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ON A JENSEN–TYPE INEQUALITY FOR GENERALIZED

f –DIVERGENCES AND ZIPF–MANDELBROT LAW

-DILDA PEČARIĆ, JOSIP PEČARIĆ AND MIRNA RODIĆ ∗

(Communicated by M. Praljak)

Abstract. By means of one new Jensen-type inequality for signed measures which is character-
ized via several different Green functions, in this paper we derive new inequalities for generalized
f−divergences. The applications on the Zipf-Mandelbrot law, as one specific kind of probability
distributions, are also given.

1. Introduction

The divergences measure the differences between probability distributions. They
are applied in many different fields like economics, ecology, biology, genetics, anthro-
pology, information theory, signal processing, etc. Different authors investigated these
measures of difference and defined different types of divergences. So we can read
about f -divergence, Rényi divergence, Jensen-Shannon divergence, χα -divergences,
elementary divergences, Matusita’s divergences, Puri-Vincze divergences, divergences
of Arimoto-type, perimeter-type divergences, etc. (An interested reader can also con-
sult [6], [9] and [16]).

Jensen’s inequality is important in obtaining inequalities for divergences between
probability distributions, and there are many papers dealing with inequalities for diver-
gences and entropies (see for example [4] or [10]).

By means of one Jensen-type inequality for signed measures which is charac-
terized via several different Green functions, in this paper we will derive some new
inequalities for divergences. At the end, we will also give the applications on the Zipf-
Mandelbrot law, as one specific kind of probability distributions.

2. Preliminary results

Consider the following Green functions Gk : [α,β ]× [α,β ]→R , (k = 0,1,2,3,4)
defined by

G0(t,s) =

{ (t−β )(s−α)
β−α for α � s � t,

(s−β )(t−α)
β−α for t � s � β .

(1)
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G1(t,s) =

{
α − s, for α � s � t,

α − t, for t � s � β .
(2)

G2(t,s) =

{
t−β , for α � s � t,

s−β , for t � s � β .
(3)

G3(t,s) =

{
t −α, for α � s � t,

s−α, for t � s � β .
(4)

G4(t,s) =

{
β − s, for α � s � t,

β − t, for t � s � β .
(5)

All these functions are convex and continuous with respect to both s and t.
The following lemma holds (see [13] and [14]):

LEMMA 1. For every function ϕ : [α,β ]→R , ϕ ∈C2([α,β ]) , the following iden-
tities hold:

ϕ(x) =
β − x
β −α

ϕ(α)+
x−α
β −α

ϕ(β )+
∫ β

α
G0(x,s)ϕ ′′(s)ds,

ϕ(x) = ϕ(α)+ (x−α)ϕ ′(β )+
∫ β

α
G1(x,s)ϕ ′′(s)ds,

ϕ(x) = ϕ(β )+ (x−β )ϕ ′(α)+
∫ β

α
G2(x,s)ϕ ′′(s)ds,

ϕ(x) = ϕ(β )− (β −α)ϕ ′(β )+ (x−α)ϕ ′(α)+
∫ β

α
G3(x,s)ϕ ′′(s)ds,

ϕ(x) = ϕ(α)+ (β −α)ϕ ′(α)− (β − x)ϕ ′(β )+
∫ β

α
G4(x,s)ϕ ′′(s)ds,

where the functions Gk (k = 0,1,2,3,4) are defined as above in (1)-(5).

This lemma was crucial in establishing the uniform treatment of the Jensen-type
inequalities, giving the necessary and sufficient conditions for such inequalities to hold
in case of the not necessarily positive real Stieltjes measure (see [13] and [14]).

As we are interested in probability distributions here, in this paper we will consider
the discrete results.

3. Discrete Jensen-type inequality

The discrete Jensen inequality states that

ϕ

(
1

Un

n

∑
i=1

uixi

)
� 1

Un

n

∑
i=1

uiϕ(xi)
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holds for a convex function ϕ : I → R , I ⊆ R , an n-tuple x = (x1, ...,xn) (n � 2) and
nonnegative n-tuple u = (u1, ...,un) , such that Un = ∑n

i=1 ui > 0. In [13] and [14] we
have the generalization of that result. Namely, there is also allowed that ui are negative
with their sum different from 0, but we have a supplementary demand on ui,xi using
the Green functions Gk : [α,β ]× [α,β ] → R defined in (1)-(5).

In order to simplify the notation in this paper we shall use the common notation:
Un = ∑n

i=1 ui and and x = 1
Un

∑n
i=1 uixi .

The following result holds true:

THEOREM 1. Let xi ∈ [a,b] ⊆ [α,β ] , ui ∈ R (i = 1, ...,n), be such that Un �= 0
and x ∈ [α,β ] , and let ϕ : [α,β ] → R , ϕ ∈C2 ([α,β ]) . Let the functions Gk : [α,β ]×
[α,β ] → R (k = 0,1,2,3,4) be as defined in (1)-(5). Furthermore, let p,q ∈ R , 1 �
p,q � ∞ , be such that 1

p + 1
q = 1 . