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COMPLETE MONOTONICITY AND INEQUALITES

INVOLVING GURLAND’S RATIOS OF GAMMA FUNCTIONS

ZHEN-HANG YANG AND SHEN-ZHOU ZHENG

(Communicated by N. Elezović)

Abstract. In this paper, by a comparison inequality for an auxiliary function with two parame-
ters, we present necessary and sufficient conditions for four classes of ratios involving gamma
function to be logarithmically completely monotonic. These not only greatly generalize and im-
prove certain known results, but also yield many new inequalities for gamma, psi and polygamma
functions.

1. Introduction

A function f is called completely monotonic (for short, CM) on an interval I if f
has derivatives of all orders on I and satisfies

(−1)k ( f (x))(k) � 0

for all k � 0 on I (see [1], [2]). A function f is called logarithmically completely
monotonic (for short, LCM) on an interval I if f has derivatives of all orders on I and
its logarithm ln f satisfies

(−1)k (ln f (x))(k) � 0

for all k∈N on I (see [3], [4]). The notion of completely monotonic function in several
variables can refer to the recent paper [5].

The celebrated Bernstein–Widder’s theorem [2, p. 161, Theorem 12b] states that
f (x) is completely monotonic on (0,∞) if and only if

f (x) =
∫ ∞

0
e−xtdα (t) ,

where α (t) is nonnegative measure such that integral converges on (0,∞) .
For convenience, we denote the sets of the completely and logarithmically com-

pletely monotonic functions on I by C [I] and L [I] , respectively.
The classical Euler’s gamma function Γ is defined by

Γ(x) =
∫ ∞

0
tx−1e−tdt (1)
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for x > 0, and its logarithmic derivative ψ (x) = Γ′ (x)/Γ(x) is known as the psi or
digamma function, while ψ ′ , ψ ′′ , . . . are called polygamma functions.

Over the past decades, the complete monotonicity of certain ratios of gamma func-
tions has been researched by many mathematicians, see for example, [4]–[22].

We now focus on a special ratio of gamma functions

T (x,y) =
Γ(x)Γ(y)

Γ((x+ y)/2)2
, x, y > 0,

some properties of which can be found in [8]. An interesting relation between T (u,v)
and the modified Bessel function Iv (x) and Kv (x) was established in recent papers
[23], [24]. A generalization of Gurland’s ratio was given in [25] (see also [7]) by

Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

with a− c = d−b .
In particular, we see that for n ∈ N ,

T (n,n+1) =
1
n

Γ(n+1)2

Γ(n+1/2)2
=

1
nπ

(
(2n)!!

(2n−1)!!

)2

=
1
nπ

1
W 2

n
,

where Wn is the Wallis ratio [26]. In probability theory and their applications, the ratio

T (x,x+2u) =
Γ(x)Γ(x+2u)

Γ(x+u)2
, x, x+2u > 0

is related to the variance of an estimator involving gamma distribution, and satisfies the
inequality

T (x,x+2u) =
Γ(x)Γ(x+2u)

Γ(x+u)2
> 1+

u2

x
(2)

for x,x + 2u > 0 (see [27]). More properties including complete monotonicity of
T (x,x+2u) were given in [8]. While the ratio

T

(
1
p
,
3
p

)
=

Γ(1/p)Γ(3/p)
Γ(2/p)2

, p > 0,

also known as generalized Gaussian ratio or Mallat ratio [28], appears in the form
of ratio of the variance and squared absolute expectation of a generalized Gaussian
random variable with the shape parameter p [29], and has some interesting applications
in the field of image recognition [30]. Some new properties of T (1/p,3/p) have been
presented in a recent paper [31].

Inspired by the above comments, the first aim of this paper is to find the necessary
and sufficient conditions for the ratios Gu,v;p,q (x)/Gu,v;r,s (x) and Tp,q (x)/Tr,s (x) to be
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complete monotonicity, where

Gu,v;p,q (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Γ(x+ p+u)Γ(x+q+ v)
Γ(x+ p+ v)Γ(x+q+u)

]1/((p−q)(u−v))

if (p−q)(u− v) �= 0,

exp

[
ψ (x+ p+u)−ψ (x+ p+ v)

u− v

]
if p = q, u �= v,

exp

[
ψ (x+ p+u)−ψ (x+q+u)

p−q

]
if p �= q, u = v,

exp [ψ ′ (x+ p+u)] if p = q, u = v

(3)
for x > −min(p,q)−min(u,v) ,

Tp,q (x) = Gp/2,q/2;p/2,q/2(x)1/4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Γ(x+ p)Γ(x+q)
Γ(x+(p+q)/2)2

)1/(p−q)2

if p �= q,

exp
[ 1

4ψ ′ (x+ p)
]

if p = q

(4)

for x > −min(p,q) . All complete monotonicity results are proved in Section 3.

REMARK 1. It is clear that Gu,v;p,q (x)(p−q)(u−v) is a generalization of T (x,x+2β ) .

The second aim is to obtain some new inequalities for the Gurland’s ratio, which
is presented in Section 4.

2. An important auxiliary function

In order to prove our results, we need to study some properties of an important
auxiliary function. This function denoted by yp,q : R −→ R is defined, for p,q∈ R , by

yp,q (t) =

⎧⎨
⎩

e−pt − e−qt

q− p
if p �= q,

te−pt if p = q.

(5)

It is easy to check that yp,q (t) has the following two simple properties.

PROPERTY 1. We have

yp,q (t) = t
∫ 1

0
exp(−ptu−qt (1−u))du, (6)

yp,q (t) =

⎧⎪⎪⎨
⎪⎪⎩

e−(p+q)t/2 sinh [(p−q)t/2]
(p−q)/2

if p �= q,

te−pt if p = q.

(7)
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PROPERTY 2. Let p,q,t ∈ R . Then yp,q (t) satisfies that
(i) yp,q (t) > (<)0 for t > (< 0);
(ii) yp,q (t) = yq,p (t);
(iii) e−ρt yp−ρ ,q−ρ (t) = yp,q (t) for any ρ ∈ R .

In order to prove Property 3, we need the following lemma.

LEMMA 1. ([20, Theorem 2.1]) Let p,q ∈ R and Hp,q be defined on (0,∞) by

Hp,q (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q
p

sinh(pt)
sinh(qt)

)1/(p−q)

if pq(p−q) �= 0,

(
sinh(pt)

pt

)1/p

if p �= 0, q = 0,

(
sinh(qt)

qt

)1/q

if p = 0, q �= 0,

et coth(pt)−1/p if p = q, pq �= 0,

1 if p = q = 0.

(8)

Then the function t �→ t−1 lnHp,q (t) is strictly increasing (decreasing) from (0,∞) onto
(0,(p+q)/(|p|+ |q|)) (((p+q)/(|p|+ |q|),0) ) and concave (convex) on (0,∞) if
p+q > (<)0 .

PROPERTY 3. For u,v,r,s ∈ R , let yu,v be defined on (0,∞) by (5). Then the
comparison inequality yu,v (t) � yr,s (t) holds for all t > 0 if and only if

u+ v � r+ s and min(u,v) � min(r,s) . (9)

Proof. Let p = |u− v|/2, q = |r− s|/2. In the case of (u− v)(r− s) �= 0, we use
the hyperbolic function representation (6) to obtain

h(t) =
1
t

ln
yu,v (t)
yr,s (t)

=
r+ s− (u+ v)

2
+

1
t

ln

( |r− s|
|u− v|

sinh |(u− v)t/2|
sinh |(r− s)t/2|

)

=
r+ s− (u+ v)

2
+

1
t

ln

(
q
p

sinh(pt)
sinh(qt)

)

=
r+ s− (u+ v)

2
+(p−q)

lnHp,q (t)
t

,

which is also true for (u− v)(r− s) = 0.
Due to p,q � 0, by Lemma 1 we see that t �→ t−1 lnHp,q (t) is strictly increasing

from (0,∞) onto (0,1) , which implies that t �→ h(t) is increasing (decreasing) on
(0,∞) if p � (�)q . Consequently, h(t) � 0 for all t > 0 if and only if h(0+) � 0 and



COMPLETE MONOTONICITY AND INEQUALITES INVOLVING GURLAND’S RATIOS 101

h(∞) � 0. A simple computation yields

h
(
0+) =

r+ s− (u+ v)
2

,

h(∞) =
r+ s− (u+ v)

2
+(p−q) =

r+ s− (u+ v)
2

+
|u− v|− |r− s|

2
= min(r,s)−min(u,v) .

which proves the desired assertion. �

3. Completely monotonicity of Gurland’s ratio

In this section, by using properties of yu,v (t) presented in Section 2, we establish
the necessary and sufficient conditions for the functions related to Gurland’s ratio, that
is, both ln(Gu,v;p,q/Gu,v;r,s) and ln(Tp,q/Tr,s) are completely monotonic.

