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IMPROVED RIGOROUS MULTIPLICATIVE PERTURBATION

BOUNDS FOR THE GENERALIZED CHOLESKY

FACTORIZATION AND THE CHOLESKY–LIKE FACTORIZATION

AAMIR FAROOQ, MAHVISH SAMAR, HANYU LI ∗ AND CHUNLAI MU

(Communicated by S. Puntanen)

Abstract. Some improved rigorous multiplicative perturbation bounds for the generalized Cholesky
factorization and the Cholesky-like factorization which are two generalizations of the classic
Cholesky factorization are obtained by bringing together the modified matrix-vector equation
approach with the method of Lyapunov majorant function and the Banach fixed point theorem.
These bounds are continually tighter than the corresponding ones given in the literature.

1. Introduction

Let R
m×n be the set of m× n real matrices and R

m×n
r be the subset of R

m×n

consisting of matrices with rank r . Let Ir be the identity matrix of order r . For a
matrix A ∈ R

m×n , we denote by AT and A[< i >] the transpose and the i-th leading
principal submatrix of A , respectively.

Consider the following symmetric quasi-definite matrix K ∈ R
(m+n)×(m+n)

K =
[

A BT

B −C

]
, (1.1)

here A ∈ R
m×m
m is symmetric positive definite, B ∈ R

n×m
n , and C ∈ R

n×n is symmetric
positive semi-definite. The matrix K has the following factorization

K = LJm+nL
T , (1.2)

where

L =
[

L11 0
L21 L22

]
, Jm+n =

[
Im 0
0 −In

]
,
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with L11 ∈ R
m×m
m and L22 ∈ R

n×n
n being lower triangular, and L21 ∈ R

n×m
n . It is easy

to check that

A = L11L
T
11, B = L21L

T
11, C+L21L

T
21 = L22L

T
22.

The factorization (1.2) is called the generalized Cholesky factorization and L is referred
to as the generalized Cholesky factor [20].

Now, we consider the skew-symmetric matrix B ∈ R
2n×2n . If all even leading

principal submatrices of B are nonsingular, i.e., B[〈2i〉] (i = 1, · · · ,n) are nonsingular,
then B has the following factorization

B = RT Ĵ2nR, (1.3)

where R = (ri j) ∈ R
2n×2n is upper triangular with r2 j−1,2 j = 0,r2 j−1,2 j−1 > 0, r2 j,2 j =

±r2 j−1,2 j−1 for j = 1,2, · · · ,n and

Ĵ2n = diag(J0, · · · ,J0), J0 =
[

0 1
−1 0

]
.

That is, R has 2×2 blocks of the form

[
r 0
0 ±r

]
running down the main diagonal. The

factorization (1.3) is called the Cholesky-like factorization and R is referred to as the
Cholesky-like factor [1].

In recent years, algorithms, error analysis of algorithms, and perturbation analysis
for these two factorizations had been studied by some authors [1, 5, 9, 10, 11, 17, 18,
20]. Among these, Li and Yang [10] considered the multiplicative rigorous perturbation
bounds using the matrix equation and the refined matrix equation approaches. The mul-
tiplicative perturbation has some advantages compared with the additive perturbation;
see e.g. [3, 10, 19] for detailed explanation. In this paper, we continue the research
on multiplicative perturbation bounds for the above two factorizations using the (block)
matrix-vector equation, the method of Lyapunov majorant fuction (e.g., [8, Chapter 5]),
and the Banach fixed point theorem (e.g., [8, Appendix 5]). The obtained bounds will
enhance the corresponding results given in [10].

2. Notation and preliminaries

The majority of the notation and preliminaries endorsed in this section are from
[2, 11, 14]. We still present them here to make easier for readers.

In a given matrix A = (ai j) ∈ R
m×n , its spectral norm and Frobenius norm are

betoken by ‖A‖2 and ‖A‖F , respectively. For these two matrix norms, the following
inequalities clasp (see [16]):

‖XYZ‖2 � ‖X‖2 ‖Y‖2 ‖Z‖2 , ‖XYZ‖F � ‖X‖2 ‖Y‖F ‖Z‖2 , (2.1)

whenever the matrix product XYZ is well-defined.
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For the given matrix A = [a1,a2, . . . ,an] = (ai j) ∈ R
n×n , we denote the vector of

the first i elements of a j by a
(i)

j . With these, we adopt the operators as in [2],

uvec(A) :=

⎡⎢⎢⎢⎢⎣
a(1)

1

a(2)
2
...

a(n)
n

⎤⎥⎥⎥⎥⎦ ∈ R
v1 ,vec(A) :=

⎡⎢⎢⎢⎣
a1

a2
...

an

⎤⎥⎥⎥⎦ ∈ R
n2

,

up(A) :=

⎡⎢⎢⎢⎣
1
2a11 a12 · · · a1n

0 1
2a22 · · · a2n

...
...

. . .
...

