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Abstract. The article deals with convex combinations containing infinite number of terms (infi-
nite convex combinations). The inequalities for convex functions and infinite convex combina-
tions of points from the simplices are investigated. This research relies on the extended discrete
form of Jensen’s inequality.

1. Introduction

Let X be a vector space over the field R . A linear combination αx+βy of points
x,y ∈ X and coefficients α,β ∈ R is said to be convex if α,β ∈ [0,1] and α + β = 1.
A set C ⊆ X is said to be convex if it contains each convex combination of each pair of
its points. A function f : C → R is said to be convex if the inequality

f (αx+ βy) � α f (x)+ β f (y) (1)

holds for each convex combination αx+ βy of each pair of points x,y ∈C .
The convex hull convX of a set X ⊆X is defined as the set containing each convex

combination of points from X . The set convX is the smallest convex set containing X .
By using the mathematical induction, it can be demonstrated that the set convex-

ity, function convexity and convex hull apply to n -membered convex combinations for
every integer n � 2. In that case, formula (1) represents the discrete form of Jensen’s
inequality, see [2].

Let ∑n
i=1 λixi be a convex combination of points xi ∈ X . The combination center

x can be formally defined by the equation ∑n
i=1 λi(xi − x) = 0. Thus x = ∑n

i=1 λixi and
it belongs to the convex hull of the set {x1, . . . ,xn} . The center x stands out in creating
inequalities with convex and concave functions.
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2. Inequalities with infinite convex combinations

In this section, we briefly recall some main results obtained in [8].

DEFINITION 1. An infinite linear combination ∑∞
i=1 λixi of points xi from the

space X is said to be convex if λi ∈ [0,1] and ∑∞
i=1 λi = 1.

The next three theorems refer to infinite convex combinations of points from a
bounded closed interval of real numbers.

THEOREM A. Let ∑∞
i=1 λixi be an infinite convex combination of points xi from

the interval [a,b] .
Then the combination ∑∞

i=1 λixi converges in the interval [a,b] .

THEOREM B. Let X be a nonempty set, let g : X → R be a function with the
image in the interval [a,b] , and let ∑∞

i=1 λig(xi) be an infinite convex combination of
the function values g(xi) with arguments xi from the set X .

Then the combination ∑∞
i=1 λig(xi) converges in the interval [a,b] .

THEOREM C. Let ∑∞
i=1 λixi be an infinite convex combination of points xi from

the interval [a,b] , and let αa+ βb be the convex combination of the endpoints a and
b such that αa+ βb = ∑∞

i=1 λixi .
Then each convex function f : [a,b] → R satisfies the double inequality

f (αa+ βb) �
∞

∑
i=1

λi f (xi) � α f (a)+ β f (b). (2)

We want to generalize the extended discrete form of Jensen’s inequality in formula
(2) to simplices in higher dimensions.

3. Convex combinations in the triangle

Let a , b and c be non-collinear points in the plane R
2 . Then the triangle with the

vertices a , b and c can be introduced as the set

�abc = {αa+ βb+ γc : α,β ,γ ∈ [0,1], α + β + γ = 1}. (3)

Thus the triangle �abc is the convex hull of the vertices set {a,b,c} . Each point
x ∈ �abc is represented by the unique trinomial convex combination x = αa + βb +
γc because the vectors a− b and a− c are linearly independent. We can obtain the
representation of x by the convex combination

x =
ar(�xbc)
ar(�abc)

a+
ar(�xac)
ar(�abc)

b+
ar(�xab)
ar(�abc)

c (4)

indicating that

α =
ar(�xbc)
ar(�abc)

, β =
ar(�xac)
ar(�abc)

, γ =
ar(�xab)
ar(�abc)

. (5)
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Figure 1: The coefficients representation by using the unit triangle

The sets �xbc , �xac and �xab defined as the convex hulls by formula (3) are not neces-
sarily triangles, but at least one of them is a triangle. The graphic design of coefficients
is presented in Figure 1.

The fundamental theorem for convex functions and convex combinations in the
triangle states the following.

THEOREM D. Let ∑n
i=1 λixi be a convex combination of points xi from the trian-

gle �abc , and let αa+ βb+ γc be the convex combination of the vertices a, b and c
such that αa+ βb+ γc = ∑n

i=1 λixi .
Then each convex function f : �abc → R satisfies the double inequality

f (αa+ βb+ γc) �
n

∑
i=1

λi f (xi) � α f (a)+ β f (b)+ γ f (c). (6)

The inequality in formula (6) expresses the nature of growth of convex functions
on the triangle. The convex function values, taken in the forms of convex combinations,
grow from the center across the middle to the vertices. In the important formula (6), we
want to replace n with infinity.