THEOREM 1. For fixed p,q,r,s,u,v ∈ R , let ρ = min(p,q,r,s)+min(u,v) and
let the function Gu,v,p,q be defined on (−min(p,q)−min(u,v) ,∞) by (3). Then
ln(Gu,v,p,q/Gu,v,r,s) ∈ C [(−ρ ,∞)] if and only if

p+q � r+ s and min(p,q) � min(r,s) . (10)

Proof. We first give the following integral representation

lnGu,v;p,q (x) =
∫ ∞

0
yp,q (t)yu,v (t)

e−xt

t (1− e−t)
dt. (11)

To this end, using the integral representation of lnΓ(z) [32, p.258, (6.1.50)]

lnΓ(z) =
∫ ∞

0

[
(z−1)e−t − e−t − e−zt

1− e−t

]
dt
t

(Re(z) > 0) (12)

yields that, for (p−q)(u− v) �= 0,

lnGu,v;p,q (x) =
lnΓ(x+ p+u)+ lnΓ(x+q+ v)− lnΓ(x+ p+ v)− lnΓ(x+q+u)

(p−q)(u− v)

=
∫ ∞

0

e−t(p+u) + e−t(q+v)− e−t(p+v)− e−t(q+u)

(p−q)(u− v)
e−xt

t (1− e−t)
dt

=
∫ ∞

0

e−t p − e−tq

q− p
e−tu− e−tv

v−u
e−xt

t (1− e−t)
dt

=
∫ ∞

0
yp,q (t)yu,v (t)

e−xt

t (1− e−t)
dt,

which is clearly also valid for (p−q)(u− v) �= 0. It then follows that

ln
Gu,v,p,q (x)
Gu,v,r,s (x)

=
∫ ∞

0
[yp,q (t)− yr,s (t)]yu,v (t)

e−xt

t (1− e−t)
dt. (13)
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From the integral representation and Property 2, we have

ln
Gu,v,p,q (x)
Gu,v,r,s (x)

=
∫ ∞

0

[
yp−ρ ,q−ρ (t)− yr−ρ ,s−ρ (t)

]
yu,v (t)

e−(x+ρ)t

t (1− e−t)
dt.

By Bernstein–Widder’s theorem [2, p. 161, Theorem 12b] and Property 3, the desired
result follows. �

The integral representation (13) together with y0,0 (t) = t and (iii) of Property 2
gives

ln
G0,0,p,q (x)
G0,0,r,s (x)

=
∫ ∞

0
yp,q (t)y0,0 (t)

e−xt

t (1− e−t)
dt

=
∫ ∞

0

[
yp−ρ ,q−ρ (t)− yr−ρ ,s−ρ (t)

] e−(x+ρ)t

1− e−t dt,

which, by Bernstein–Widder’s theorem [2, p. 161, Theorem 12b] and Property 3, im-
plies the following corollary.

COROLLARY 1. For fixed p,q,r,s ∈ R , let ρ = min(p,q,r,s) and let Gu,v,p,q be
defined on (−min(p,q) ,∞) by (3). Then the function ln

(
G0,0,p,q/G0,0,r,s

)∈C [(−ρ ,∞)]
if and only if the inequalities (10) are satisfied.

Denoted by

Wu,v (x) =

⎧⎪⎪⎨
⎪⎪⎩
(

Γ(x+u)
Γ(x+ v)

)1/(u−v)

if u �= v,

exp [ψ (x+u)] if u = v

(14)

for x > −min(u,v) . It is evident that

ln
G0,0,p,q (x)
G0,0,r,s (x)

=
d
dx

[
ln

Wp,q (x)
Wr,s (x)

]
and lim

x→∞
ln

Wp,q (x)
Wr,s (x)

= 0,

where the second equality follows from Γ(x+ p)/Γ(x+q) ∼ xp−q as x → ∞ . Then
by Corollary 1 we immediately get

COROLLARY 2. For fixed p,q,r,s ∈ R , let ρ = min(p,q,r,s) and let Wu,v (x) be
defined on (−min(u,v) ,∞) by (14). Then ln(Wp,q/Wr,s) ∈ C [(−ρ ,∞)] if and only if

p+q � r+ s and min(p,q) � min(r,s) .

