WINTGEN INEQUALITY FOR STATISTICAL SURFACES

Muhittin Evren Aydin and Ion Mihai

(Communicated by S. Varošanec)

Abstract

The Wintgen inequality (1979) is a sharp geometric inequality for surfaces in the 4dimensional Euclidean space involving the Gauss curvature (intrinsic invariant) and the normal curvature and squared mean curvature (extrinsic invariants), respectively. In the present paper we obtain a Wintgen inequality for statistical surfaces.

1. Preliminaries

For surfaces M^{2} of the Euclidean space \mathbb{E}^{3}, the Euler inequality $K \leqslant\|H\|^{2}$ is fulfilled, where K is the (intrinsic) Gauss curvature of M^{2} and $\|H\|^{2}$ is the (extrinsic) squared mean curvature of M^{2}.

Furthermore, $K=\|H\|^{2}$ everywhere on M^{2} if and only if M^{2} is totally umbilical, or still, by a theorem of Meusnier, if and only if M^{2} is (a part of) a plane \mathbb{E}^{2} or, it is (a part of) a round sphere S^{2} in \mathbb{E}^{3}.

In $1979, \mathrm{P}$. Wintgen [30] proved that the Gauss curvature K, the squared mean curvature $\|H\|^{2}$ and the normal curvature K^{\perp} of any surface M^{2} in \mathbb{E}^{4} always satisfy the inequality

$$
K \leqslant\|H\|^{2}-\left|K^{\perp}\right| ;
$$

the equality holds if and only if the ellipse of curvature of M^{2} in \mathbb{E}^{4} is a circle.
For some explicit examples of surfaces satisfying the equality case of Wintgen's inequality, see, e.g., [7]

The Whitney 2-sphere satisfies the equality case of the Wintgen inequality identically.

A survey containing recent results on surfaces satisfying identically the equality case of Wintgen inequality can be read in [5].

Later, the Wintgen inequality was extended by B. Rouxel [26] and by I. V. Guadalupe and L. Rodriguez [13] independently, for surfaces M^{2} of arbitrary codimension m in real space forms $\widetilde{M}^{2+m}(c)$; namely

$$
K \leqslant\|H\|^{2}-\left|K^{\perp}\right|+c .
$$

The equality case was also investigated.

[^0]A corresponding inequality for totally real surfaces in n-dimensional complex space forms was obtained in [18]. The equality case was studied and a non-trivial example of a totally real surface satisfying the equality case identically was given (see also [19]).

In 1999, P. J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken [8] formulated the conjecture on Wintgen inequality for submanifolds of real space forms, which is also known as the $D D V V$ conjecture.

This conjecture was proven by the authors for submanifolds M^{n} of arbitrary dimension $n \geqslant 2$ and codimension 2 in real space forms $\tilde{M}^{n+2}(c)$ of constant sectional curvature c.

Recently, the DDVV conjecture was finally settled for the general case by $\mathrm{Z} . \mathrm{Lu}$ [17] and independently by J. Ge and Z. Tang [12].

One of the present authors obtained generalized Wintgen inequalities for Lagrangian submanifolds in complex space forms [20] and Legendrian submanifolds in Sasakian space forms [21], respectively.

2. Statistical manifolds and their submanifolds

A statistical manifold is a Riemannian manifold $\left(\tilde{M}^{n+k}, \tilde{g}\right)$ of dimension $(n+k)$, endowed with a pair of torsion-free affine connections $\tilde{\nabla}$ and $\tilde{\nabla}^{*}$ satisfying

$$
\begin{equation*}
Z \tilde{g}(X, Y)=\tilde{g}\left(\tilde{\nabla}_{Z} X, Y\right)+\tilde{g}\left(X, \tilde{\nabla}_{Z}^{*} Y\right) \tag{2.1}
\end{equation*}
$$

for any X, Y and $Z \in \Gamma(T \tilde{M})$. The connections $\tilde{\nabla}$ and $\tilde{\nabla}^{*}$ are called dual connections (see [1], [23]), and it is easily shown that $\left(\tilde{\nabla}^{*}\right)^{*}=\tilde{\nabla}$. The pairing $(\tilde{\nabla}, \tilde{g})$ is said to be a statistical structure. If $(\tilde{\nabla}, \tilde{g})$ is a statistical structure on \tilde{M}^{n+k}, so is $\left(\tilde{\nabla}^{*}, \tilde{g}\right)$ [1, 29].

