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MONOTONICITY OF THE JENSEN FUNCTIONAL
FOR f— DIVERGENCES WITH APPLICATIONS
TO THE ZIPF-MANDELBROT LAW

NEDA LOVRICEVIC*, DILDA PECARIC AND JOSIP PECARIC

(Communicated by J. Jaksetic)

Abstract. The Jensen functional in its discrete form is brought in relation to the Csiszdr diver-
gence functional via its monotonicity property. Thus deduced general results branch into spe-
cific forms for some of the well known f— divergences, e.g. the Kullback-Leibler divergence,
the Hellinger distance, the Bhattacharyya coefficient, y>— divergence, total variation distance.
Obtained comparative inequalities are also interpreted in the environment of the Zipf and the
Zipf-Mandelbrot law.

1. Introduction and preliminaries

In the monograph [13, p. 717] J. E. Pecari¢ investigated the monotonicity property
of the Jensen functional which is derived by subtracting the left from the right hand side
of the discrete Jensen inequality. Using Jensen’s inequality and its reverse he proved
that for a convex function f on an interval I C R and for x = (x1,...,x,) € I", n > 2,
and positive n-tuples p and q such that p>q, (i.e. p;>¢q;, i=1,...,n) the following
relation holds:

n

n 1 n n 1
2pif) = Pf | 5 2 pii | 2 X aif (i) = Ouf g 2|20 ()
i=1 nij=1 i=1 ni=1

where P, =Y pi, On=21"14i-

Inequalities (1) serve as a starting point when presenting new comparative inequal-
ities for some of the most common f— divergences which measure the distance be-
tween two probability distributions. Although f— divergences were studied by several
mathematicians, here we focus on Csiszdr’s approach [1, 2]. The Csiszdr divergence
functional is defined by

Dy(r,s) = 3 s.f (g) , @)
i=1 i
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where r = (ry,...,r,) and s = (sy,...,s,) are positive real n—tuples and f: (0,00) —
R is a convex function.

The Csiszar divergence functional (2) may also be defined for nonnegative real n— tuples
r and s with undefined expressions interpreted as

. 0 a ) a
o (Y en (o ma(s) oo
or even in a more general setting where f: I — R, I C R. Still, in all of the results in
the sequel we focus on positive real n—tuples r and s in definition (2).

Furthermore, Csiszar divergence functional (2) can be interpreted for special choices
of the kernel function f. Thus in the case of positive probability distributions r and s,
thatis r;, s; € (0,1], for i=1,...,n with 3, ri =X | s; = | itassumes special forms
which we recognize as some well known divergences.

The Kullback-Leibler divergence (see [5], [6], [7]) for positive probability distri-

butions r = (ry,...,r,) and s = (sy,...,s,) is defined by
KL(r,s) := Zrilogﬁ. (3)
i=1 Si

In the sequel we analyze results for the logarithm function for different positive bases
and distinguish the cases for the bases greater and less than 1.

The Hellinger distance between positive probability distributions r = (ry,...,r,)
and s = (s1,...,s,) is defined by

hir.s) = \%,/gm—m? o)

The Hellinger distance is a metric and is often used in its squared form, i.e. as h*(r,s) :=
1 2
22 (VA= VE)

The Bhattacharyya coefficient is an approximate measure of the amount of over-
lapping between two positive probability distributions and as such can be used to deter-
mine their relative closeness. It is defined as

n
B(I‘,S) = Zy/r,-s,-. (5)
i=1
Furthermore, )(2 (chi-square) divergence is defined as
n 2
ri —8;
X (r,s) = 2—( — ) (6)
1

i=1
and the total variation distance or statistical distance is given by

n

V(r,s):= Y |ri—si- (7

i=1
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One of the overviews of f— divergences is given e.g. in [3].

Generalized comparative inequalities on f— divergences that we obtained here
are also observed in the context of the Zipf-Mandelbrot law and then specified for the
Zipf law.

Philologist George Kingsley Zipf (1902-1950) studied statistical occurrences in differ-
ent languages and concluded that, if words of a language were sorted in the order of
decreasing frequencies of usage, a word’s frequency was inversely proportional to its
rank or sequence number in the list [12]. Thus the most frequent word will occur ap-
proximately twice as often as the second most frequent word, three times as often as
the third most frequent word etc. It was one of the first academic studies of word fre-
quency and was originally prescribed only for linguistics. It was only later that many
other disciplines took credit of it: the Pareto law in economy reveals another aspect of
it and the “Zipfian distribution” is present in other fields as well: information science,
bibliometrics, social sciences etc.

Benoit Mandelbrot (1924-2010) generalized the Zipf law in 1966 [10, 11] and gave its
improvement for the count of the low-rank words [14]. It is also used in information
sciences for the purpose of indexing [4, 16], in ecological field studies [15] and has its
role in art when determining the esthetics criteria in music [9]. The Zipf-Mandelbrot
law is a discrete probability distribution and is defined by the following probability
mass function:

1
7Na ) e ——— .:la"'aNa 8
JE:N,v,w) R (8)
where
N
H, = 9
N,y,w kg,l (k—|—W)V ( )

is a generalization of a harmonic number and N € {1,2,...}, v> 0 and w € [0,0) are
parameters.
For finite N and for w = 0 the Zipf-Mandelbrot law is simply called the Zipf law. (In
particular, if we observe the infinite N and w = 0 we actually have the Zeta distribu-
tion.)
According to the expressions above, the probability mass function referring to the Zipf
law is

Jo1
where Hy, = kzl o

fN,Y) =

10
T (10)

that is, out of population of N elements the frequency of elements of rank i is f (i;N,v),
where v is the value of the exponent that characterizes the distribution.