REMARK 2. Corollary 2 was first given in [21], which unifies and improves some
known results established in [6], [7], [13, Theorem 1], [14, Theorem 1].

Now let us take (p,q) = (u,v) = (u,0) , (r,s) = (s+1,s) with u �= 0. Then
Gu,v;p,q (x)/Gu,v;r,s (x) can be reduced to

Gu,0;u,0 (x)
Gu,0;s+1,s (x)

=
(

x+ s
x+ s+u

)1/u
(

Γ(x)Γ(x+2u)
Γ(x+u)2

)1/u2

,

ρ = min(p,q,r,s)+min(u,v) = min(u,0,s)+min(u,0) . By Theorem 1, we have
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COROLLARY 3. For fixed u,s ∈ R with u �= 0 , ρ = min(u,0,s)+min(u,0) , the
function

x �→ g1 (x) = u2 ln

(
Gu,0;u,0 (x)

Gu,0;s+1,s (x)

)
= ln

[(
x+ s

x+ s+u

)u Γ(x)Γ(x+2u)

Γ(x+u)2

]
∈C [(−ρ ,∞)]

if and only if s � max((u−1)/2,min(u,0)) , while −g1 ∈ L [(−ρ ,∞)] if and only if
s � min((u−1)/2,min(u,0)) .

Taking (u,v)= (r,s)= (1/2,0) and q = 0 in Theorem 1. Then ρ = min(p,q,r,s)+
min(u,v) = min(p,0) . We have

COROLLARY 4. The function

x �→ g2 (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ln

⎡
⎣( Γ(x+1/2)2

Γ(x)Γ(x+1)

)2(
Γ(x)Γ(x+ p+1/2)
Γ(x+1/2)Γ(x+ p)

)1/p
⎤
⎦ if p �= 0,

ln

⎡
⎣( Γ(x+1/2)2

Γ(x)Γ(x+1)

)2
expψ (x+1/2)

expψ (x)

⎤
⎦ if p = 0

is completely monotonic on (−min(p,0) ,∞) if and only if p � 0 . While −g2 ∈
C (−min(p,0) ,∞) if and only if p � 1/2 .

REMARK 3. Letting p = −1/2, 1 in the above corollary, we deduce that the
functions

x �→
(

1− 1
2x

)−2
[

Γ(x+1/2)2

Γ(x)Γ(x+1)

]4

∈ L

[(
1
2
,∞
)]

,

x �→
(

1+
1
2x

)−1
[

Γ(x)Γ(x+1)

Γ(x+1/2)2

]2

∈ L [(0,∞)] ,

which are equivalent to Theorems 4 and 5 in [7], respectively.

THEOREM 2. For fixed p,q,r,s ∈ R , ρ = min(p,q,r,s) , let the function Tp,q be
defined on (−ρ ,∞) by (4). Then ln(Tp,q/Tr,s) ∈ C (−ρ ,∞) if and only if the inequali-
ties (10) are satisfied.

Proof. The relation Tp,q (x) = (1/4)Gp/2,q/2;p/2,q/2 (x) and integral representation
(11) yield

lnTp,q (x) =
1
4

∫ ∞

0
yp/2,q/2 (t)2 e−xt

t (1− e−t)
dt. (15)

From this and Property 2, we obtain

ln
Tp,q (x)
Tr,s (x)

=
1
4

∫ ∞

0

[
y(p−ρ)/2,(q−ρ)/2 (t)2 − y(r−ρ)/2,(s−ρ)/2 (t)2

] e−(x+ρ)t

t (1− e−t)
dt.
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By Bernstein–Widder’s theorem [2, p. 161, Theorem 12b] and Property 3, we see that
ln(Tp,q/Tr,s) ∈ C [(−ρ ,∞)] if and only if

p−ρ
2

+
q−ρ

2
� r−ρ

2
+

s−ρ
2

and

min

(
p−ρ

2
,
q−ρ

2

)
� min

(
r−ρ

2
,
s−ρ

2

)
,

that is, the relations (10) are satisfied. �
We note that

Tp,q (x)
T0,1 (x)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x
Γ(x+1/2)2

Γ(x+1)2

(
Γ(x+ p)Γ(x+q)
Γ(x+(p+q)/2)2

)1/(p−q)2

if p �= q,

x
Γ(x+1/2)2

Γ(x+1)2
exp
[ 1

4 ψ ′ (x+ p)
]

if p = q

Tp,q (x)
Tr,r+2 (x)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
1+

1
x+ r

)−1/4
(

Γ(x+ p)Γ(x+q)

