|p(x)dx−

∫
Ω

∇

(
up(x)

vp(x)−1

)
|∇v|p(x)−2∇vdx

=
∫

Ω
|∇u|p(x)dx+

∫
Ω

up(x)

vp(x)−1
Δp(x)vdx,

which implies∫
Ω
|∇u|p(x)dx �

∫
Ω

up(x)
[−Δp(x)v

vp(x)−1

]
dx �

∫
Ω

up(x)dx in f
x∈Ω

[−Δp(x)v

vp(x)−1

]
,

namely, ∫
Ω |∇u|p(x)dx∫

Ω up(x)dx
� inf

x∈Ω

[−Δp(x)v

vp(x)−1

]
.

The proof of (16) is ended. �

PROPOSITION 3. If a differentiable function v > 0 in Ω with ∇v ·∇p(x) ≡ 0 ,
satisfies

−Δp(x)v � λg(x)vp(x)−1 (17)

for some λ > 0 and a weight function g(x) , then for any 0 � u ∈C1
0(Ω) , there holds∫

Ω
|∇u|p(x)dx � λ

∫
Ω

g(x)up(x)dx. (18)

Proof. By (17) and (7), we know

0 �
∫

Ω
L(u,v)dx =

∫
Ω

R(u,v)dx

=
∫

Ω
|∇u|p(x)dx−

∫
Ω

∇

(
up(x)

vp(x)−1

)
|∇v|p(x)−2∇vdx

=
∫

Ω
|∇u|p(x)dx+

∫
Ω

up(x)

vp(x)−1
Δp(x)vdx

�
∫

Ω
|∇u|p(x)dx−λ

∫
Ω

g(x)up(x)dx,

which gives (18). �
Now we provide a Sturmian comparison principle to p(x)-Laplace equation.
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PROPOSITION 4. Let k1(x) and k2(x) be two continuous functions with k1(x) <

k2(x) on Ω . Assume that there exists a positive function u ∈W 1,p(x)
0 (Ω) satisfying

⎧⎨
⎩

−Δp(x)u = k1(x)|u|p(x)−2u, x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ ∂Ω.

(19)

Then any nontrivial solution v with ∇v ·∇p(x) ≡ 0 to the following equation

−Δp(x)v = k2(x)|v|p(x)−2v,x ∈ Ω, (20)

must change sign.

Proof. Suppose that v does not change sign; without loss of generality, let v > 0
in Ω . By (19), (20) and (7), we observe

0 �
∫

Ω
L(u,v)dx =

∫
Ω

R(u,v)dx

=
∫

Ω
|∇u|p(x)dx−

∫
Ω

∇

(
up(x)

vp(x)−1

)
|∇v|p(x)−2∇vdx

=
∫

Ω
|∇u|p(x)dx+

∫
Ω

up(x)

vp(x)−1
Δp(x)vdx

=
∫

Ω
(k1(x)− k2(x))up(x)dx

< 0,

which is a contradiction. This accomplishes the proof. �
Finally, we exhibit a Liouville type theorem for a variable exponent elliptic system.

PROPOSITION 5. Let (u,v) ∈W 1,p(x)
0 (Ω)×W 1,p(x)

0 (Ω) be a pair of positive solu-
tions for the Dirichlet problem to the variable exponent elliptic system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−Δp(x)u = vp(x)−1, x ∈ Ω,

−Δp(x)v = [vp(x)−1]2

up(x)−1 , x ∈ Ω,

u > 0,v > 0, x ∈ Ω,
u = 0,v > 0, x ∈ ∂Ω,

(21)

where ∇v ·∇p(x) = 0 . Then ∇
(

u
v

)
= 0 a.e. on Ω .

Proof. For any φ ,ϕ ∈W 1,p(x)
0 (Ω) , it gets by (21) that

∫
Ω
|∇u|p(x)−2∇u∇φdx =

∫
Ω

vp(x)−1φdx, (22)
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∫
Ω
|∇v|p(x)−2∇v∇ϕdx =

∫
Ω

[
vp(x)−1

]2
up(x)−1

ϕdx. (23)

Choosing φ = u in (22) and ϕ = up(x)

vp(x)−1 and in (23), respectively, we have

∫
Ω
|∇u|p(x)dx =

∫
Ω

vp(x)−1udx =
∫

Ω
∇

(
up(x)

vp(x)−1

)
|∇v|p(x)−2∇vdx,

which shows from (7) that

∫
Ω

L(u,v)dx =
∫

Ω
R(u,v)dx =

∫
Ω
|∇u|p(x)dx−

∫
Ω

∇

(
up(x)

vp(x)−1

)
|∇v|p(x)−2∇vdx = 0.

The conclusion is proved. �
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[22] K. R. RAJAGOPAL AND M. RŮŽIČKA, Mathematical modeling of electrorheological materials, Cont.
Mech. Therm. 13, 1(2001), 59–78.

[23] J. TIIROLA, Image decompositions using spaces of variable smoothness and integrability, SIAM J.
Imaging Sci. 7, 3 (2014), 1558–1587.

[24] J. TYAGI,A nonlinear Picone’s identity and its applications, Appl. Math. Lett. 26 , 6 (2013), 624–626.
[25] N. YOSHIDA,Picone identity for quasilinear elliptic equations with p(x) -Laplacians and Sturmianian

comparison theory, Appl. Math. Comput. 225, 1 (2013), 79–91.
[26] V. V. ZHIKOV, Averaging of functionals of the calculus of variations and elasticity theory, Math.

USSR. Izv. 29, 1 (1987), 33–36.
[27] Q. ZHANG, Existence and asymptotic behavior of positive solutions for variable exponent elliptic

systems, Nonlinear Anal. 70, 1 (2009), 305–316.

(Received May 7, 2016) Tingfu Feng
Department of Applied Mathematics

Northwestern Polytechnical University
Xi’an, shaanxi, 710129, P. R. China

and
Department of Mathematics

Kunming University, Kunming
Yunnan, 650214, P. R. China

e-mail: ftfml@mail.nwpu.edu.cn

Junqiang Han
Department of Applied Mathematics

Northwestern Polytechnical University
Xi’an, shaanxi, 710129, P. R. China

e-mail: southhan@163.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