Our paper provides the main inequalities via (1) for the Csiszar divergence func-
tional (2) and its derived special divergences (in Section 2) and the further analysis of
the results obtained therein in the light of the Zipf-Mandelbrot law and the Zipf law
(in Section 3). Furthermore, results that are presented here generalize for the most part
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the results previously obtained in [8]. Therefore the bounds for the divergences pro-
vided in [8] become the special cases of the more general results obtained here, which
is repeatedly accentuated throughout the paper.

2. Main results on f— divergences

Monotonicity property (1) of the discrete Jensen functional and the Csiszdr diver-
gence functional (2) are integrated in the following two theorems.

THEOREM 1. Let f: (0,00) — R be a convex function and v = (ry,...,r,) and
S = (81,...,8,) be positive real n—tuples such that R, =Y} ri, Sy = X1, si. Suppose
t=(t1,...,t,) and w= (uy,...,u) are positive real n—tuples such that T, = ¥ t;
and Un—z, (i If si > u,,forl—l .n, then

R, ! i R i
Ds(r,s) = Spf (S_> + Y uif (:—) —Unf (U_ ZmZ—) . (11)
n i=1 ! Mi=1 ™!

If si<tj, fori=1,...,n, then

Rn n ri 1 & ri
Dy(r,s) <Suf | — |+ 2tf | = ) —Tuf | = 26— |- (12)
Sn i—1 Si Tn i=1 Si
If f is a concave function, then reverse inequalities hold in (11) and (12).

Proof. Inequality (11) follows directly from (1) if x; is replaced by " and pi by
Si
s;, regarding definition (2) of the Csiszdr functional D¢(r,s).

Inequality (12) follows directly from (1) if x; is replaced by fi and ¢; by s;, regarding
s

definition (2) of the Csiszar functional Dy(r,s).
Inequalities change their signs in case of concavity of the function f as a consequence
of the Jensen inequality implicitly included. [J

REMARK 1. Inequalities (11) and (12) are a generalization of specific bounds for
the Csiszar functional (2) that were previously obtained in [8]. Namely, by means of
simultaneous inserting the constant n—tuples u and t into inequalities (11) and (12),

where components u; =up =+ =u, = nllin {si}andty =tr=--- =1, = _max {si},
i=1,...n

kM 7"

we get the following bounds as in [8]:

sor () s 1 (S5 (%) s (1£2) ) 5 e
> nf< ) o+ min {si} (éf (%) —nf(%é%)) . (13)
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The (convex) function in the second general theorem is adjusted to some specific pur-
poses in the sequel.

THEOREM 2. Let f: (0,00) — R be such that t — tf(t) is a convex function.
Assume v = (r1,...,r,) and s = (s1,...,8,) to be positive real n—tuples such that
Ry, =3 ri, Sp =2} si. Suppose t = (t1,...,t,) and w= (uy,...,u,) are positive
real n—tuples such that T, =Yt and U, =37 u;. If s; > u;, fori=1,...,n, then

Dldf(rs)>R,,f< >+iu,ri_ () (2#) (2{#) (14)

If si<t, fori=1,...,n, then

woneas(®) 50 (5 5) o

n .
where Dig.p(r,s) := Y rif <ﬁ> .
i=1 Si
Ift — tf(t) is a concave function, then reverse inequalities hold in (14) and (15).

Proof. Inequality (14) follows directly from (1) for convex function 7 — 7 f(z) if
x; is replaced by :—' and p; by s;, regarding definition (2) of the Csiszar functional.
Inequahty (15) follows directly from (1) for convex function 7 +— ¢ f(¢) if x; is replaced
by —l and ¢; by s;, regarding definition (2) of the Csiszar functional.

Inequahties change their signs in case of concavity of the function f as a consequence
of the Jensen inequality implicitly included. [J

REMARK 2. Inequalities (14) and (15) are a generalization of specific bounds for
the functional D;4.f(r,s) that were previously obtained in [8]. Namely, by means of
simultaneous inserting the constant n—tuples u and t into inequalities (14) and (15),

where components u] =up =+ = u, = nlnn {si}andty =tr=--- =1, = max {si},
seenll i=1,..,n