The functional approach to the inequality in formula (6) can be found in [9].

4. Main results

In this section, we investigate inequalities for convex functions and infinite convex
combinations of points from the triangle.

LEMMA 4.1. Let ∑∞
i=1 λixi be an infinite convex combination of points xi from

the triangle �abc .
Then the combination ∑∞

i=1 λixi converges in the triangle �abc .

Proof. Each point xi can be represented by the unique convex combination

xi = αia+ βib+ γic. (7)
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Thus αi,βi,γi ∈ [0,1] and αi +βi+γi = 1. According to Theorem A, the infinite convex
combinations ∑∞

i=1 λiαi , ∑∞
i=1 λiβi and ∑∞

i=1 λiγi of points αi , βi and γi converge in
the interval [0,1] , and therefore we can write down

∞

∑
i=1

λiαi = α,
∞

∑
i=1

λiβi = β ,
∞

∑
i=1

λiγi = γ. (8)

So, the coefficients α , β and γ are in [0,1] . In addition, their sum

α + β + γ =
∞

∑
i=1

λi(αi + βi + γi) =
∞

∑
i=1

λi = 1.

By using the relations in formula (7) and formula (8), we get

∞

∑
i=1

λixi =
∞

∑
i=1

λi(αia+ βib+ γic) = αa+ βb+ γc.

The above presentation shows that the series ∑∞
i=1 λixi converges to the convex combi-

nation αa+ βb+ γc belonging to the triangle �abc . �

Relying on the above lemma, we can establish the fundamental inequality for con-
vex functions and infinite convex combinations in the triangle.

THEOREM 4.2. Let ∑∞
i=1 λixi be an infinite convex combination of points xi from

the triangle �abc , and let αa+ βb+ γc be the convex combination of the vertices a,
b and c such that αa+ βb+ γc = ∑∞

i=1 λixi .
Then each convex function f : �abc → R satisfies the double inequality

f (αa+ βb+ γc) �
∞

∑
i=1

λi f (xi) � α f (a)+ β f (b)+ γ f (c). (9)

Proof. We use the points representations in formula (7), and coefficients relations
in formula (8). Let n � 2, let

εn = 1−
n−1

∑
i=1

λi,

and let

α̃n =
n−1

∑
i=1

λiαi + εnαn, β̃n =
n−1

∑
i=1

λiβi + εnβn, γ̃n =
n−1

∑
i=1

λiγi + εnγn. (10)

Then α̃n, β̃n, γ̃n ∈ [0,1] and α̃n + β̃n + γ̃n = 1. Further, since limn→∞ εn = 0, it follows
that

lim
n→∞

α̃n = α, lim
n→∞

β̃n = β , lim
n→∞

γ̃n = γ.
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By utilizing the coefficients relations in formula (10), we get the presentation

α̃na+ β̃nb+ γ̃nc =
n−1

∑
i=1

λi(αia+ βib+ γic)+ εn(αna+ βnb+ γnc)

=
n−1

∑
i=1

λixi + εnxn,

and as a goal, we have the convex combinations equality

α̃na+ β̃nb+ γ̃nc =
n−1

∑
i=1

λixi + εnxn. (11)

Let

x = lim
n→∞

(α̃na+ β̃nb+ γ̃nc) =
∞

∑
i=1

λixi = αa+ βb+ γc.

By applying formula (6) to the equality in formula (11), we obtain

f (α̃na+β̃nb+γ̃nc) �
n−1

∑
i=1

λi f (xi)+εn f (xn) � α̃n f (a)+β̃n f (b)+γ̃n f (c). (12)

We want to apply the reflection moment to formula (12) by letting n tend to infinity.
Then the second member approaches ∑∞

i=1 λi f (xi) , and the third member approaches
α f (a)+ β f (b)+ γ f (c) . As regards the limit of the first member, we discuss the fol-
lowing three cases.

If α,β ,γ > 0, then the point x = αa + βb + γc belongs to the interior �o
abc of

the triangle �abc . There is a closed ball B ⊂�o
abc containing the point x and almost

all points α̃na+ β̃nb+ γ̃nc . The convex function f is continuous on �o
abc , and so f is

continuous on B . Then it follows that

lim
n→∞

f (α̃na+ β̃nb+ γ̃nc) = f
(

lim
n→∞

(α̃na+ β̃nb+ γ̃nc)
)

= f (αa+ βb+ γc).