On the other hand, any torsion-free affine connection $\tilde{\nabla}$ always has a dual connection given by

$$
\begin{equation*}
\tilde{\nabla}+\tilde{\nabla}^{*}=2 \tilde{\nabla}^{0} \tag{2.2}
\end{equation*}
$$

where $\tilde{\nabla}^{0}$ is Levi-Civita connection on \tilde{M}^{n+k}.
In affine differential geometry the dual connections are called conjugate connections (see [15], [9]).

Denote by \tilde{R} and \tilde{R}^{*} the curvature tensor fields of $\tilde{\nabla}$ and $\tilde{\nabla}^{*}$, respectively.
A statistical structure $(\tilde{\nabla}, \tilde{g})$ is said to be of constant curvature $c \in \mathbb{R}$ if

$$
\begin{equation*}
\tilde{R}(X, Y) Z=c\{\tilde{g}(Y, Z) X-\tilde{g}(X, Z) Y\} \tag{2.3}
\end{equation*}
$$

A statistical structure $(\tilde{\nabla}, \tilde{g})$ of constant curvature 0 is called a Hessian structure.
The curvature tensor fields \tilde{R} and \tilde{R}^{*} of dual connections satisfy

$$
\begin{equation*}
\tilde{g}\left(\tilde{R}^{*}(X, Y) Z, W\right)=-\tilde{g}(Z, \tilde{R}(X, Y) W) \tag{2.4}
\end{equation*}
$$

From (2.4) it follows immediately that if $(\tilde{\nabla}, \tilde{g})$ is a statistical structure of constant curvature c, then $\left(\tilde{\nabla}^{*}, \tilde{g}\right)$ is also statistical structure of constant curvature c. In particular, if $(\tilde{\nabla}, \tilde{g})$ is Hessian, so is $\left(\tilde{\nabla}^{*}, \tilde{g}\right)$ [10].

If $\left(\tilde{M}^{n+k}, \tilde{g}\right)$ is a statistical manifold and M^{n} a submanifold of dimension n of \tilde{M}^{n+k}, then $\left(M^{n}, g\right)$ is also a statistical manifold with the induced connection ∇ by $\tilde{\nabla}$ and induced metric g. In the case that $\left(\tilde{M}^{n+k}, \tilde{g}\right)$ is a semi-Riemannian manifold, the induced metric g has to be non-degenerate. For details, see ([28, 29]).

In the geometry of Riemannian submanifolds (see [4]), the fundamental equations are the Gauss and Weingarten formulas and the equations of Gauss, Codazzi and Ricci.

Let denote the set of the sections of the normal bundle to M^{n} by $\Gamma\left(T M^{n \perp}\right)$.
In our case, for any $X, Y \in \Gamma\left(T M^{n}\right)$, according to [29], the corresponding Gauss formulas are

$$
\begin{gather*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \tag{2.5}\\
\tilde{\nabla}_{X}^{*} Y=\nabla_{X}^{*} Y+h^{*}(X, Y), \tag{2.6}
\end{gather*}
$$

where $h, h^{*}: \Gamma\left(T M^{n}\right) \times \Gamma\left(T M^{n}\right) \rightarrow \Gamma\left(T M^{n \perp}\right)$ are symmetric and bilinear, called the imbedding curvature tensor of M^{n} in \tilde{M}^{n+k} for $\tilde{\nabla}$ and the imbedding curvature tensor of M^{n} in \tilde{M}^{n+k} for $\tilde{\nabla}^{*}$, respectively.

In [29], it is also proved that (∇, g) and $\left(\nabla^{*}, g\right)$ are dual statistical structures on M^{n}.

Since h and h^{*} are bilinear, we have the linear transformations A_{ξ} and A_{ξ}^{*} on $T M^{n}$ defined by

$$
\begin{align*}
g\left(A_{\xi} X, Y\right) & =\tilde{g}(h(X, Y), \xi) \tag{2.7}\\
g\left(A_{\xi}^{*} X, Y\right) & =\tilde{g}\left(h^{*}(X, Y), \xi\right) \tag{2.8}
\end{align*}
$$

for any $\xi \in \Gamma\left(T M^{n \perp}\right)$ and $X, Y \in \Gamma\left(T M^{n}\right)$. Further, see [29], the corresponding Weingarten formulas are

$$
\begin{align*}
\tilde{\nabla}_{X} \xi & =-A_{\xi}^{*} X+\nabla_{X}^{\perp} \xi \tag{2.9}\\
\tilde{\nabla}_{X}^{*} \xi & =-A_{\xi} X+\nabla_{X}^{* \perp} \xi \tag{2.10}
\end{align*}
$$

for any $\xi \in \Gamma\left(T M^{n \perp}\right)$ and $X \in \Gamma\left(T M^{n}\right)$. The connections ∇_{X}^{\perp} and $\nabla_{X}^{* \perp}$ given by (2.9) and (2.10) are Riemannian dual connections with respect to induced metric on $\Gamma\left(T M^{n \perp}\right)$.

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ and $\left\{e_{n+1}, \ldots, e_{n+k}\right\}$ be orthonormal tangent and normal frames, respectively, on M. Then the mean curvature vector fields are defined by

$$
\begin{equation*}
H=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right)=\frac{1}{n} \sum_{\alpha=1}^{k}\left(\sum_{i=1}^{n} h_{i i}^{\alpha}\right) e_{n+\alpha}, h_{i j}^{\alpha}=\tilde{g}\left(h\left(e_{i}, e_{j}\right), e_{n+\alpha}\right) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{*}=\frac{1}{n} \sum_{i=1}^{n} h^{*}\left(e_{i}, e_{i}\right)=\frac{1}{n} \sum_{\alpha=1}^{k}\left(\sum_{i=1}^{n} h_{i i}^{* \alpha}\right) e_{n+\alpha}, h_{i j}^{* \alpha}=\tilde{g}\left(h^{*}\left(e_{i}, e_{j}\right), e_{n+\alpha}\right) \tag{2.12}
\end{equation*}
$$

for $1 \leqslant i, j \leqslant n$ and $1 \leqslant \alpha \leqslant k$ (see also [6]).
The corresponding Gauss, Codazzi and Ricci equations are given by the following result.

THEOREM 1. [29] Let $\tilde{\nabla}$ be a dual connection on \tilde{M}^{n+k} and ∇ the induced connection on M^{n}. Let \tilde{R} and R be the Riemannian curvature tensors of $\tilde{\nabla}$ and ∇, respectively. Then,

$$
\begin{equation*}
\tilde{g}(\tilde{R}(X, Y) Z, W)=g(R(X, Y) Z, W)+\tilde{g}\left(h(X, Z), h^{*}(Y, W)\right)-\tilde{g}\left(h^{*}(X, W), h(Y, Z)\right), \tag{2.13}
\end{equation*}
$$

$$
\begin{align*}
&(\tilde{R}(X, Y) Z)^{\perp}= \nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \\
&-\left\{\nabla_{Y}^{\perp} h(Y, Z)-h\left(\nabla_{Y} X, Z\right)-h\left(X, \nabla_{Y} Z\right)\right\} \\
& \tilde{g}\left(R^{\perp}(X, Y) \xi, \eta\right)=\tilde{g}(\tilde{R}(X, Y) \xi, \eta)+g\left(\left[A_{\xi}^{*}, A_{\eta}\right] X, Y\right), \tag{2.14}
\end{align*}
$$

where R^{\perp} is the Riemannian curvature tensor on $T M^{n \perp}, \xi, \eta \in \Gamma\left(T M^{n \perp}\right)$ and $\left[A_{\xi}^{*}, A_{\eta}\right]$ $=A_{\xi}^{*} A_{\eta}-A_{\eta} A_{\xi}^{*}$.

For the equations of Gauss, Codazzi and Ricci with respect to the dual connection $\tilde{\nabla}^{*}$ on M^{n}, we have

THEOREM 2. Let $\tilde{\nabla}^{*}$ be a dual connection on \tilde{M}^{n+k} and ∇^{*} the induced connection on M^{n}. Let \tilde{R}^{*} and R^{*} be the Riemannian curvature tensors for $\tilde{\nabla}^{*}$ and ∇^{*}, respectively. Then,
$\tilde{g}\left(\tilde{R}^{*}(X, Y) Z, W\right)=g\left(R^{*}(X, Y) Z, W\right)+\tilde{g}\left(h^{*}(X, Z), h(Y, W)\right)-\tilde{g}\left(h(X, W), h^{*}(Y, Z)\right)$,

$$
\begin{align*}
&\left(\tilde{R}^{*}(X, Y) Z\right)^{\perp}= \nabla_{X}^{* \perp} h^{*}(Y, Z)-h^{*}\left(\nabla_{X}^{*} Y, Z\right)-h^{*}\left(Y, \nabla_{X}^{*} Z\right) \tag{2.15}\\
&-\left\{\nabla_{Y}^{* \perp} h^{*}(Y, Z)-h^{*}\left(\nabla_{Y}^{*} X, Z\right)-h^{*}\left(X, \nabla_{Y}^{*} Z\right)\right\} \\
& \tilde{g}\left(R^{* \perp}(X, Y) \xi, \eta\right)=\tilde{g}\left(\tilde{R}^{*}(X, Y) \xi, \eta\right)+g\left(\left[A_{\xi}, A_{\eta}^{*}\right] X, Y\right) \tag{2.16}
\end{align*}
$$

where $R^{* \perp}$ is the Riemannian curvature tensor for $\nabla^{\perp *}$ on $T M^{n \perp}, \xi, \eta \in \Gamma\left(T M^{n \perp}\right)$ and $\left[A_{\xi}, A_{\eta}^{*}\right]=A_{\xi} A_{\eta}^{*}-A_{\eta}^{*} A_{\xi}$.

Geometric inequalities for statistical submanifolds in statistical manifolds with constant curvature were obtained in [2].

3. Sectional curvature for statistical manifolds

Let $\left(M^{n}, g\right)$ be a statistical manifold of dimension n endowed with dual connections $\tilde{\nabla}$ and $\tilde{\nabla}^{*}$. Unfortunately, the $(0,4)$-tensor field $g(R(X, Y) Z, W)$ is not skewsymmetric relative to Z and W. Then we cannot define a sectional curvature on M^{n} by the standard definition.

We shall define a skew-symmetric $(0,4)$-tensor field on M^{n} by

$$
T(X, Y, Z, W)=\frac{1}{2}\left[g(R(X, Y) Z, W)+g\left(R^{*}(X, Y) Z, W\right)\right]
$$

for all $X, Y, Z, W \in \Gamma\left(T M^{n}\right)$.
Then we are able to define a sectional curvature on M^{n} by the formula

$$
K(X \wedge Y)=\frac{T(X, Y, X, Y)}{g(X, X) g(Y, Y)-g^{2}(X, Y)}
$$

for any linearly independent tangent vectors X, Y at $p \in M^{n}$.
We want to point-out than this definition has the opposite sign that the sectional curvature defined by B. Opozda [25]. Another sectional curvature was considered in [24] (see also [27]).

In particular, for a statistical surface M^{2}, we can define a Gauss curvature by

$$
G=K\left(e_{1} \wedge e_{2}\right)
$$

for any orthonormal frame $\left\{e_{1}, e_{2}\right\}$ on M^{2}.
Analogously, we shall consider a normal curvature of a statistical surface M^{2} in an orientable 4-dimensional statistical manifold \tilde{M}^{4}. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be a positive oriented orthonormal frame on \tilde{M}^{4} such that e_{1}, e_{2} are tangent to M^{2}. Let

$$
G^{\perp}=\frac{1}{2}\left[g\left(R^{\perp}\left(e_{1}, e_{2}\right) e_{3}, e_{4}\right)+g\left(R^{* \perp}\left(e_{1}, e_{2}\right) e_{3}, e_{4}\right)\right]
$$

be a normal curvature of M^{2}.
Remark that $\left|G^{\perp}\right|$ does not depend on the orientation of the statistical manifold. Then $\left|G^{\perp}\right|$ can be defined for any surface M^{2} of any 4-dimensional statistical manifold.

We state a version of Euler inequality for surfaces in 3-dimensional statistical manifolds of constant curvature.

THEOREM 3. Let M^{2} be surface in a 3-dimensional statistical manifold of constant curvature c. Then its Gauss curvature satisfies:

$$
G \leqslant 2\|H\| \cdot\left\|H^{*}\right\|-c
$$

Proof. Let $p \in M^{2}$ and e_{3} be a unit normal vector to M^{2} at p. We can choose an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of $T_{p} M^{2}$ such that $h^{0}\left(e_{1}, e_{2}\right)=0$, where h^{0} is the second fundamental form of M^{2} (with respect to the Levi-Civita connection). Then $h_{12}^{3}+h_{12}^{* 3}=$ 0 . The Gauss equations for ∇ and ∇^{*} imply

$$
G=-c-\frac{1}{2}\left(h_{11}^{3} h_{22}^{* 3}+h_{11}^{* 3} h_{22}^{3}\right)+h_{12}^{3} h_{12}^{* 3}
$$

Applying the Cauchy-Schwarz inequality, it follows that

$$
G \leqslant-c+\frac{1}{2} \sqrt{\left(h_{11}^{3}+h_{22}^{3}\right)^{2}\left(h_{11}^{* 3}+h_{22}^{* 3}\right)^{2}}-\left(h_{12}^{3}\right)^{2} .
$$

But in our case $4\|H\|^{2}=\left(h_{11}^{3}+h_{22}^{3}\right)^{2}$ and $4\left\|H^{*}\right\| \|^{2}=\left(h_{11}^{* 3}+h_{22}^{* 3}\right)^{2}$. Therefore

$$
G \leqslant-c+2\|H\| \cdot\left\|H^{*}\right\|
$$

Example 1. (A trivial example) Recall Lemma 5.3 of Furuhata [10]. Let ($\mathbb{H}, \tilde{\nabla}, \tilde{g})$ be a Hessian manifold of constant Hessian curvature $\tilde{c} \neq 0,(M, \nabla, g)$ a trivial Hessian manifold and $f: M \longrightarrow \mathbb{H}$ a statistical immmersion of codimension one. Then one has:

$$
A^{*}=0, \quad h^{*}=0, \quad\left\|H^{*}\right\|=0
$$

Thus, if $\operatorname{dim} M=2$, the immersion f of codimension one satisfies the equality case of the statistical version of Euler inequality given by Theorem 3 .

EXAMPLE 2. Let $\left(\mathbb{H}^{3}, \tilde{g}\right)$ be the upper half space of constant sectional curvature -1 , i.e.,

$$
\mathbb{H}^{3}=\left\{y=\left(y^{1}, y^{2}, y^{3}\right) \in \mathbb{R}^{3}: y^{3}>0\right\}, \quad \tilde{g}=\left(y^{3}\right)^{-2} \sum_{k=1}^{3} d y^{k} d y^{k}
$$

An affine connection $\tilde{\nabla}$ on \mathbb{H} is given by

$$
\tilde{\nabla}_{\frac{\partial}{\partial y^{3}}} \frac{\partial}{\partial y^{3}}=\left(y^{3}\right)^{-1} \frac{\partial}{\partial y^{3}}, \quad \tilde{\nabla}_{\frac{\partial}{\partial y^{i}}} \frac{\partial}{\partial y^{j}}=2 \delta_{i j}\left(y^{3}\right)^{-1} \frac{\partial}{\partial y^{3}}, \quad \tilde{\nabla}_{\frac{\partial}{\partial y^{i}}} \frac{\partial}{\partial y^{3}}=\tilde{\nabla}_{\frac{\partial}{\partial y^{3}}} \frac{\partial}{\partial y^{j}}=0
$$

where $i, j=1,2$. The curvature tensor field \tilde{R} of $\tilde{\nabla}$ is identically zero, i.e., $c=0$. Thus $\left(\mathbb{H}^{3}, \tilde{\nabla}, \tilde{g}\right)$ is a Hessian manifold of constant Hessian curvature 4. Now let consider a horosphere M^{2} in \mathbb{H}^{3} having null Gauss curvature, i.e., $G \equiv 0$. (For details, see [16]). If $f: M^{2} \longrightarrow \mathbb{H}^{3}$ is a statistical immersion of codimension one, then, by using Lemma 4.1 of [22], we deduce $A^{*}=0$, and then $H^{*}=0$. This implies that the horosphere M^{2} satisfies the equality case of the statistical version of Euler inequality given by Theorem 3.

4. Wintgen inequality for statistical surfaces in a 4-dimensional statistical manifold of constant curvature

Let $\left(\tilde{M}^{4}, c\right)$ be a statistical manifold of constant curvature c and M^{2} a statistical surface in $\left(\tilde{M}^{4}, c\right)$.

We shall prove a Wintgen inequality for the surfaces M^{2} in $\left(\tilde{M}^{4}, c\right)$. The Gauss curvature G of M^{2} is given by

$$
G=\frac{1}{2}\left[g\left(R\left(e_{1}, e_{2}\right) e_{1}, e_{2}\right)+g\left(R^{*}\left(e_{1}, e_{2}\right) e_{1}, e_{2}\right)\right] .
$$

By the Gauss equation we have
$g\left(R\left(e_{1}, e_{2}\right) e_{1}, e_{2}\right)=g\left(\tilde{R}\left(e_{1}, e_{2}\right) e_{1}, e_{2}\right)-g\left(h\left(e_{1}, e_{1}\right), h^{*}\left(e_{2}, e_{2}\right)\right)+g\left(h^{*}\left(e_{1}, e_{2}\right), h\left(e_{1}, e_{2}\right)\right)$, or equivalently,

$$
g\left(R\left(e_{1}, e_{2}\right) e_{1}, e_{2}\right)=-c-h_{11}^{3} h_{22}^{* 3}-h_{11}^{4} h_{22}^{* 4}+h_{12}^{* 3} h_{12}^{3}+h_{12}^{* 4} h_{12}^{4} .
$$