we get the following bounds as in [8]:
< Ti (T < i
nf< ) + max {s;} (Zl o (s—) —I_le—l_f<
P nf( >—|— min {Sz <Zrlf<rl)_iﬁf<liﬁ>> (16)
~~~~~ Si =15 \"iDSi

In the following corollary functional D;4.¢(r,s) assumes a specific role which pre-
cedes that of the Kullback-Leibler divergence (3).
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COROLLARY 1. Letr, s, t and u be as in Theorem 2. If s; > u;, fori=1,...,n,
then

Zr,log >RlogS—+Zul log——<2ul )log(iiuiﬁ>7 17)
: Si U”i:l Si

i=1 sl sl 1

where the logarithm base is greater than 1.
If s; <t, fori=1,...,n, then

n . 1 n .
Zrllog <R, log— Ztl _ - (Z{i—i)log (E;tlﬁ>7 (18)

i=1 l 1

where the logarithm base is greater than 1.
If the logarithm base is less than 1, then reverse inequalities hold in (17) and (18).

Proof. Follows from Theorem 2 for the function 7 — #log¢ which is convex when
the logarithm base is greater than 1 and is concave when the logarithm base is less than
1. O

REMARK 3. When we put constant n—tuples u and t into (17) and (18) with

components uy; =uy = -+ = U, = nlnn {sitand ty =tr =+ =1, = max {s,} we
i= =1,...,n

get as a special case the inequalities previously obtained in [8]:

Ry, L - ¢ 1 & - ;
RnlogS—+‘nllax {si} (2:_10g:_— r_log<—2£>> >Zr,-log:—
n i=1,...n ; . . ~ s “~ .

2ty

i=15i i =15 i Si i=1 i
R, . N T T 1 & r
> R, log — min {s; —log—— ) —log| - ) — 19
- gSn+i=1.,....,n{Sl} (;{Si gSi s & n;si ' (19)

where the logarithm base is greater than 1. If the logarithm base is less than 1, then the
inequality signs are reversed.

REMARK 4. In case of positive probability distributions r and s, i.e. r;, s; €
0,1], X' yri=X",si =1, where t and u are as in Theorem 2, we actually deal
with the Kullback-Leibler divergence KL(r,s) defined by (3). Hence if s; > u;, for
i=1,...,n we have

/! ! i 1 & i
L(r,s) ul ui— |log| — » ui— |, (20)
1121 i Sz (,z{ Si) g (Un Z{ Si)

where the logarithm base is greater than 1.
If s; <t;, fori=1,...,n, then

y S 17 | tog [ L34 21
o< 3o (30 o (£302) @
=1 Si i—1 S ni—y Si
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where the logarithm base is greater than 1. If the logarithm base is less than 1, then
reverse inequalities hold in (20) and (21).

Furthermore, inequalities (20) and (21) generalize specific bounds for the Kullback-
Leibler divergence which were previously obtained in [8]. Namely, by means of simul-
taneous inserting the constant n—tuples u and t into inequalities (20) and (21), where
components uy =upy = -+ = u, = min {s,} andtj =th=--=t, = i_nllaxn{s,-}, we

get the following bounds as presented in [8].

“ ri ri “ ri 1 “ ri
; Zlog=L =Y Zlog[ =Y 2| | > KL(r,
-“?f.‘.’fn{s}<2s. og=—2, = 0g< > )) (r.s)

i i=1 i iinsi sy Si
n 1 & r;
2 1 . —1 —_— —1 - ) 22
pin, tsi} (2 LR g<z>> -

where the logarithm base is greater than 1. If the logarithm base is less than 1, then the
inequality signs are reversed.

In the sequel we provide similar results for other divergences mentioned in Preliminar-
ies: Hellinger distance (4), Bhattacharyya coefficient (5), chi-square distance (6) and
total variation distance (7).

COROLLARY 2. Letr, s, t and u be as in Theorem 1. If s; > u;, fori=1,...,n,
then

2 ) 2
1& 2 Sn R, 1 & ri U, 1 & ri
— i—\/Si)" = — ——1 — i —=1) —— 7—1 .
s vA-vars g (5-1) 5 Ba( |/ (g

If si<tj, fori=1,...,n, then

Somem <2 () () 5

Proof. Follows from Theorem 1 for the convex function ¢ — 1 (/7 — 1)2 . O

REMARK 5. Certain bounds formerly obtained in [8] can now be deduced from
more general inequalities (23) and (24):
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by means of constant n—tuples u and t, where u; =uy = --- = u, = nllin {si} and
i=1,...,n

H=th= =1, = nllax {si}.

i=1,...,

REMARK 6. If r and s are observed as positive probability distributions and t and
u are as in Theorem 1, then inequalities (23) and (24) concern the Hellinger distance
h(r,s). Thus for s; > u;, i=1,...,n

hz(r,s)>%i21uf<\/:j;—l>2 Un (,/ zul——l>2. (26)

Ifs;<t, i=1,...,n, then

2
2
1 T T, 1 & g
h? <Nl /2-1) =2 =Nt -1 . 27
) 2,; ( Si ) 2<VTnizi Si ) er

Furthermore, inequalities (26) and (27) generalize by means of the constant n— tuples
wand t, with uy =up = --- = u,, = nllin {si}and ty =t =--- =1, = nllax {si}