0 0 · · · 1
2ann

⎤⎥⎥⎥⎦ , ut(A) :=

⎡⎢⎢⎢⎣
a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

⎤⎥⎥⎥⎦ ,

where v1 = n(n+1)/2. Considering the structures of these operators, we have

Πmnvec(A) = vec(AT ), uvec(A) = Muvecvec(A),

vec(ut(A)) = Mutvec(A), vec(up(A)) = Mupvec(A), (2.2)

where Πmn is the vec-permutation matrix depending only on the dimension of matrix
and

Muvec = diag(J1,J2, · · · ,Jn) ∈ R
v1×n2

, Ji =
[
Ii,0i×(n−i)

] ∈ R
i×n,

Mut = diag
(
Ĵ1, Ĵ2, · · · , Ĵn

) ∈ R
n2×n2

, Ĵi = diag
(
Ii,0(n−i)×(n−i)

) ∈ R
n×n,

Mup = diag
(
J̃1,J̃2,· · ·,J̃n

) ∈ R
n2×n2 , J̃i =diag

(
Ii−1,1/2,0(n−i)×(n−i)

)∈R
n×n.

Here, 0s×t is the s× t zero matrix. Moreover,

MuvecM
T
uvec = Iv1 , MT

uvecMuvec = Mut. (2.3)

Let uvec† : R
v1 → R

m×n be the right inverse of the operator ‘uvec’ such that uvec ·
uvec† = 1v1×v1 and uvec† ·uvec = ut. Then the matrix of the operator ’uvec’ is MT

uvec .
That is, uvec†(A) = MT

uvecvec(A) .
Let Dm+n ∈ R

(m+n)×(m+n) denote the set of (m + n)× (m + n) positive definite
diagonal matrices. Then, for any Dm+n = diag(δ1,δ2, . . . ,δm+n) ∈ Dm+n and A ∈
R

(m+n)×(m+n) ,

up(ADm+n) = up(A)Dm+n, Dm+nup(A) = Dm+nup(A). (2.4)

Furthermore, from [4] we have∥∥up(A)+D−1
m+nup

(
AT )

Dm+n
∥∥

F �
√

1+ ς2
Dm+n

‖A‖F , (2.5)

where ςDm+n = max
1�i< j�m+n

{δ j/δi} .
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For the matrix A = (Ai j) ∈ R
2n×2n , where Ai j ∈ R

2×2, i, j = 1,2, · · · ,n , we adopt
the following operators:

uvecb(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(A11)
...

vec(A1n)
vec(A22)

...
vec(A2n)

...
vec

(
A(n−1)(n−1)

)
vec

(
A(n−1)n

)
vec(Ann)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
v2 , vecb(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(A11)
...

vec(A1n)
...

vec(An1)
...

vec(Ann)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

4n2
,

upb(A) =

⎡⎢⎢⎢⎣
1
2A11 A12 · · · A1n

0 1
2A22 · · · A2n

...
...

. . .
...

0 0 · · · 1
2Ann

⎤⎥⎥⎥⎦ , utb(A) =

⎡⎢⎢⎢⎣
A11 A12 · · · A1n

0 A22 · · · A2n
...

...
. . .

...
0 0 · · · Ann

⎤⎥⎥⎥⎦ ,

where v2 = 2n(n+1). Making use of the structures of these operators, we have

Π̂nnvecb(A) = vecb(AT ), uvecb(A) = Muvecbvecb(A),

vecb(utb(A)) = Mutbvecb(A), vecb(upb(A)) = Mupbvecb(A), (2.6)

where Π̂nn = (Πnn⊗Π22) ∈ R
4nn×4nn with ⊗ denoting the Kronecker product whose

definition is given later in this section and

Muvecb = diag(S1,S2, · · · ,Sn) ∈ R
v2 ×4n2,

Si =
[
04(n−i+1)×4(i−1), I4(n−i+1)

] ∈ R
4(n−i+1)×4n,

Mutb = diag
(
Ŝ1, Ŝ2, · · · , Ŝn

) ∈ R
4n2×4n2

,

Ŝi = diag
(
04(i−1)×4(i−1), I4(n−i+1)

) ∈ R
4n×4n,

Mupb = diag
(
S̃1, S̃2, · · · , S̃n

) ∈ R
4n2×4n2

,

S̃i = diag
(
04(i−1)×4(i−1),1/2I4, I4(n−i)

) ∈ R
4n×4n.

Moreover,

MuvecbM
T
uvecb = Iv1 , MT

uvecbMuvecb = Mutb. (2.7)

Thus, letting uvecb† : R
v2 → R

2n×2n be the right inverse of the operator ‘uvecb’ such
that uvecb ·uvecb† = 1v2×v2 and uvecb† ·uvecb = utb. Then the matrix of the operator
’uvecb’ is MT

uvecb . That is, uvecb†(A) = MT
uvecbvecb(A) .
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Let D2n ∈ R
2n×2n denote the set of 2n× 2n diagonal positive definite matrices

with 2× 2 main diagonal blocks siI2 , where si > 0, i = 1,2, · · · ,n . Then, for any
D2n ∈ D2n and A = (Ai j) ∈ R

2n×2n ,

upb(AD2n) = upb(A)D2n, upb(D2nA) = D2nupb(A). (2.8)

Furthermore, from [10, Lemma 1.1],∥∥upb(A)+D−1
2n upb

(
AT )

D2n
∥∥

F �
√

1+ ς2
D2n

‖A‖F , (2.9)

where ςD2n = max
1�i< j�n

{s j/si} .