Analogously

$$
g\left(R^{*}\left(e_{1}, e_{2}\right) e_{1}, e_{2}\right)=-c-h_{11}^{* 3} h_{22}^{3}-h_{11}^{* 4} h_{22}^{4}+h_{12}^{3} h_{12}^{* 3}+h_{12}^{4} h_{12}^{* 4}
$$

It follows that

$$
G=-c-\frac{1}{2}\left[h_{11}^{3} h_{22}^{* 3}+h_{11}^{* 3} h_{22}^{3}+h_{11}^{4} h_{22}^{* 4}+h_{11}^{* 4} h_{22}^{4}\right]+h_{12}^{3} h_{12}^{* 3}+h_{12}^{4} h_{12}^{* 4} .
$$

The normal curvature G^{\perp} of M^{2} is given by

$$
2\left|G^{\perp}\right|=\frac{1}{2}\left|g\left(R^{\perp}\left(e_{1}, e_{2}\right) e_{3}, e_{4}\right)+g\left(R^{* \perp}\left(e_{1}, e_{2}\right) e_{3}, e_{4}\right)\right|
$$

By the Ricci equations with respect to $\tilde{\nabla}$ and $\tilde{\nabla}^{*}$, respectively, we get

$$
\begin{aligned}
2\left|G^{\perp}\right| & =\left|g\left(\left[A_{e_{3}}^{*}, A_{e_{4}}\right] e_{1}, e_{2}\right)+g\left(\left[A_{e_{3}}, A_{e_{4}}^{*}\right] e_{1}, e_{2}\right)\right| \\
& =\left|h_{12}^{* 3}\left(h_{11}^{4}-h_{22}^{4}\right)-h_{12}^{* 4}\left(h_{11}^{3}-h_{22}^{3}\right)+h_{12}^{3}\left(h_{11}^{* 4}-h_{22}^{* 4}\right)-h_{12}^{4}\left(h_{11}^{* 3}-h_{22}^{* 3}\right)\right|
\end{aligned}
$$

In order to estimate $\left|G^{\perp}\right|$, we shall use the inequalities

$$
\pm 4 a b \leqslant a^{2}+4 b^{2}, a, b \in \mathbb{R}
$$

Then we have

$$
\begin{aligned}
2\left|G^{\perp}\right| \leqslant & \frac{1}{4}\left[\left(h_{11}^{3}-h_{22}^{3}\right)^{2}+\left(h_{11}^{4}-h_{22}^{4}\right)^{2}+\left(h_{11}^{* 3}-h_{22}^{* 3}\right)^{2}+\left(h_{11}^{* 4}-h_{22}^{* 4}\right)^{2}\right] \\
& +\left(h_{12}^{3}\right)^{2}+\left(h_{12}^{4}\right)^{2}+\left(h_{12}^{* 3}\right)^{2}+\left(h_{12}^{* 4}\right)^{2} \\
= & \frac{1}{4}\left[\left\|h_{11}-h_{22}\right\|^{2}+\left\|h_{11}^{*}-h_{22}^{*}\right\|^{2}\right]+\left\|h_{12}\right\|^{2}+\left\|h_{12}^{*}\right\|^{2}
\end{aligned}
$$

which yields that

$$
\begin{aligned}
2\left|G^{\perp}\right| \leqslant & \frac{1}{4}\left[\left\|h_{11}+h_{22}\right\|^{2}+\left\|h_{11}^{*}+h_{22}^{*}\right\|^{2}\right]-g\left(h_{11}, h_{22}\right)-g\left(h_{11}^{*}, h_{22}^{*}\right)+\left\|h_{12}\right\|^{2}+\left\|h_{12}^{*}\right\|^{2} \\
= & \|H\|^{2}+\left\|H^{*}\right\|^{2}-\left(h_{11}^{3}+h_{11}^{* 3}\right)\left(h_{22}^{3}+h_{22}^{* 3}\right)-\left(h_{11}^{4}+h_{11}^{* 4}\right)\left(h_{22}^{4}+h_{22}^{* 4}\right) \\
& +h_{11}^{3} h_{22}^{* 3}+h_{11}^{* 3} h_{22}^{3}+h_{11}^{4} h_{22}^{* 4}+h_{11}^{* 4} h_{22}^{4}+\left(h_{12}^{3}\right)^{2}+\left(h_{12}^{4}\right)^{2}+\left(h_{12}^{* 3}\right)^{2}+\left(h_{12}^{* 4}\right)^{2} .
\end{aligned}
$$

It is known that $2 h^{0}=h+h^{*}$, where h^{0} denotes the second fundamental form of M^{2} with respect to the Levi-Civita connection $\tilde{\nabla}^{0}$ on $\left(\tilde{M}^{4}, c\right)$.