I

=l,..n - =l

specific bounds for the Hellinger distance which were previously obtained in [8]:

2
1 < ri : [1$ 2
Eifll,z.l.).(,n{Si} ;{(ﬁ—l) —n( ;2——1) > h"(r,s)
> L min sy (3 /51 C liﬁ 28)
- 2i=l1,..n ! = S; n:= 51
>

COROLLARY 3. Let r, s, t and u be as in Theorem 1. If s;
then

ui, fori=1,...,n,

n n 7 n 7
_Z\/VisiZ_\/RnSn_zuiq/S_l_"‘“UnZuis_l‘- (29)
i=1 i=1 i =1 Si

If si<tj, fori=1,...,n, then

n n R n .
—2,/—rl-s,-g—\/RHSH—ZzM/§+,/T,,Zt,-:—’. (30)
i=1 i=1 i i=1 °i

Proof. Follows from Theorem 1 for the convex function ¢ — —+/t. [0

REMARK 7. Incase of u; =up = -+~ = u, = nlnn {si}and ty =tr=---=1t, =

i=1,...,
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> min {s;} (anﬁ—z ﬁ)—\/RnSn, 31
i=1,...n Py S; P Si

which were obtained in [8] due to a less general approach.

REMARK 8. For positive probability distributions r and s, where t and u are as
in Theorem 1, we actually deal with the Bhattacharyya coefficient B(r,s). Hence if
si = uj, for i=1,...,n we have

B(r,s) > —1— Y /24 [U Y i 32)
i—1 Si =1 S

If s; <t;, fori=1,...,n, then

n 7 n 7
—B(r,s) < 1= tis/ =+ | T D ti—. (33)
i=1 VS i=1 Si

If we make use of constant n—tuples u and t with components u; =up =--- =
u, = min {sl} andtj=th=-=t,= 'nllax {si} and insert them into inequalities
i=1,...n

i=1,.

(32) and (3%) we get :

l—i_nllin};{s, (Q /nz Z >>B r,s)>1— max{s, (1 /nz Z ) (34)
=l i=15i =1

that is, bounds from [8] which are a special case in this more general setting.

COROLLARY 4. Let r, s, t and u be as in Theorem 1. If s; > u;, fori=1,....n,
then

2
I (r,-—s,-)z (Rn )2 1 (r,- )2 1 /! ri
L s () 4 Y (2 -1) —U =Yt —1) . (35

If si <t, fori=1,...,n, then

() 0 ] ) €5 iy P
=T l ! "illsl .

Proof. Follows from Theorem 1 for the convex function 7 — (t —1)>. [

REMARK 9. When we put constant n—tuples u and t into (35) and (36) with
components u; = up = -+ = uy = nlnn {si}and ty =t =---=1,= max {s,} we

sl

Sn<%—1>2+ max {5} i(:_i_ly_n(%iﬁ:_l)z Ziw

n
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> R”12+' : ir’ 1)2 1nr"12 (37)
Z Ip S—n— i:nilln {Sl} S—— —n Zg—— .

ol !
e i=1

REMARK 10. In case of positive probability distributions r and s, where t and u
are as in Theorem 1, we actually deal with the chi-square divergence x2(r,s) defined
by (6). Hence if s; > u;, for i =1,...,n we have

%2(r,s)>i”i<ﬁ:_l)2 ( Zu’__1>2' %)

n ) 2 n 2
xz(r,s><2zi(r—{—1) —THGE 2_1> . (39)

nilsz

Furthermore, inequalities (38) and (39) generalize specific bounds for the chi-square
divergence which were previously obtained in [8]. Namely, by means of simultaneous
inserting the constant n—tuples u and t into inequalities (38) and (39), where compo-
nents u; =up = -+ = Uy, = nlnn {si}andt)j =tp =+ =1, = _maxn{s,-}, we get the

following bounds as presented in [&]:

no/, 2 n 2
e (£(3-1) o (1E51) ) e

i=1,...n i—1 S i
n 2 n B
> min {siy | X Do) - —Zr— (40)
Timteas U\ A s n &= s '

COROLLARY 5. Let r, s, t and u be as in Theorem 1. If s; > u;, fori=1,....n,
then

ri—Si| = Sp + > u; ——1 —SNuL-1|. 1)
1121| i i 121 i i Un i=1 Si
If s; <t, fori=1,...,n, then
1 n ri
Zln si| < +Zt, Tyl Y n——1]. (42)
1, i1 Si

Proof. Follows from Theorem 1 for the convex function 7 — [t — 1|. O

REMARK 11. Certain bounds formerly obtained in [8] can now be deduced from
more general inequalities (41) and (42):

ot mos ) (2

i=1

1 & r;
pp el

i=1"t

ri
——1|—n
i

n
) > Z |ri — sil
i=1
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> s, | B 1’+ {s:} ir" 1‘ lir" 1 43)
> S| —— min {s; ——1|—n|- ) —— ,

Sn ool =i n= s
by means of constant n— tuples u and t, where components u; = uy = -+ = up, =
7nlnn {si}andtj =t =--- =1, = nllax {si}.

REMARK 12. If r and s are observed as positive probability distributions and t
and u are as in Theorem 1, then inequalities (41) and (42) concern the total variation

distance V(r,s). Thus for s; > u;, i=1,....n
! ri 1 & ri
V(rs) = Y ui|——1|—Uy|— > u——1 (44)
=1 |5 UniZp o si
If s; <t;, fori=1,...,n, then
i 1 & i
Virs) <Y 1—1‘—2, — Yt (45)
i=1 Si nj=1 Si

Furthermore, inequalities (44) and (45) generalize by means of the constant n— tuples
uand t, with uy =up = --- =u, = nlnn {si}and )y =tr =--- =1, = nllax {si}