Let A = (Ai j) ∈ R
m×n and B ∈ R

p×q . The Kronecker product between A and B
is defined by [6, Chapter 4],

A⊗B =

⎡⎢⎢⎢⎣
a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

⎤⎥⎥⎥⎦ .

For the Kronecker product, the following results hold [6, Chapter 4]

vec(ACB) = (BT ⊗A)vec(C) , (2.10)

‖B⊗A‖2 = ‖B‖2‖A‖2, (2.11)

(B⊗A)(C⊗G) = (BC)⊗ (AG), (2.12)

(B⊗A)−1 = B−1⊗A−1, if B and A are nonsingular. (2.13)

In above expression, the matrices C and G are of suitable orders.
Let A = (Ai j) ∈ R

2m×2n with Ai j ∈ R
2×2, i = 1,2, · · · ,m, j = 1,2, · · · ,n . The

block Kronecker product between B and A is defined by

B�A =

⎡⎢⎢⎢⎣
B⊗A11 B⊗A12 · · · B⊗A1n

B⊗A21 B⊗A22 · · · B⊗A2n
...

...
. . .

...
B⊗Am1 B⊗Am2 · · · B⊗Amn

⎤⎥⎥⎥⎦ .

For the block Kronecker product, the following results hold [7]

vecb(ACB) = (BT �A)vecb(C) , (2.14)

‖B�A‖2 = ‖B‖2‖A‖2, (2.15)

(B�A)(C�G) = (BC)� (AG), (2.16)

(B�A)−1 = B−1 �A−1, if B and A are nonsingular. (2.17)

Here, the matrices C and G are of suitable orders and are partitioned appropriately.



138 A. FAROOQ, M. SAMAR, H. LI AND C. MU

3. Perturbation bounds for the generalized Cholesky factorization

Assume that the matrices K and L in (1.2) are perturbed as

K → QKQT , L → L+ ΔL,

where Q = Im+n +E ∈ R
(m+n)×(m+n) and ΔL ∈ R

(m+n)×(m+n) is lower triangular such
that L+ ΔL has the same structure as that of L . So,

K̃ = QKQT

(Im+n +E)K(Im+n +E)T = (L+ ΔL)Jm+n(L+ ΔL)T . (3.1)

Expanding (3.1) and using (1.2), we have

LJm+nL
T ET +ELJm+nL

T +ELJm+nL
T ET = LJm+nΔLT + ΔLJm+nL

T

+ ΔLJm+nΔLT . (3.2)

Premultipling the above equation by L−1 and postmultipling it by L−T leads to

Jm+nΔLT L−T +L−1ΔLJm+n = Jm+nΔLT L−T +(Jm+nΔLT L−T )T

= Jm+nL
T ET L−T +L−1ELJm+n +L−1ELJm+nL

T ET L−T

−L−1ΔLJm+nΔLT L−T . (3.3)

As done in [12, 13], from (3.3), we have

Jm+nΔLT L−T = up
(
Jm+nL

T ET L−T +L−1ELJm+n
)

+up
(
L−1 (

ELJm+nL
T ET L−T −L−1ΔLJm+nΔLT )

L−T )
. (3.4)

Applying the operator ‘vec’ to (3.4), and using (2.10) and (2.2) gives(
L−1⊗ Jm+n

)
vec

(
ΔLT )

= Mup
(
(LJm+n)T ⊗L−1 +

(
L−1 ⊗ (Jm+nL

T )
)

Π(m+n)(m+n)
)
vec(E)

+Mup
(
L−1⊗L−1)vec

(
ELJm+nL

T ET −ΔLJm+nΔLT )
.

As done in [12], we can obtain

vec
(
ΔLT )

=
(
L⊗ J−1

m+n

)
Mup

(
(LJm+n)T ⊗L−1 +

(
L−1⊗ (Jm+nL

T )
)

Π(m+n)(m+n)
)
vec(E)

+
(
L⊗ J−1

m+n

)
Mup

(
L−1 ⊗L−1)vec

(
ELJm+nL

T ET −ΔLJm+nΔLT )
. (3.5)

and show that (3.5) is equivalent to

uvec
(
ΔLT )

= Muvec
(
L⊗ J−1

m+n

)
Mup

((
(LJm+n)T ⊗L−1)+

(
L−1⊗ (Jm+nL

T )
)

Π(m+n)(m+n)
)
vec(E)

+Muvec
(
L⊗ J−1

m+n

)
Mup

(
L−1 ⊗L−1)vec

(
ELJm+nL

T ET −ΔLJm+nΔLT )
. (3.6)
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As an issue of comfort, let

GL = Muvec
(
L⊗ J−1

m+n

)
Mup

((
(LJm+n)T ⊗L−1)+

(
L−1⊗ (Jm+nL

T )
)

Π(m+n)(m+n)
)
,

HL = Muvec
(
L⊗ J−1

m+n

)
Mup

(
L−1⊗L−1) .

Thus, applying the operator ‘uvec† ’ to (3.6) leads

ΔLT = uvec† (
GLvec(E)+HLvec

(
ELJm+nL

T ET −ΔLJm+nΔLT ))
.