Then we can write

$$
\begin{aligned}
2\left|G^{\perp}\right| \leqslant & \|H\|^{2}+\left\|H^{*}\right\|^{2}-4\left(h_{11}^{03} h_{22}^{03}+h_{11}^{04} h_{22}^{04}\right)-2 G-2 c \\
& +2 h_{12}^{3} h_{12}^{* 3}+2 h_{12}^{4} h_{12}^{* 4}+\left(h_{12}^{3}\right)^{2}+\left(h_{12}^{* 3}\right)^{2}+\left(h_{12}^{4}\right)^{2}+\left(h_{12}^{* 4}\right)^{2}
\end{aligned}
$$

where $h_{i j}^{03}$ and $h_{i j}^{04}$ are the components of the second fundamental form h^{0} with respect to the Levi-Civita connection.

Recall the Gauss equation for the Levi-Civita connection

$$
\tilde{K}^{0}\left(e_{1} \wedge e_{2}\right)=G^{0}-h_{11}^{03} h_{22}^{03}-h_{11}^{04} h_{22}^{04}+\left(h_{12}^{03}\right)^{2}+\left(h_{12}^{04}\right)^{2}
$$

where $\tilde{K}^{0}\left(e_{1} \wedge e_{2}\right)$ is the sectional curvature of M^{2} in $\left(\tilde{M}^{4}, \tilde{\nabla}^{0}\right)$ and G^{0} its Gaussian curvature with respect to the Levi-Civita connection.

Consequently we have

$$
\begin{aligned}
2\left|G^{\perp}\right| \leqslant & \|H\|^{2}+\left\|H^{*}\right\|^{2}-4 G^{0}+4 \tilde{K}^{0}\left(e_{1} \wedge e_{2}\right)-2 G-2 c \\
& -\left(h_{12}^{3}+h_{12}^{* 3}\right)^{2}-\left(h_{12}^{4}+h_{12}^{* 4}\right)^{2}+2 h_{12}^{3} h_{12}^{* 3}+2 h_{12}^{4} h_{12}^{* 4} \\
& +\left(h_{12}^{3}\right)^{2}+\left(h_{12}^{* 3}\right)^{2}+\left(h_{12}^{4}\right)^{2}+\left(h_{12}^{* 4}\right)^{2} \\
= & \|H\|^{2}+\left\|H^{*}\right\|^{2}-4 G^{0}+4 \tilde{K}^{0}\left(e_{1} \wedge e_{2}\right)-2 G-2 c .
\end{aligned}
$$

Summing up, we state the following.

THEOREM 4. Let M^{2} be a statistical surface in a 4-dimensional statistical manifold $\left(\tilde{M}^{4}, c\right)$ of constant curvature c. Then

$$
G+\left|G^{\perp}\right|+2 G^{0} \leqslant \frac{1}{2}\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right)-c+2 \tilde{K}^{0}\left(e_{1} \wedge e_{2}\right)
$$

In particular, for $c=0$ we derive the following.

Corollary 1. Let M^{2} be a statistical surface of a 4-dimensional Hessian manifold \tilde{M}^{4} of Hessian curvature 0. Then:

$$
G+\left|G^{\perp}\right|+2 G^{0} \leqslant \frac{1}{2}\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right)
$$

REMARK 1. In [3] we proved a generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature by using different techniques than in the proof of Theorem 4. Moreover we want to point-out that the inequality from Theorem 4 is stronger than the particular case $n=2$ which derives from the inequality obtained in [3].

Acknowledgements. This paper was written during the visit of the second author to Firat University, Turkey, in April-May 2015. The second author was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) for Advanced Fellowships Programme.