If α,β > 0 and γ = 0, then x = αa+βb , and we have ∑∞
i=1 λixi = αa+βb . The

fact is that λi > 0 implies xi = αia+ βib . So, we can assume that each xi belongs to
the line segment �ab . Since the point x belongs to the relative interior �o

ab of �ab ,
we can apply the previous case to �ab .

If α = 1 and β = γ = 0, then x = a , and we have ∑∞
i=1 λixi = a . The fact is that

λi > 0 implies xi = a . So, we can assume that each xi is equal to a . Since

∞

∑
i=1

λi f (xi) =
∞

∑
i=1

λi f (a) = f (a),

the trivial double inequality f (a) � f (a) � f (a) represents formula (9).
To conclude, formula (12) approaches formula (9) as n approaches infinity in each

of the above three cases. �
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Let (xn)∞
n=1 be a convergent sequence of points xn ∈�abc , and let f : �abc → R

be a convex function. By using the convex combinations xn = αna+βnb+γnc , utilizing
the convexity of f , and exploiting the continuity of f on the triangle interior and sides
relative interiors, we can prove the inequality

lim
n→∞

f (xn) � f
(

lim
n→∞

xn
)
. (13)

To verify the above inequality, we point out the limit x = limn→∞ xn and its convex
combination x = αa + βb + γc . Then we have α = limn→∞ αn , β = limn→∞ βn and
γ = limn→∞ γn . We consider the next three positions of the point x .

If x ∈ �o
abc , then almost all members xn are in �o

abc . Since the function f is
continuous on �o

abc , herein the equality holds in formula (13).
If x ∈ �o

ab , then the convex combination x = αa+ βb with positive coefficients
α and β is effective. So, here is γ = limn→∞ γn = 0. By applying the convexity of f
to the representations (in the form of binomial convex combinations)

xn = αna+ βnb+ γnc = (1− γn)
(

αn

1− γn
a+

βn

1− γn
b

)
+ γnc,

we get

f (xn) � (1− γn) f

(
αn

1− γn
a+

βn

1− γn
b

)
+ γn f (c),

and calculating the limit taking into account the continuity of f on �o
ab , we obtain

lim
n→∞

f (xn) � lim
n→∞

f

(
αn

1− γn
a+

βn

1− γn
b

)
= f

(
lim
n→∞

(
αn

1− γn
a+

βn

1− γn
b

))

= f (αa+ βb) = f (x) = f
(

lim
n→∞

xn
)
.

If x = a , then α = limn→∞ αn = 1, β = limn→∞ βn = 0 and γ = limn→∞ γn = 0.
By applying Jensen’s inequality to the convex combinations xn = αna+ βnb+ γnc , we
get

f (xn) � αn f (a)+ βn f (b)+ γn f (c),

and calculating the limit, we obtain

lim
n→∞

f (xn) � f (a) = f (x) = f
(

lim
n→∞

xn
)
.

In case the function f is not continuous, the inequality in formula (13) may be
strict. This is exactly the following example.

EXAMPLE 4.3. Let f : �abc → R be a convex function having a discontinuity at
the vertex a , and let (xn)∞

n=1 be the sequence of the convex combinations of the vertices
a , b and c defined by

xn =
n

n+2
a+

1
n+2

b+
1

n+2
c.
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Then the points xn belong to the interior �o
abc , limn→∞ xn = a , and

lim
n→∞

f (xn) < f
(

lim
n→∞

xn
)

= f (a).

For example, using the function

f (x) =

{
1 if x ∈�o

abc

2 if x /∈�o
abc

,

we have
lim
n→∞

f (xn) = 1 < 2 = f
(

lim
n→∞

xn
)

= f (a).

The inequality of the first and second members in formula (9) can be expressed in
the form

f

( ∞

∑
i=1

λixi

)
�

∞

∑
i=1

λi f (xi), (14)

representing Jensen’s inequality for infinite convex combinations in the triangle. New
results on Jensen’s inequality have been achieved in [3] and [5].

The inequality in formula (9) can be adapted to other inequalities. The following
are two versions of the extended form of the Jensen-Mercer inequality (see [6]) for
infinite convex combinations in the triangle.