The above equation can be written as an operator equation for ΔLT :

ΔLT = Φ
(
ΔLT ,E

)
= uvec† (

GLvec(E)+HLvec
(
ELJm+nL

T ET −ΔLJm+nΔLT ))
. (3.7)

We will execute the technique of Lyapunovmajorant function and the Banach fixed
point theorem to probe the rigorous perturbation bounds for ΔLT based on the operator
equation (3.7) as done in [12]. To make it easy and clear for readers and for plenum of
the method, we comprehend the detail process here through some steps which are same
as in [12].

Assume that Z ∈ R
(m+n)×(m+n) is upper triangular with the same structure as that

of ΔLT , ‖Z‖F � ρ for some ρ � 0, and ‖E‖F = δ . Then it follows from the definition
of the operator ‘uvec† ’ and (2.1) that

‖Φ(Z,E)‖F � ‖GL‖2δ +‖L‖2
2‖HL‖2δ 2 +‖HL‖2ρ2. (3.8)

From (3.8), we have the Lyapunov majorant function of the operator equation (3.7)

h(ρ ,δ ) = ‖GL‖2δ +‖L‖2
2‖HL‖2δ 2 +‖HL‖2ρ2

and the Lyapunov majorant equation

h(ρ ,δ ) = ρ , i.e., ‖GL‖2δ +‖L‖2
2‖HL‖2δ 2 +‖HL‖2ρ2 = ρ . (3.9)

Assume that δ ∈ Ω =
{

δ � 0 : 1−4‖HL‖2

(
‖GL‖2δ +‖L‖2

2‖HL‖2δ 2
)

� 0
}

. Then,

the Lyapunov majorant equation (3.9) has two nonnegative roots: ρ1 (δ ) � ρ2 (δ ) with

ρ1 (δ ) = f (δ ) =
2
(
‖GL‖2δ +‖L‖2

2‖HL‖2δ 2
)

1+
√

1−4‖HL‖2

(
‖GL‖2δ +‖L‖2

2‖HL‖2δ 2
) .

Let the set B(δ ) be

B(δ )= {Z ∈R
(m+n)×(m+n) : Having the same structure as that of ΔLT and ‖Z‖F � f (ρ)},

which is closed and convex. We can check that the operator Φ(·,E) maps the set B(δ )
into itself and for Z, Z̃ ∈ B(δ ) ,∥∥Φ(Z,E)−Φ

(
Z̃,E

)∥∥
F � h′ρ ( f (δ ) ,δ )

∥∥Z− Z̃
∥∥

F .



140 A. FAROOQ, M. SAMAR, H. LI AND C. MU

Since the derivative of the function h(ρ ,δ ) relative to ρ at f (δ ) satisfies

h′ρ ( f (δ ) ,δ ) = 1−
√

1−4‖HL‖2

(
‖GL‖2δ +‖L‖2

2‖HL‖2δ 2
)

< 1

when δ ∈ Ω1 =
{

δ � 0 : 1−4‖HL‖2

(
‖GL‖2δ +‖L‖2

2‖HL‖2δ 2
)

> 0
}

. Then the op-

erator Φ(·,E) is contractive on the set B(δ ) for δ ∈ Ω1 . Thus, from the Banach fixed
point theorem, we have that the operator equation (3.7), i.e., the matrix equation (3.1),
has a unique solution in the set B(δ ) . As a result,

∥∥ΔLT
∥∥

F � f (δ ) for δ ∈ Ω1 . In
summary, we have the following main theorem.

THEOREM 3.1. Suppose that K ∈ R
(m+n)×(m+n) is defined by (1.1) and has the

factorization (1.2). Let Q = Im+n +E ∈ R
(m+n)×(m+n) . If

‖HL‖2

(
‖GL‖2‖E‖F +‖L‖2

2‖HL‖2 ‖E‖2
F

)
<

1
4
, (3.10)

then K̃ = QKQT has the unique generalized Cholesky factorization

K̃ = QKQT = (L+ ΔL)Jm+n(L+ ΔL)T ,

and

‖ΔL‖F �
2
(
‖GL‖2‖E‖F +‖L‖2

2‖HL‖2 ‖E‖2
F

)
1+

√
1−4‖HL‖2

(
‖GL‖2‖E‖F +‖L‖2

2‖HL‖2 ‖E‖2
F

) (3.11)

� 2
(
‖GL‖2‖E‖F +‖L‖2

2‖HL‖2 ‖E‖2
F

)
(3.12)

< (‖L‖2 +2‖GL‖2)‖E‖F . (3.13)

Proof. It is anything but difficult to see that the condition (3.10) is the same as the
one in Ω1 . Thus, from the discussions before “Theorem 3.1.” , it suffices to obtain the
bound (3.13). This can be done by noting (3.12) and the fact

2‖L‖2‖HL‖2‖E‖F �
√

1+
‖GL‖2

2

‖L‖2
2

− ‖GL‖2

‖L‖2
< 1. (3.14)

which can be derived from (3.10). �

REMARK 3.1. In [10], by composite of the classic and refined matrix equation
approaches, the following rigorous multiplicative perturbation bound was obtained,

‖ΔL‖F

‖L‖2
� (

√
3+

√
6) inf

Dm+n∈Dm+n

√
1+ ζ 2

Dm+n
κ(Dm+nL

−1)‖Q− Im+n‖F . (3.15)
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under the condition

κ(L)‖E‖F < (
√

6−2)/2. (3.16)