REFERENCES

[1] S. Amari, Differential-Geometrical Methods in Statistics, Springer-Verlag, 1985.
[2] M. E. Aydin, A. Mihai, I. Mihai, Some inequalities on submanifolds in statistical manifolds of constant curvature, Filomat 29, 3 (2015), 465-477.
[3] M. E. Aydin, A. Mihai, I. Mihai, Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature, Bull. Math. Sci. 7 (2017), 155-166.
[4] B. Y. CHEN, Geometry of Submanifolds, New York, M. Dekker, 1973.
[5] B. Y. CHEN, On Wintgen ideal surfaces, in: Riemannian Geometry and Applications - Proceedings RIGA 2011 (Eds. A. Mihai and I. Mihai), Ed. Univ. Bucureşti, Bucharest, 2011, pp. 59-74.
[6] B. Y. CHEN, Mean curvature and shape operator of isometric immersions in real-space-forms, Glasg. Math. J. 38 (1996), 87-97.
[7] B. Y. CHEN, Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvatures, Ann. Global Anal. Geom. 38 (2010), 145-160.
[8] P. J. De Smet, F. Dillen, L. Verstraelen, L. Vrancken, A pointwise inequality in submanifold theory, Arch. Math. (Brno), 35 (1999), 115-128.
[9] F. Dillen, K. Nomizu, L. Vrancken, Conjugate connections and Radon's theorem in affine differential geometry, Monatsh. Math. 109 (1990), 221-235.
[10] H. Furuhata, Hypersurfaces in statistical manifolds, Diff. Geom. Appl. 27 (2009), 420-429.
[11] H. Furuhata, Statistical hypersurfaces in the space of Hessian curvature zero, Diff. Geom. Appl. 29 (2011), 586-590.
[12] J. GE, Z. TANG, A proof of the DDVV conjecture and its equality case, Pacific J. Math. 237 (2008), 87-95.
[13] I. V. Guadalupe, L. Rodriguez, Normal curvature of surfaces in space forms, Pacific J. Math. 106 (1983), 95-103.
[14] S. Haesen, L. Verstraelen, Natural intrinsic geometrical symmetries, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), 15, paper 086.
[15] A.-M. Li, U. Simon, G. Zhao, Z. Hu, Global Affine Differential Geometry of Hypersurfaces, 2nd revised and extended ed. (English), De Gruyter Expositions in Mathematics 11, Berlin: De Gruyter (ISBN 978-3-11-026667-2/hbk), 410 p. (2015).
[16] R. Lopez, Parabolic surfaces in hyperbolic space with constant Gaussian curvature, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 337-349.
[17] Z. Lu, Normal scalar curvature conjecture and its applications, J. Funct. Anal. 261 (2011), 12841308.
[18] A. Mihai, An inequality for totally real surfaces in complex space forms, Kragujevac J. Math. 26 (2004) 83-88.
[19] A. Mihai, Geometric inequalities for purely real submanifolds in complex space forms, Results Math. 55 (2009), 457-468.
[20] I. Mihai, On the generalized Wintgen inequality for Lagrangian submanifolds in complex space forms, Nonlinear Analysis 95 (2014), 714-720.
[21] I. Mihai, On the generalized Wintgen inequality for Legendrian submanifolds in Sasakian space forms, Tohoku J. Math. 69 (2017), 43-53.
[22] C. R. Min, S. O. Choe, Y. H. An, Statistical immersions between statistical manifolds of constant curvature, Glob. J. Adv. Res. Class. Mod. Geom. 3 (2014), 66-75.
[23] K. Nomizu, T. Sasaki, Affine Differential Geometry, Camdridge University Press, 1994.
[24] B. OpozdA, A sectional curvature for statistical structures, Linear Algebra Appl. 497 (2016), 134161.
[25] B. OpozdA, Bochner's technique for statistical structures, Ann. Global Anal. Geom. 48 (2015), 357395.
[26] B. Rouxel, Sur une famille des A-surfaces d'un espace Euclidien E^{4}, Österreischer Mathematiker Kongress, Insbruck, 1981, p. 185.
[27] U. Simon, Affine Differential Geometry, in Handbook of Differential Geometry (Eds. F. Dillen and L. Verstraelen), Vol. I, 905-961, North-Holland, Amsterdam, 2000.
[28] K. Uohashi, A. Ohara and T. Fujil, 1-conformally flat statistical submanifolds, Osaka J. Math. 37 (2000), 501-507.
[29] P. W. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett connection, Ann. Inst. Statist. Math. 41, 3 (1989), 429-450.
[30] P. Wintgen, Sur l'inégalité de Chen-Willmore, C. R. Acad. Sci. Paris Sér.A-B, 288 (1979), A993A995.
(Received April 26, 2018)
Muhittin Evren Aydin
Department of Mathematics
Faculty of Science, Firat University
Elazig, 23200, Turkey
e-mail: meaydin@firat.edu.tr
Ion Mihai
Department of Mathematics
Faculty of Mathematics and Computer Science
University of Bucharest
Bucharest, 010014, Romania
e-mail: imihai@fmi.unibuc.ro

[^0]: Mathematics subject classification (2010): 53C05, 53C40, 53A40.
 Keywords and phrases: Wintgen inequality, statistical manifold, statistical surface, dual connections.