COROLLARY 4.4. Let ∑∞
i=1 λixi be an infinite convex combination of points xi

from the triangle �abc , and let αa+βb+ γc be the convex combination of the vertices
a, b and c such that αa+ βb+ γc = ∑∞

i=1 λixi .
Then each convex function f : �abc → R satisfies the double inequalities

f

(
1−α

2
a+

1−β
2

b+
1−γ

2
c

)
�

∞

∑
i=1

λi f

(
a+b+ c− xi

2

)

� 1−α
2

f (a)+
1−β

2
f (b)+

1−γ
2

f (c)

(15)

and

f

(
a+b+ c−∑∞

i=1 λixi

2

)
� 1−α

2
f (a)+

1−β
2

f (b)+
1− γ

2
f (c)

� f (a)+ f (b)+ f (c)−∑∞
i=1 λi f (xi)

2
.

(16)

Proof. By using formula (7), we get the representation

a+b+ c− xi

2
=

1−αi

2
a+

1−βi

2
b+

1− γi

2
c,

showing that the left side member belongs to �abc as the convex combination of the
vertices a , b and c . Further, by utilizing the above representation, we can derive the
equalities in formula (17) and formula (18).
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If we apply formula (9) to the convex combinations equality

1−α
2

a+
1−β

2
b+

1− γ
2

c =
∞

∑
i=1

λi
a+b+ c− xi

2
, (17)

then we obtain formula (15).
If we apply Jensen’s inequality to the convex combinations equality

a+b+ c−∑∞
i=1 λixi

2
=

1−α
2

a+
1−β

2
b+

1− γ
2

c, (18)

then we obtain the inequality of the first and second members in formula (16). If we
utilize the inequality

−α f (a)−β f (b)− γ f (c) � −
∞

∑
i=1

λi f (xi)

derived from the inequality of the second and third members in formula (9), then we
obtain the inequality of the second and third members in formula (16). �

The consequences of Theorem 4.2 and Corollary 4.4 are the following versions of
the extended form of Jensen’s inequality.

COROLLARY 4.5. Let ∑∞
i=1 λixi be an infinite convex combination of points xi

from the triangle �abc , and let x = ∑∞
i=1 λixi be the combination center.

Then each convex function f : �abc → R satisfies the inequalities

f

( ∞

∑
i=1

λixi

)
�

∞

∑
i=1

λi f (xi)

� ar(�xbc)
ar(�abc)

f (a)+
ar(�xac)
ar(�abc)

f (b)+
ar(�xab)
ar(�abc)

f (c)
(19)

and

f

(
a+b+ c−∑∞

i=1 λixi

2

)
�

∞

∑
i=1

λi f

(
a+b+ c− xi

2

)

� ar(�abc)− ar(�xbc)
2ar(�abc)

f (a)

+
ar(�abc)− ar(�xac)

2ar(�abc)
f (b)

+
ar(�abc)− ar(�xab)

2ar(�abc)
f (c)

� f (a)+ f (b)+ f (c)−∑∞
i=1 λi f (xi)

2
.

(20)
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Proof. The double inequality in formula (19) is the version of formula (9) with
coefficients presented in formula (5).

The multiple inequality in formula (20) can be achieved by combining formula
(15) and formula (16), and using coefficients presented in formula (5). �

More details on convex sets, convex functions and their inequalities can be found
in the books [10] and [11].

5. Generalizations to higher dimensions

The results obtained in the previous section can be generalized to the m-simplex
in the space R

m .
If a1, . . . ,am+1 ∈R

m are points such that differences a1−am+1, . . . ,am−am+1 are
linearly independent, then the m-simplex with vertices a1, . . . ,am+1 can be introduced
as the set

�a1...am+1 =
{

∑m+1
j=1 α ja j : α j ∈ [0,1], ∑m+1

j=1 α j = 1
}
. (21)

Thus we have �a1...am+1 = conv{a1, . . . ,am+1} . Each point x ∈ �a1...am+1 is rep-
resented by the unique (m+1)-membered convex combination x = ∑m+1

j=1 α ja j be-
cause the points a1 − am+1, . . . ,am − am+1 are linearly independent. By using the sets
�a j=x = conv{a1, . . . ,a j−1,x,a j+1, . . . ,am+1} and the denotation volm for the volume
in the space R

m , we can obtain the representation of x by the convex combination

x =
m+1

∑
j=1

volm(�a j=x)
volm(�a1...am+1)

a j (22)

indicating that

α j =
volm(�a j=x)

volm(�a1...am+1)
. (23)

Depending on the location of the point x , the set �a j=x appears as one of the fol-
lowing two volumetric shapes, it is the m-simplex in which case α j > 0, or the facet
�a1...a j−1a j+1...am+1 in which case α j = 0.