In the accompanying, we will demonstrate that the bound (3.13) is sharper than (3.15).
Actually, like the evidence of Corollary 3.4 in [15], for any Dm+n ∈ Dm+n and X ∈
R

(m+n)×(m+n) , using (2.13), (2.12), (2.11) and (2.1), we have

‖GL‖2 =
∥∥Muvec (L⊗Jm+n)

(
D−1

m+n⊗Im+n
)
(Dm+n⊗Im+n)M1

∥∥
2 with

M1 =Mup

(
(LJm+n)T⊗L−1+

(
L−1⊗(Jm+nL

T )
)
Π(m+n)(m+n)

)
=

∥∥Muvec
(
(LD−1

m+n)⊗ Jm+n
)
Mup

((
(Dm+n(LJm+n)T )⊗L−1)+M2

)∥∥
2 with

M2 =
(
(Dm+nL

−1)⊗ (Jm+nL
T )

)
Π(m+n)(m+n)

�
∥∥LD−1

m+n

∥∥
2

∥∥Mup
((

(Dm+n(LJm+n)T )⊗L−1)+M2
)∥∥

2

=
∥∥LD−1

m+n

∥∥
2 max
‖vec(X)‖2=1

∥∥Mup
((

(Dm+n(LJm+n)T )⊗L−1)+M2
)
vec(X)

∥∥
2. (3.17)

Whereas, combining (2.10), (2.2), (2.4), (2.5) and (2.1) gives

max
‖vec(X)‖2=1

∥∥Mup
((

(Dm+n(LJm+n)T )⊗L−1)+M2
)
vec(X)

∥∥
2

= max
‖vec(X)‖2=1

∥∥Mupvec
(
Jm+nL

T XT L−T Dm+n +L−1XLJm+nDm+n
)∥∥

2

= max
‖vec(X)‖2=1

∥∥vec
(
up

(
Jm+nL

T XTL−T Dm+n +D−1
m+n(Dm+nL

−1XLJm+n)Dm+n
))∥∥

2

= max
‖X‖F=1

∥∥(
up(Jm+nL

T XT L−T Dm+n)+D−1
m+nup(Dm+nL

−1XLJm+n)Dm+n
)∥∥

F

� max
‖X‖F=1

√
1+ ζ 2

Dm+n

∥∥(Dm+nL
−1XLJm+n)T

∥∥
F

�
√

1+ ζ 2
Dm+n

∥∥Dm+nL
−1

∥∥
2 ‖L‖2 . (3.18)

Thus, plugging (3.18) into (3.17) yields

‖GL‖2 �
(

inf
Dm+n∈Dm+n

√
1+ ζ 2

Dm+n
κ

(
Dm+nL

−1))‖L‖2, (3.19)

which together with the fact κ
(
Dm+nL−1

)
� 1 shows that the bound (3.13) is indeed

tighter than (3.15).

REMARK 3.2. We can obtain the first-order multiplicative perturbation bound
from (3.11) as follows:

‖ΔL‖F � ‖GL‖2 ‖Q− Im+n‖F = ‖GL‖2 ‖E‖F . (3.20)

Considering (3.19), it is easy to see that the above first-order multiplicative perturbation
bound is tighter than the one given in [10, (2.18)].
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4. Perturbation bounds for the Cholesky-like factorization

The method of getting the rigorous multiplicative perturbation bounds for the
Cholesky-like factorization is very like the one for the generalized Cholesky factoriza-
tion. The main difference is that we will use the block matrix-vector equation approach.
Specifically, let the matrices B and R in (1.3) be perturbed as

B → STBS, R → R+ ΔR,

where S = I2n +F and ΔR is upper triangular such that R+ΔR has the same structure
as that of R. Then the perturbed Cholesky-like factorization of B is

B̃ = ST KS

(I2n +F)T K(I2n +F) = (R+ ΔR)T J2n(R+ ΔR). (4.1)

Expanding (4.1) and using (1.3), we have

RTJ2nRF +FT RTJ2nR+FT RT J2nRF = RT J2nΔR+ ΔRTJ2nR+ ΔRTJ2nΔR.

Premultipling the above equation by R−T and postmultipling it by R−1 leads to

J2nΔRR−1 +R−T ΔRTJ2n = J2nΔRR−1 +(J2nΔRR−1)T

= J2nRFR−1 +R−TFT RT J2n +R−TFT RT J2nRFR−1

−R−T ΔRT J2nΔRR−1. (4.2)

As done in [11, 14], from (4.2), we have

J2nΔRR−1 = upb
(
J2nRFR−1 +R−TFT RTJ2n

)
+upb

(
R−T (

FT RT J2nRFR−1−R−TΔRT J2nΔR
)
R−1) . (4.3)

Applying the operator ’vecb’ to (4.3) and using (2.14) and (2.6) gives(
R−T � J2n

)
vecb(ΔR) = Mupb

((
R−T � (J2nR)

)
+

(
(J2nR)�R−T)

Π̂2n
)
vecb(F)

+Mupb
(
R−T �R−T)

vecb
(
FT RTJ2nRF −ΔRTJ2nΔR

)
.