Γ(x+(p+q)/2)2

)1/(p−q)2

if p �= q,

(
1+

1
x+ r

)−1/4

exp
[

1
4 ψ ′ (x+ p)

]
if p = q,

Tp,q (x)
Tr,r (x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
exp [ψ ′ (x+ r)/4]

(
Γ(x+ p)Γ(x+q)

Γ(x+(p+q)/2)2

)1/(p−q)2

if p �= q,

exp
[

1
4 ψ ′ (x+ p)− 1

4 ψ ′ (x+ r)
]

if p = q.

By Theorem 2 the following corollaries are immediate.

COROLLARY 5. For fixed p,q∈R with p � q, let the function Tp,q be defined on
(−ρ ,∞) by (4). Then ln(Tp,q/T0,1) ∈ C [(−min(q,0) ,∞)] if and only if q �
min(0, p,1− p), while ln(T0,1/Tp,q)∈C [(−min(q,0) ,∞)] if and only if max(0,1− p)
� q � p

COROLLARY 6. For fixed p,q,r ∈ R , ρ = min(p,q,r) , let the function Tp,q be
defined on (−ρ ,∞) by (4). Then ln(Tp,q/Tr,r+2) ∈ C [(−ρ ,∞)] if and only if r �
max((p+q−2)/2,min(p,q)) , while ln(Tr,r+2/Tp,q) ∈ C [(−ρ ,∞)] if and only if r �
min((p+q−2)/2,min(p,q)) .

COROLLARY 7. For fixed p,q,r ∈ R , ρ = min(p,q,r) , let the function Tp,q be
defined on (−ρ ,∞) by (4). Then ln(Tp,q/Tr,r)∈C [(−ρ ,∞)] if and only if r � (p+q)/2 ,
while ln(Tr,r/Tp,q) ∈ C [(−ρ ,∞)] if and only if r � min(p,q) .
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4. Some new inequalities for gamma function

Many inequalities for gamma function are derived from the monotonicity or con-
vexity properties of the combinations of gamma functions and some elementary func-
tions, for example, [33], [34], [35], [36], [8], [13], [37], [16], [38]. Ismail et al. [6],
[7] further realized that some inequalities for gamma function are the consequences of
complete monotonicity of such combinations.

In this section, we will list some new inequalities for gamma functions by using
the (logarithmically) completely monotonicity presented in the third section.

Note that for (p−q)(u− v) �= 0,

lnGu,v;p,q (x) =

∫ p
q

∫ u
v ψ ′ (x+ α + β )dαdβ

(p−q)(u− v)
,

by Theorem 1 we immediately conclude

PROPOSITION 3. Let p,q,r,s,u,v ∈ R with (p−q)(r− s) (u− v) �= 0 , ρ =
min(p,q,r,s)+min(u,v) , n ∈ N . Then the inequality

(−1)n−1

∫ p
q

∫ u
v ψ(n) (x+ α + β )dαdβ

(p−q)(u− v)
> (−1)n−1

∫ r
s

∫ u
v ψ(n) (x+ α + β )dαdβ

(r− s) (u− v)

holds for x > −ρ if and only if p+q � r+ s and min(p,q) � min(r,s) .

It was proved [27]

Γ(x)Γ(x+2β )

Γ(x+ β )2
� 1+

β 2

x
, x > 0, x+2β > 0.

The following is a direct consequence of Corollary 3.

COROLLARY 8. For fixed u,s ∈ R with u �= 0 , ρ = min(u,0,s)+min(u,0) , the
inequality

Γ(x)Γ(x+2u)

Γ(x+u)2
>

(
1+

u
x+ s

)u

holds for x > −ρ if and only if s � max((u−1)/2,min(u,0)) , which reverses it for
x > −ρ if and only if s � min((u−1)/2,min(u,0)) . In particular, by taking s =
max((u−1)/2,min(u,0)) and s = min((u−1)/2,min(u,0)) we have

(i) if u ∈ (1,∞) , then(
1+

u
x+(u−1)/2

)u

<
Γ(x)Γ(x+2u)

Γ(x+u)2
<
(
1+

u
x

)u
for x > 0;

(ii) if u ∈ (0,1) , then(
1+

u
x

)u
<

Γ(x)Γ(x+2u)