specific bounds for the total variation distance which were previously obtained in [8]:

s 1&
; __1 — — ——1 >V )
z:HllaXn{s ) (,21 Si ‘ " ”;S" ) "
n ) 1 n :
> min {s,-}(Z%—l‘—n ;Eg_l>' (#6)
i=1,...n i=1191 i=1"1

3. Results for f— divergences via the Zipf-Mandelbrot law

If we define s; = f(i;N,v,w), for i = 1,...,N as the Zipf-Mandelbrot law prob-
ability mass functions (8) we can use a new environment to observe the previously
obtained results. When observed with the Zipf-Mandelbrot N—tuple s included, the
Csiszdr functional D (r,s) defined by (2) becomes

N
Df(l',l'7N7V2,W2 Z

(i " H 47
25w Hszwzf(rz(lJrWz) Novawn) s 47)

where f: (0,00) — R and N € N, v,,w, > 0 are parameters.
Csiszar functional (2) assumes the following form when r and s are both defined as
Zipf-Mandelbrot law N— tuples:

N . 1%)
+ Hy oo
Dy(iNviwivaw) = 307 (rwa) " ) g
’ -1 l+ W2 2[{N Vo, W0 (l + Wl) HN7V17W1
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where f: (0,00) — R and N € N, v{,vy,w|,ws > 0 are parameters.
Finally, both N—tuples r and s may be defined via the Zipf law (10) where w| =
wy = 0 and thus the Csiszar functional (2) assumes the form:

. _ N 1 V) —V] HN,VZ 4
Df(l’NthvZ)_z. f l — . (9)

S HN HNy v,

In the first case, that is for the Csiszdr functional D¢ (i, N,v,,w2,r) given as in (47) we
transform Theorem | and Theorem 2 in the following way.

COROLLARY 6. Let f: (0,00) — R be a convex function, vy,w, >0 and let r =
(r1,...,rn) be an N—tuple of positive real numbers with Ry = Zf-vzl ri. Suppose t =
(t1,...,ty) and w= (uy,...,uy) are positive real N— tuples such that Ty = YN | t; and

S W\ . . j —
Uy =" u. If (i w2 "o >u;, fori=1,...,N, then

N

Df(l',l,N V27W2) f RN +Zulf ri l+W2) Hsz,wz)
i=1

1 Y ,

—Unf (U_N N wiri(i +W2)V2HN’V2’WZ> . (50)
i=1

1

—— <t fori=1,... N, then
(l+w2)V2HN’V2’W2 ~X l?f ) )

If

Dy(r,i,N,v2,w2) < f(Rn) +thf ri(i4+w2)"2 Hy vy w,)
i=1

1 N
—Inf | == D tirili+w2) 2 Hy vy, | - (51)
IviS

If f is a concave function, then reverse inequalities hold in (50) and (51).
Suppose t — tf(t) is a convex function.

lfm}btthri:L...,N, then

Dig.¢(r,i,N,v2,w2) > Ry f (Rn) +Zulrl i+w2)2HN vy oy f (ri(i+w2) 2 Hy vy 0,

( uiri(i+wy)” HN.,V2.,W2>

f( (l+W2) HN,VQ,WQ)? (52)

where Djg.¢(x,i,N,va,wy) 1=

Q|._
||M2

M=

rif ((i+ W2)V2HN7V27W2) :

i=1
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1
(i+w2)"2HN vy w,

If <t fori=1,...,N, then

N

Diq.p(r,i,N,v2,w2) < Ry f (Ry)+ X tiri(i+w2) > Hy vy o f (rii+w2) > Hy v, 1,
i=1

N
- (Zfi”i(iJrWz)vzHN,vwvz)

i=1
><f< Ztlrl i+w2)2Hy . Wz). (53)

If t — tf(t) is a concave function, then reverse inequalities hold in (52) and (53).

Proof. Inequalities (50) and (51) lean on the proof of Theorem 1 wherein we in-

sert for s; the expression and Sy = | by the definition (8) of the

(' + W) 2I—IN vy, w2
Zipf-Mandelbrot law. Inequalities (52) and (53) follow analogously after the proof of
Theorem 2. Inequalities change their signs in the case of concavity of functions f or

t —tf(t) as a consequence of the Jensen inequality implicitly included. [

1
REMARK 13. If weput uy =up =+ =uy= min { ————— » =
et T Y f17-.-7N{<i+Wz>VZHN,vz,wz}
1 1
and simultaneously t; =tp=---=fy= max { —————
(N+W2)V2HN7V27W2 yh=h N i=1,...N (i+W2)V2HN7v27W2}
1

= into inequalities (50) and (51) we get the following bounds as a
(1 + WZ)VZHN,VQ,WQ

special case of Corollary 6. These were obtained earlier in [8]:
1

R A 2 D 7.7N7 )
FRy)+ (1 +W2)V2HN7V27W2 : f(r lche)
1
> f(Ry)+ A, 54
f( N) (N+W2)VZHN7VZ7WZ 1 ( )
N
where Aj = f(ri(i+w2)"> Hy s m,) Zrl i+w2)"2 Hy vy,

i=1
If we repeat the similar procedure with 1nequaht1es (52) and (53), we get the analogous

bounds for Djg.¢(r,i,N,v2,w»), previously obtained in [8], as well:

1 ~
A 2 Diq. r, '7N7 ’
(1 +W2)v2HN7v2,W2 ! ldf( ' 2 W2)

Ryf(RN) +

1
(N +w2)"2HN v, w,

> Ry f(Ry) + A, (55)

where

N
AL = Zri (i+W2)V2 HN7V27W2f(ri (i+W2)V2 HN7v27W2)
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N 1 N
_ (Z ri (l+ Wz)Vz HN,V27WZ> f (]V Z ri (l+ w2)\12 HN,vz,wz . (56)
i=1 i=1

In the second case, that is for the Csiszdr functional D¢ (i,N,vi,wi,v2,w2) as in (48),
we transform Theorem 1 and Theorem 2 as follows.