As done in [11], we can obtain

vecb(ΔR) =
(
RT � J−1

2n

)
Mupb

((
R−T � (J2nR)

)
+

(
(J2nR)�R−T)

Π̂2n
)
vecb(F)

+
(
RT � J−1

2n

)
Mupb

(
R−T �R−T)

vecb
(
FT RT J2nRF −ΔRTJ2nΔR

)
.
(4.4)

and show that (4.4) is equivalent to

uvecb(ΔR)

= Muvecb
(
RT � J−1

2n

)
Mupb

((
R−T � (J2nR)

)
+

(
(J2nR)�R−T)

Π̂2n
)
vecb(F)

+Muvecb
(
RT � J−1

2n

)
Mupb

(
R−T �R−T)

vecb
(
FT RT J2nRF −ΔRTJ2nΔR

)
. (4.5)
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As an issue of comfort, let

GR = Muvecb
(
RT � J−1

2n

)
Mupb

((
R−T � (J2nR)

)
+

(
(J2nR)�R−T)

Π̂2n
)
,

HR = Muvecb
(
RT � J−1

2n

)
Mupb

(
R−T �R−T)

Thus, applying the operator ‘uvecb† ’ to (4.5) leads

ΔR = uvecb† (
GRvecb(F)+HRvecb

(
FT RT J2nRF −ΔRTJ2nΔR

))
.

The above equation can be written as an operator equation for ΔR :

ΔR = Φ(ΔR,F)

= uvecb† (
GRvecb(F)+HRvecb

(
FT RT J2nRF −ΔRTJ2nΔR

))
. (4.6)

In the following, we will apply the same technique in Section 3 to study the rigor-
ous perturbation bounds for ΔR based on the operator equation (4.6). For completeness
of the method and convenience of readers, we include the detailed process here.

Suppose that Z ∈ R
2n×2n is upper triangular with the same structure as that of ΔR ,

‖Z‖F � ρ for some ρ � 0, and ‖F‖F = δ . Then it follows from the definition of the
operator ‘uvecb† ’ and (2.1) that

‖Φ(Z,F)‖F � ‖GR‖2δ +‖R‖2
2‖HR‖2δ 2 +‖HR‖2ρ2. (4.7)

From (4.7), we have the Lyapunov majorant function of the operator equation (4.6)

h(ρ ,δ ) = ‖GR‖2δ +‖R‖2
2‖HR‖2δ 2 +‖HR‖2ρ2

and the Lyapunov majorant equation

h(ρ ,δ ) = ρ , i.e., ‖GR‖2δ +‖R‖2
2‖HR‖2δ 2 +‖HR‖2ρ2 = ρ . (4.8)

Assume that δ ∈ Ω =
{

δ � 0 : 1−4‖HR‖2

(
‖GR‖2δ +‖R‖2

2‖HR‖2δ 2
)

� 0
}

. Then,

the Lyapunov majorant equation (3.7) has two nonnegative roots: ρ1 (δ ) � ρ2 (δ ) with

ρ1 (δ ) = f (δ ) =
2
(
‖GR‖2δ +‖R‖2

2‖HR‖2δ 2
)

1+
√

1−4‖HR‖2

(
‖GR‖2δ +‖R‖2

2‖HR‖2δ 2
) .

Let the set B(δ ) be

B(δ ) = {Z ∈ R
2n×2n : Having the same structure as that of ΔR and ‖Z‖F � f (ρ)},

which is closed and convex. We can check that the operator Φ(·,F) maps the set B(δ )
into itself and for Z, Z̃ ∈ B(δ ) ,∥∥Φ(Z,F)−Φ

(
Z̃,F

)∥∥
F � h′ρ ( f (δ ) ,δ )

∥∥Z− Z̃
∥∥

F .
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Since the derivative of the function h(ρ ,δ ) relative to ρ at f (δ ) satisfies

h′ρ ( f (δ ) ,δ ) = 1−
√

1−4‖HR‖2

(
‖GR‖2δ +‖R‖2

2‖HR‖2δ 2
)

< 1

when δ ∈ Ω1 =
{

δ � 0 : 1−4‖HR‖2

(
‖GR‖2δ +‖R‖2

2‖HR‖2δ 2
)

> 0
}

. Then the op-

erator Φ(·,F) is contractive on the set B(δ ) for δ ∈ Ω1 . Thus, from the Banach fixed
point theorem, we have that the operator equation (4.6), i.e., the matrix equation (4.1),
has a unique solution in the set B(δ ) . As a result, ‖ΔR‖F � f (δ ) for δ ∈ Ω1 . In
summary, we have the following main theorem.

THEOREM 4.1. Suppose that the skew-symmetric matrix B∈R
(2n)×(2n) is defined

by (1.1) and has the factorization (1.2). Let S = I2n +F ∈ R
(2n)×(2n) . If

‖HR‖2

(
‖GR‖2‖F‖F +‖R‖2

2‖HR‖2 ‖F‖2
F

)
<

1
4
, (4.9)

then B̃ = STBS has the unique Cholesky-like factorization

B̃ = STBS = (R+ ΔR)T J2n(R+ ΔR),

and

‖ΔR‖F �
2
(
‖GR‖2‖F‖F +‖R‖2

2‖HR‖2 ‖F‖2
F

)
1+

√
1−4‖HR‖2

(
‖GR‖2‖F‖F +‖R‖2

2‖HR‖2 ‖F‖2
F

) (4.10)