Γ(x+u)2
for x > 0,

Γ(x)Γ(x+2u)
Γ(x+u)2

<

(
1+

u
x+(u−1)/2

)u

for x >
1−u

2
;
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(iii) if u ∈ (−1,0) , then(
1+

u
x+u

)u

<
Γ(x)Γ(x+2u)

Γ(x+u)2
for x > −2u,

Γ(x)Γ(x+2u)
Γ(x+u)2

<

(
1+

u
x+(u−1)/2

)u

for x >
1−3u

2
;

(iv) if u ∈ (−∞,−1) , then(
1+

u
x+(u−1)/2

)u

<
Γ(x)Γ(x+2u)

Γ(x+u)2
<

(
1+

u
x+u

)u

for x > −2u.

REMARK 4. Clearly, this corollary above gives new lower and upper bounds for
Gurland’s ratio, which extend the Gurland’s inequality (2) [27].

Now let us take (p,q) = (u,0) , (r,s) = (s,s) , (u,v) = (u,0) with u �= 0. Then
Gu,v;p,q (x)/Gu,v;r,s (x) can be reduced to(

Gu,0;u,0 (x)
Gu,0;s,s (x)

)u2

= e−u[ψ(x+s+u)−ψ(x+s)] Γ(x)Γ(x+2u)

Γ(x+u)2
,

and ρ = min(p,q,r,s)+min(u,v) = min(u,0,s)+min(u,0) . By Theorem 1, we have

COROLLARY 9. For fixed u,s ∈ R with u �= 0 , ρ = min(u,0,s)+min(u,0) , the
inequality

Γ(x)Γ(x+2u)
Γ(x+u)2

> exp [u(ψ (x+ s+u)−ψ (x+ s))]

holds for x > −ρ if and only if s � u/2 , which reverses it for x > −ρ if and only if
s � min(u,0) . Especially, by putting s = u/2 and s = min(u,0) , we have

exp [uψ (x+3u/2)]
exp [uψ (x+u/2)]

−ψ (x+u/2)

<
Γ(x)Γ(x+2u)

Γ(x+u)2
<

⎧⎪⎪⎨
⎪⎪⎩

exp [uψ (x+u)]
exp [uψ (x)]

for u,x > 0,

exp [uψ (x+2u)]
exp [uψ (x+u)]

for x > −2u > 0.

Note that

lnTp,q (x) =

∫ p
q

∫ p
q ψ ′ (x+(α + β )/2)dαdβ

4(p−q)2
for p �= q,

from Theorem 2 we obtain

PROPOSITION 4. For fixed p,q,r,s∈R with (p−q)(r− s) �= 0 , ρ = min(p,q,r,s) ,
n ∈ N , both the inequalities[

Γ(x+ p)Γ(x+q)

Γ(x+(p+q)/2)2

]1/(p−q)2

>

[
Γ(x+ r)Γ(x+ s)

Γ(x+(r+ s)/2)2

]1/(r−s)2

,
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(−1)n
∫ p
q

∫ p
q ψ(n+1) [x+(α + β )/2]dαdβ

(p−q)2
> (−1)n

∫ r
s

∫ r
s ψ(n+1) [x+(α + β )/2]dαdβ

(r− s)2

hold for x ∈ (−ρ ,∞) if and only if p+q � r+ s and min(p,q) � min(r,s) .

As direct consequences of Corollaries 6 and 7 we conclude that

COROLLARY 10. For fixed p,q,r ∈ R with p �= q, ρ = min(p,q,r) , the inequal-
ity

Γ(x+ p)Γ(x+q)
Γ(x+(p+q)/2)2 >

(
1+

1
x+ r

)(p−q)2/4

holds for s > −ρ if and only if r � max((p+q−2)/2,min(p,q)) . It is reversed for
x > −ρ if and only if r � min((p+q−2)/2,min(p,q)) .

COROLLARY 11. For fixed p,q ∈ R with p �= q, ρ = min(p,q) , the double in-
equality

exp

[
(p−q)2

4
ψ ′ (x+ r1)

]
<

Γ(x+ p)Γ(x+q)

Γ(x+(p+q)/2)2
< exp

[
(p−q)2

4
ψ ′ (x+ r2)

]

holds for x ∈ (−ρ ,∞) with the best constants r1 = (p+q)/2 and r2 = min(p,q) .

REMARK 5. If p,q > 0, then by the same method as in [34], the constant r2 can
be improved as

√
pq .
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