COROLLARY 7. Let f: (0,00) — R be a convex function and vy,vy,wi,wp > 0.
Suppose t = (11,...,tx) and w = (uy,...,uy) are positive real N—tuples such that

Iy = N, ti and Uy = N, u;. I —Zu-7 lOii—_l,...,N, then
N 2171 ! N zl*l ! f (i—|—w2)V2HN,v27w2 l
1+W2)V2HN,v2,w2>

D¢(i,N,vi,wi,v2,w2) )+ > u
7 1, W1, V2, W2 2 lf<z+w1)V1HN7vl7wl

N ; v
~Uxf (UL I PRRLEEE ZHN’”Z’W2> SNCH

NS (W) H vy

1
If ———— <t, fori=1,...,N, then
w1
N v
l+W2) 2HN.V2.W2)
i,N,vi,wi,va,wy) <—
( ; Z+W1)V1HN~,V1~,W1
1 N Z+W2 HNv w
—T _ —M . 58
Nf<T Zi (i+w leNVth %)

If f is a concave function, then reverse inequalities hold in (57) and (58).

Suppose t — tf(t) is a convex function. If >u, fori=1,...,N,

(i+ W2)V2HN~,V27W2
then

Diq.f(i,N,vi,wi,v2,w2)

l+W2 HNV2 wy <(l

+ )
; l+w1)V1HNV17W1f (
1

_ Zu (l+ Wz)vzHNWLWZ i l+ W2 HN sV2,W2 (59)
i=1 l(i“‘Wl)V'HN,Vth S+ wi)" Hy 7

1 ((i+w2)vzHN7V27W2>
(i4+w1)" HN vy '

2)V2HN~,V2~,W2)

+w
+ WI)VIHN.VI.WI

N
where Dig.¢(i,N,vi,wi,vp,Wy) := -
s ) ZI(I+W1)V‘HN,V1.,W1

1

lIf ———
¥ (1+WZ)V2HN7V27W2

<ty fori=1,....N, then

Diq.f(i, N,vi,wi,v2,w2)

+2 l+W2 Hszwz (i+W2)V2HN,V27W2
l+W1 V'HNvl w1 (i"‘Wl)leN,Vth
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i l+W2 HN ,V2,W2 f L it‘ (i+w2)vzHN7V27W2 (60)
=1 (i 4+ w1) " HN vy 0, Iv 5 l(i"‘wl)leNNth .

If t —tf(t) is a concave function, then reverse inequalities hold in (59) and (60).

Proof. Inequalities (57) and (58) follow from Theorem | when we insert the ex-
1

pressions by the definition (8) of the Zipf-

; and —
(1+W1)V1HN7V17W1 (Z+W2)VZHN7V27W2
Mandelbrot law in r; and s; respectively. Proving inequalities (59) and (60) follows
the similar procedure, only concerning the proof of Theorem 2. Inequalities change
their signs in the case of concavity of functions f or # — ¢ f(¢) as a consequence of the
Jensen inequality implicitly included. [

1
REMARK 14. Forthechoiceof uy =uy=---=uy= min { —————
! ? N i=1, {(l+w2)vzHN7vz7W2}
1
= and simultaneously t; =t = --- =ty =
(N+ w2) Hyy o, e Y

1 1

max - =
ilv"'vN{ (l +W2)V2HN~,V2~,W2 } (1 +W2)V2HN~,V2~,W2
the form of the bounds that were obtained earlier in [8] :

, inequalities (57) and (58) assume

1 .
f(1)+ (1+W2)V2HNV N A2 P Df(l,N,Vl,Wl,VQ,Wz)
sV2,W2
1
= f(1)+ Az, (61)
(1) (N+W2)V2HN7VZ7W2

l+W2 HNV W 1Y (i+W2)V2HN.v W
where A 222 ) —Nf| = n22
2T 2f< i+wr) VlHNVl Wl) / N;(i"FWl)VIHN-,Vlan
If we repeat the similar procedure with inequalities (59) and (60), we get the analogous
bounds for Djg.r(i,N,vi,wi,v2,w2), as in [8]:
1

(14+w2)2Hy v, w,

A2 = Dig.p(i,N,vi,wi,v2,w2)

f+

1

As, 62
(N+W2)V2HN7V27W2 : ( )

> f(1)+

where

N . v

2 l+W2 2HN V2,2 <(Z+W2) 2HN7v27w2>
. 4

i=1 (i+wr) IHN V1w (i+wr) IHN7V17W1

_ Z (l+ W2) 2 HN,VQ,WZ f l i (l+ W2)V2 HN7V27W2 (63)
i=1 (i+ WI)VI Hpy vy, NS+ WI)VI Hpy vy, '

i=1

Finally, when the Csiszar functional D(i,N,v{,v,) is defined as in (49), that is by
means of the Zipf law N—tuples, Theorem 1 and Theorem 2 assume the following
form.
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COROLLARY 8. Let f: (0,00) — R be a convex function and v,v; > 0. Suppose
t=(r,...,tn) and w = (uy,...,un) are positive real N— tuples such that Ty = 2?;1 ti

andUN:Zﬁlui.If >u;, fori=1,...,N, then

ivzlfj\/w2
HNV Nv
i,N,vi,v Y+ DY wif 2 2)— wii’? v —2 | (64)
( 1 2) 2 f( HN7v1 2 HN "
1 .
If "y, <t fori=1,... N, then
HNV Nv
i,N,vi,v Y f 2T 2)— i —22 | . (65)
Dy( 1,2) < lz f( Hvo, Inf Z T

If f is a concave function, then reverse inequalities hold in (64) and (65).

> uj, fori=1,...,N, then

Suppose t — tf(t) is a convex function. If -

i"2Hy ,
Dig.f(i,N,vi,v2) > +ZM1V2 Vlg::f<vz VIZZ:)
where Dig.;(i,N,vi,v2) ﬁ{ YT ( V271 g::? ) .
If iV2I;N7V2 <t, fori=1,....N, then
Du i) < )+ S e (o

ti 2 NVZ ti 2 NVZ , (67)
(2 HN W1 ) < 2 HN W1

If t —tf(t) is a concave function, then reverse inequalities hold in (66) and (67).

Proof. Similarly as in Corollary 7, inequalities (64), (65), (66) and (67) follow
from Theorem 1 by analogous steps, if we observe the probability mass functions r;
and s; as Zipf laws defined by (10). [

. 1 1
REMARK 15. FOI’I/H:’/Q:"':MN: min - = andt1:
i=1,..., i"2Hy y, N Hy y,
1
==ty = max { i Hy., } = T, inequalities (64) and (65) assume the form