� 2
(
‖GR‖2‖F‖F +‖R‖2

2‖HR‖2 ‖F‖2
F

)
(4.11)

< (‖R‖2 +2‖GR‖2)‖F‖F . (4.12)

Proof. It is anything but difficult to see that the condition (4.9) is the same as the
one in Ω1 . Thus, from the discussions before “Theorem 4.1.”, it suffices to obtain the
bound (4.12). This can be done by noting (4.9) and the fact,

2‖R‖2‖HR‖2‖F‖F �
√

1+
‖GR‖2

2

‖F‖2
2

− ‖GR‖2

‖R‖2
< 1. � (4.13)

REMARK 4.1. In [10], by composite of the classic and refined matrix equation
approaches, the following rigorous multiplicative perturbation bound was obtained,

‖ΔR‖F

‖R‖2
� (

√
3+

√
6) inf

D2n∈D2n

√
1+ ζ 2

D2n
κ(D−1

2n R)‖S− I2n‖F . (4.14)

under the condition

κ(R)‖F‖F < (
√

6−2)/2. (4.15)
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In the accompanying, we will demonstrate that the bound (4.12) is sharper than (4.14).
Actually, like the evidence of Corollary 3.4 in [15], for any D2n ∈ D2n and X ∈
R

(2n)×(2n) , using (2.17), (2.16), (2.15) and (2.1), we have

‖GR‖2 =
∥∥∥Muvecb

(
RT � J−1

2n

)(
D−1

2n � I2n
)(

D2n � I2n

)
M3

∥∥∥
2

with

M3 = Mupb
((

R−T � (J2nR)
)
+

(
(J2nR)�R−T)

Π̂2n
)

=
∥∥Muvecb

(
(RT D−1

2n )� J−1
2n

)
Mupb

((
(D2nR

−T )� (J2nR)
)
+

(
(D2nJ2nR)�R−T)

Π̂2n
)∥∥

2

�
∥∥RT D−1

2n

∥∥
2

∥∥Mupb
((

(D2nR
−T )� (J2nR)

)
+

(
(D2n(J2nR))�R−T)

Π̂2n
)∥∥

2

=
∥∥RT D−1

2n

∥∥
2 max
‖vecb(X)‖2=1

∥∥Mupb
((

(D2nR
−T )� (J2nR)

)
+M4

)
vecb(X)

∥∥
2 (4.16)

with
M4 =

(
(D2n(J2nR))�R−T)

Π̂2n.

Whereas, combining (2.14), (2.6), (2.8), (2.9) and (2.1) gives

max
‖vecb(X)‖2=1

∥∥Mupb
((

(D2nR
−T )� (J2nR)

)
+

(
(D2n(J2nR))�R−T)

Π̂2n
)
vecb(X)

∥∥
2

= max
‖vecb(X)‖2=1

∥∥Mupbvecb
(
J2nRXR−1D2n +R−TXTRT JT

2nD2n
)∥∥

2

= max
‖vecb(X)‖2=1

∥∥vecb
(
upb

(
J2nRXR−1D2n +D−1

2n (J2nRXR−1D2n)T D2n
))∥∥

2

= max
‖X‖F=1

∥∥upb(J2nRXR−1D2n)+D−1
2n upb(J2nRXR−1D2n)T D2n

∥∥
F

� max
‖X‖F=1

√
1+ ς2

D2n

∥∥J2nRXR−1D2n
∥∥

F

�
√

1+ ς2
D2n

∥∥R−1D2n
∥∥

2 ‖R‖2 . (4.17)

Thus, plugging (4.17) into (4.16) yields

‖GR‖2 �
(

inf
D∈D2n

√
1+ ς2

D2n
κ

(
D−1

2n R
))‖R‖2, (4.18)

which together with the fact κ
(
D−1

2n R
)
� 1 shows that the bound (4.12) is indeed tighter

than (4.14).

REMARK 4.2. The first-order multiplicative perturbation bound from (4.10) can
be chalk out as under:

‖ΔR‖F � ‖GR‖2 ‖S− I2n‖F = ‖GR‖2 ‖F‖F . (4.19)

Considering (4.18), it is easy to see that the above first-order multiplicative perturbation
bound is tighter than the one given in [10, (3.16)].
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5. Numerical examples

Two examples are given in this segment to represent the outcomes inferred in the
over two areas. Hereafter, the MATLAB notation will be utilized. For the first ex-
ample, like the done in [2], we select the accompanying scaling matrix Dm+n = Dc ≡
diag(‖L(:, i)‖2) , which makes the condition number κ(Dm+nL−1) be nearly minimum.
Our numerical experiments additionally propose that another choice for scaling matrix
may give a decent estimate, that is, choosing De = diag(δ1,δ2, . . . ,δm+n) to approxi-
mately equilibrate the rows of DrL−1 . To do this, take δ1 = 1/

∥∥(DrL−1)(1, :)
∥∥

2 , then
for j = 2,3, . . . ,m+n take δ j = 1/

∥∥(DrL−1)( j, :)
∥∥

2 if∥∥(DrL
−1)( j, :)

∥∥
2 �

∥∥(DrL
−1)( j−1, :)