The following is the initial lemma on infinite convex combinations of points from
the m-simplex in the space R

m .

LEMMA 5.1. Let ∑∞
i=1 λixi be an infinite convex combination of points xi from

the m-simplex �a1...am+1 .
Then the combination ∑∞

i=1 λixi converges in the m-simplex �a1...am+1 .

Proof. By using the unique convex combination presentation

xi =
m+1

∑
j=1

αi ja j
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for i ∈ N = {1,2,3, . . .} , and consequently the convergent series

∞

∑
i=1

λiαi j = α j

for j ∈ Nm+1 = {1, . . . ,m+1} , we obtain the relation

∞

∑
i=1

λixi =
m+1

∑
j=1

α ja j,

where the infinite convex combination on the left side coincides with the convex com-
bination of the m-simplex vertices a j on the right side. �

By relying on the analogue of Theorem D in higher dimensions (for example, see
[7, Corollary 2.2]), the fundamental inequality for convex functions and infinite convex
combinations in the m-simplex is as follows.

THEOREM 5.2. Let ∑∞
i=1 λixi be an infinite convex combination of points xi from

the m-simplex �a1...am+1 , and let ∑m+1
j=1 α ja j be the convex combination of the vertices

a j such that ∑m+1
j=1 α ja j = ∑∞

i=1 λixi .
Then each convex function f : �a1...am+1 → R satisfies the double inequality

f

(m+1

∑
j=1

α ja j

)
�

∞

∑
i=1

λi f (xi) �
m+1

∑
j=1

α j f (a j). (24)

Proof. To obtain the inequality in formula (24), we have to apply the reflection
moment (by letting n tend to infinity) to the inequality

f

(m+1

∑
j=1

α̃n ja j

)
�

n−1

∑
i=1

λi f (xi)+ εn f (xn) �
m+1

∑
j=1

α̃n j f (a j)

with the coefficients convex combinations

α̃n j =
n−1

∑
i=1

λiαi j + εnαn j

for every j ∈ Nm+1 , and the coefficient εn = 1−∑n−1
i=1 λi . �

The variants of the Jensen-Mercer inequality for infinite convex combinations in
the m-simplex are as follows.

COROLLARY 5.3. Let ∑∞
i=1 λixi be an infinite convex combination of points xi

from the m-simplex �a1...am+1 , and let ∑m+1
j=1 α ja j be the convex combination of the

vertices a j such that ∑m+1
j=1 α ja j = ∑∞

i=1 λixi .
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Then each convex function f : �a1...am+1 → R satisfies the double inequalities

f

(m+1

∑
j=1

1−α j

m
a j

)
�

∞

∑
i=1

λi f

(∑m+1
j=1 a j − xi

m

)

�
m+1

∑
j=1

1−α j

m
f (a j)

(25)

and

f

(∑m+1
j=1 a j −∑∞

i=1 λixi

m

)
�

m+1

∑
j=1

1−α j

m
f (a j)

�
∑m+1

j=1 f (a j)−∑∞
i=1 λi f (xi)

m
.

(26)

By making some modifications, combining inequalities, and using the coefficients
in formula (23), we get the following.

COROLLARY 5.4. Let ∑∞
i=1 λixi be an infinite convex combination of points xi

from the m-simplex �a1...am+1 , and let x = ∑∞
i=1 λixi be the combination center.

Then each convex function f : �a1...am+1 → R satisfies the inequalities

f

( ∞

∑
i=1

λixi

)
�

∞

∑
i=1

λi f (xi)

�
m+1

∑
j=1

volm(�a j=x)
volm(�a1...am+1)

f (a j)
(27)

and

f

(∑m+1
j=1 a j−∑∞

i=1 λixi

m

)
�

∞

∑
i=1

λi f

(∑m+1
j=1 a j − xi

m

)

�
m+1

∑
j=1

volm(�a1...am+1)−volm(�a j=x)
mvolm(�a1...am+1)

f (a j)

�
∑m+1

j=1 f (a j)−∑∞
i=1 λi f (xi)

m
.

(28)

Very general variant of the Jensen-Mercer inequality for convex functions on the
convex hulls in higher dimensions was obtained in [4]. The inclusion of operators into
the Jensen-Mercer inequality can be seen in [1].
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