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of the bounds that were obtained earlier in [8] :

1 1
A3 = D(i,N,vi,vy) > f(1)+ ——— As, 68
Hyr, 3 (i, N, vi,v) = f( )+NV2HN,VZ 3 (68)

where A3z = Ef < o= HIN. VZ) —Nf L i 2 Fny
HNy N i=1 HNy

If we repeat the similar procedure with inequalities (66) and (67), we get the analogous
bounds for Djg.r(i,N,vi,v2):

~ 1 -
A3 = Djq.r(i,N,vi,v2) =2 f(1) + ——— A3, 69
Hy y, ’ igf (BN visv2) 2 £(1) + N"2Hy , ’ ©

f)+

where

Va—V] NVZ Va—Vi HNvVZ _ \ 'V2*V1% l S V2V M
Zl Hy V1f< HNM) (;Il HN7V1>f<Ni211 HNM) 70
Following the steps from the previous section, we again accompany the general
results on f—divergence functionals defined via the Zipf-Mandelbrot law with some
special choices on kernel function f. In the sequel we observe the Kullback-Leibler
divergence (3), starting with the case where only one of two N—tuples r and s is
defined via the Zipf-Mandelbrot law (8).

COROLLARY 9. Let r be a positive probability distribution, t and u be as in

Corollary 6 and vy, wy > 0. If >u, fori=1,...,N, then

(i4+w2)2HN vy w,

N
KL(r,i,N,va,w2) = > wiri (i+w2)"> Hy vy 10, 108 (ri (i +w2)" HN vy 0 )
i=1

N
- (2 uiri (i+ W2)vz HN,V2~,W2>

i=1

1Y _

x log (— Zum (i+w)"” HN7V27W2> , (71)
Uv 5

where the logarithm base is greater than 1.

1 .
Ifm <ty fori=1,...,N, then

N
KL(r,i,N,vy,wz) < 2 i7i (1 w2)" Hy vy w, 10g (i (i +w2)" Hy v, )

i=1

N
- (Zliri (i+w2)" HN.,vz.m)
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N =1

1 N
X log (T_ Ztiri (l+ WZ)V2 HN,Vz,Wz) ) (72)

where the logarithm base is greater than 1.
If the logarithm base is less than 1, then reverse inequalities hold in (71) and (72).

Proof. Considering definition (3) of the Kullback-Leibler divergence with Ry =
Zf-vz i = 1, inequalities (71) and (72) follow from inequalities (52) and (53) of Corol-
lary 6. Namely, function ¢ — tlogt is convex when the logarithm base is greater than 1
and is concave when the logarithm base is less than 1. [

1
REMARK 16. If we put u;y =up = ---=uy = min § ————— » =
P e VoA {<i+W2>VZHN,vz,Wz }
1 .
and at the same time 1{ =, = ---f{y = max {—
(N +w2)"2 Hy v, 1, =l (i+w2)"2HN ),
1

= into inequalities (71) and (72) we get the following bounds as a
(1 + WZ)VZHN,VQ,WQ

special case of Corollary 9. These were obtained earlier in [8]:

1 1
Ak, > KL r,i,N,vy,wr As ,
(1 +w2)V2HN,V2,W2 KL ( ) (N+W2) ZHN V2,02 Kt

where

N
Akp = 271 (i w2)" Hy vy e, 10g (1 i+ w2)"? Hy i )

i=1
N 1 N

- zri(i‘FWZ)vzHNWLWz log ﬁzri(i"'wﬁvzHMVzwz - (73)
i=1 i=1

We still deal with the Kullback-Leibler divergence (3) and proceed with the case
of both N—tuples r and s being interpreted via the Zipf-Mandelbrot law (8).

COROLLARY 10. Let t and u be as in Corollary 7 and let vi,vy,wi,wr > 0.

1 .
Um>ui7f07‘l:l7...,l\f, then

i“ (i+w2)2Hy . v | (z+W2)V2HN.,v27wz
A (4 wi) " Hy (z+W1)V1HN,v17W1

N
ZM l+W2 HNVQ,WZ
z—
S A+ wi)  Hy

Z+W2 HNv2w2
x lo —== 74
g( Z’ l (i+w1)" Hy vy w0, 7%

KL(i,N,vi,wi,v2,w2)
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where the logarithm base is greater than 1.

1 .
Ifm <ty fori=1,...,N, then

(i+ W2)V2HN Vo, Wo (i+w2)"Hy V2, W
L,N,vi,wi,v2,w2) f log - =
KL ZI (i+wp)"1 Hy, URT s (i +W1)V1HN7V17W1

(il i+wa)"”Hy, VLWz)
l—

i=1 H_Wl "HN vy

1 & (i+wy)2Hy
xlog(T—ZMi—(, 2) 2y, 2), (75)

A+ w) Hy e

where the logarithm base is greater than 1.
If the logarithm base is less than 1, then reverse inequalities hold in (74) and (75).

Proof. Inequalities (74) and (75) follow from inequalities (59) and (60) of Corol-
lary 7 when observing the function ¢ +— ¢logt which is convex when the logarithm base
is greater than 1 and is concave when the logarithm base is less than 1. [J

REMARK 17. If we again include in (74) and in (75) that u; =up = --- = uy =
1
min = and at the same time #; =, =
i=1...N { (i+w2)"2Hn vy w, } (N +w2)"2HN v, w,
1 1
.=ty = max = , then the followin
=L, { (i+w2)"2Hn vy w, } (14+w2)"2Hy v, w, ¥

bounds for the Kullback Leibler divergence hold, as a special case of Corollary 10:

1 1
A2 > KL(i,N,vi,wi,v2,w)
(T wa) 2By g 2 KN o v2o2) 2 e

where

A%, (76)

N vzH . vzH
AKL = z (i+w2) Nyva,wy lo (i+w2) N,vp,wa

— Z+WI)IHNV17W1 g(i"_wl)VIHN,Vl:Wl

(i+w2)" Hy vy | 13 (i +w2)" Hy vy 0y 77
_ E - Iy og N 2 . g . ( )