∥∥
2 ;

otherwise δ j = δ j−1 . Here Dr =diag(‖L(:, i)‖1) and ‖X‖1 denotes the 1-norm of X.
More on techniques and clarifications of picking the scaling matrices can be found in
[2]. For the second example, we choose the scaling matrices Dr and De as done in
[11]. That is, for Dr , we set its i-th 2×2 main diagonal block to be

‖R(2i−1, :)‖2 +‖R(2i, :)‖2

2
I2, i = 1, . . . ,n,

and for De , we characterize it as follows:

δ1 =
2

‖(DcR(:,1)‖2 +‖(DcR)(:,2)‖2
;

for j = 2,3, . . . ,n :

δ j =
2

‖(DcR)(:,2 j−1)‖2 +‖(DcR)(:,2 j)‖2
;

if

‖(DcR)(:,2 j−1)‖2+‖(DcR)(:,2 j)‖2 � ‖(DcR)(:,2 j−3)‖2+‖(DcR)(:,2 j−2)‖2 ;

otherwise, δ j = δ j−1 . Here Dc = diag((‖(DcR)(:,2 j−1)‖2 + ‖(DcR)(:,2 j)‖2))/2I2,
j = 1, . . . ,n, .

EXAMPLE 5.1. This example has been taken and unraveled by algorithm given in
[20]. That is, we take Am = [ai j] = Hm + Im ∈ R

m×m, where Hm = 1
i+ j−1 is an m×m

Hilbert matrix. Also take B = [bi j] = [max(i, j)] ∈ R
n×m and Cn = [ci j] = UnσnUn ∈

R
n×n , where Un = In − 2

wT w
wwT with w = (1 : n)T , and σn = diag(1,2, . . . ,n−1,0) .

Upon computation in MATLAB Ra2016 on PC, with machine precision 2.2× 10−16 ,
we have the numerical results for different values of m and n shown in Table 1.

In Table 1, we denote

γ = (‖L‖2 +2‖GL‖2) , γ(Dx) = (
√

3+
√

6)
√

1+ ζ 2
Dm+n

κ(Dm+nL
−1)‖L‖2, x = c or e,
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and tγ and tγ(Dx) the time costing for figuring γ and γ(Dx) , respectively.

From Table 1, it is anything but difficult to see that the bound (3.13), the column
denoted by γ , is constantly more sharper than (3.15), the column denoted by γ(Dx) ,
regardless of which scaling matrix is chosen. In the interim, we can likewise observe
that it is without a doubt more costly to gauge the bound (3.15); think about the column
denoted by tγ and tγ(Dx) .

Table 1: Comparison of multiplicative rigorous perturbation bounds (3.13) and (3.15).
m, n γ tγ γ(Dc) tγ(Dc) γ(De) tγ(De)
2,2 15.3506 0.345051 116.8539 0.204960 258.4705 0.313993
4,3 107.4681 0.352381 1.1056e+03 0.209144 4.4447e+03 0.309875
5,3 195.5623 0.405021 2.0708e+03 0.207219 1.0906e+04 0.326690
10,9 4.6491e+03 0.385043 6.1565e+04 0.211413 8.9710e+05 0.323771
11,10 6.8824e+03 0.423454 9.3648e+04 0.209297 1.5460e+06 0.336801
15,13 2.1999e+04 0.711031 3.2805e+05 0.196419 7.8187e+06 0.316718

EXAMPLE 5.2. Let R ∈ R
(2n)×(2n) be a Kahan-like matrix:

R = diag(I2,S,S2, . . . ,Sn−1)

⎡⎢⎢⎢⎣
1 −c · · · −c

1 · · · −c
. . .

...
1

⎤⎥⎥⎥⎦
where S = diag(s,s) with s = sin(θ ) , and c = cos(θ ) . The numerical results for n =
3,4,5,6,8,10 with θ = π

8 are shown in Table 2.
In Table 2, we denote

γ = (‖R‖2 +2‖GR‖2) , γ(Dx) = (
√

3+
√

6)
√

1+ ζ 2
D2n

κ(D−1
2n R)‖R‖2, x = r or e.

Table 2: Comparison of multiplicative rigorous perturbation bounds (4.12) and (4.14) for the
2n×2n Kahan-like matrices.

n γ tγ γ(Dr) tγ(Dr ) γ(De) tγ(De)
3 18.6161 0.148354 407.7249 0.120412 501.8577 0.125007
4 30.2781 0.155032 2.1505e+03 0.128087 2.6386e+03 0.129356
5 49.1837 0.211037 1.0582e+04 0.170354 1.2752e+04 0.197575
6 74.0051 0.228509 4.9358e+04 0.176780 5.8332e+04 0.218767
8 159.4854 0.329462 9.6622e+05 0.178909 1.1050e+06 0.289606
10 326.7863 0.351635 1.7318e+07 0.205004 1.9335e+07 0.291463

From Table 2, it is easy to see that the bound (4.12), the column marked by γ , is
always tighter than (4.14), the columns marked by γ(Dx) , no matter which scaling ma-
trix is selected. Meanwhile, we can also see that it is indeed more expensive to estimate
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the bound (4.14); compare the columns marked by tγ and tγ(Dx) . Facilitate increasingly
these bounds are constantly more keen at that point the those bounds displayed in [11,
Table 1] for additive perturbation bounds in light of the fact that here matrix is seriously
ill condition so multiplicative perturbation bounds are useful to acquire the more keen
bound.
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