= (i+w1) Hyp, o, S A+ wi)™ Hyvy g

i=1 i=1

Bounds (76) were obtained earlier in [8], due to a less general approach.

The Kullback-Leibler divergence is observed once more in the case of both
N—tuples r and s being interpreted via the Zipf law (10), i.e. for w; =w, =0.

COROLLARY 11. Let t and u be as in Corollary 8 and let vi,v, > 0.
1 .
Ifm Zui,fOrl: 1,...,N, then

N
KL(i,N,vi,v2) = Y uii™ ™" Brvs 1o og ( 2 HN”)
i=1 Hy Y1 HN7V1
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(Zuzvz Vi z”) ( Z‘uzv2 VIH:‘Q), (78)
vl Vi

where the logarithm base is greater than 1.

1 :
Ifm Sti,forl:L...,N, then

HNv HNv
KL(i,N,vi,v) < Y ;i"7"1—"2]o (VZ sl
( lzl N,yv; g HN,vl

N
H
_ <Ztiivzvl Hz7_"2> ( Eu 2 HZ V2> o (19)
i=1 Vi v

where the logarithm base is greater than 1.
If the logarithm base is less than 1, then reverse inequalities hold in (78) and (79).

Proof. Inequalities (78) and (79) follow from inequalities (66) and (67) of Corol-
lary 8 when observing the function ¢ +— ¢logt which is convex when the logarithm base
is greater than 1 and is concave when the logarithm base is less than 1. [J

1 1
REMARK 18. If uy =up =---=uy = l__r?in {l S Hy } = Nv:Hy and 1| =
T V2 V2
1
= -=1Iy= iznllfl.%N { 2 Hy s } = HA}JQ in inequalities (78) and (79), then the fol-

lowing bounds for the Kullback-Leibler divergence hold, as a special case of Corollary
11:

1
Ay, > KL(i,N,v,v) > 3

T 80
Hy,, N"2Hy,, ¥ (80)

where

Hy
Zlvz vy NVzl g<v2 vy 7V2>
H,

Ny HN,V[
N N
_ Zi\Q—Vl HN%"Z log i Zl—vz—vl HN,VQ ) (81)
-1 Hy N5 Hy

Bounds (80) were obtained earlier in [8], due to a less general approach.

In the sequel we present similar results for other divergences that were observed
in Section 2: the Hellinger distance, the Bhattacharyya coefficient, the chi-square di-
vergence and the total variation distance. In comparison with the ones related to the
Kullback-Leibler divergence, these are more concise with an accent put on the imple-
mentation of the Zipf law alone, that is for w; = w, = 0.
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COROLLARY 12. Let t and u be as in Corollary 8 and let v,vy > 0.

If iVZI;NWZ >u;, fori=1,...,N, then
1Y . N v ’ Unv( |1 N vy ’
h(i,N,vy,v) > 52{@( 27 HN7v1 1) —7< U N w2 N:Vl 1) ,(82)
. il . Hy . Hy,,
B(i,N,vi,v2) < 1+i=21u,- 21 HN; — \/UNZ_ZIM 2V HN:7 (83)

N 2 2
Hy,
X0, N, vi,v2) = > ui (ivz_vl # ) ( Zu 27 HN 2 l) . (84

i=1 Ny N,vy
il HNV Nv
V(i,N,vi,v) 2 Y u|i> " —=—1 Zu P2l (85)
i=1 N.vy HNv1
1 .
If " Hy, <t, fori=1,...,N, then
N 2 2
. 1 . Hy Tn HNv
Wi, Nvivo) < =Ygl i =2 1| - =2 v N2 ) (g6
( ) 2;’ Hy o, 2 TNZ ' Hy o,
ul HNV HNv
B(i,N,vi,v2) = 14 1y [ 1 =2 — TNZIZ"Z v (87)
i=1 Hy v, i=1 Ny
N Hy 2 Hy 2
2 Vo—V V2 Yy—p Vo
I,N,vi,vy) < t(l 7 ——= 1 ) i ——=—-11] , (88)
x( ) ;1 s Z T e
il HNV Nv
V(i,N,vi,vp) < Y 5| " —=—1 vaz Lo | (89)
i=1 N.vy HNV1

Proof. Inequalities (82)-(85) and (86)-(89) follow from inequalities (64) and (65)
1
respectively of Corollary 8 when observing the convex functions: ¢ — 3 (\/t_ — 1)2 for

(82) and (86), t — —+/7 for (83) and (87), t — (t — 1)? for (84) and (88) and ¢ — |t — 1|
for (85) and (89). [J

. 1 ..
REMARK 19. Ifuy=uy=---=uy= ierln { 2 Hyos } = N"Hy,, in inequal-
1 1
ities (82)-(85)and 1y =1, =--- =ty = max = in inequalities (86)-
i=1,...N i 2I_IN V2 HN v

(89), then the following bounds for the divergences hold, as spécial cases of Corollary
12.
Thus we have for Hellinger distance (4):

1 1

Ap =K (i,N >— Ay, 90
ETTR (i,N,vi,v2) N Hyy, (90)
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where
2
Ap= 1] (28]
for Bhattacharyya coefficient (5):
! Ap > B(i,N ) > 1 ! A 92)
NVZHNﬂ;z B = 17 ) Vl b V2 = HN7v2 Ba
where
N v N v
Ap = jva—vi Y2 jra—v 2. 93)
2 HN V1 lzi HN V1
for chi-square divergence (0):
1 1
ﬁ/\chi > x2(i,N,vi,v2) > ]\WTAchia 94)
V2
where
v Hyww N (V& He, )
Aepi = <1V2 2 1) —N| =) 22 (95)
Zi Hy v, N ZI Hy v,
and for total variation distance (7):
LAV S VN ) > — A (96)
Vv = LNV, V2 ) 2 1\,
Hy, : N2 Hyy,
where
N N
Wy — HN.V ' 1 Py — HN.V
Ay = 22 N = Y i 2 . 97
Zi Hy v, N ; Hy v,

Bounds (90), (92), (94) and (96) were also obtained earlier in [8], due to a less
general approach.
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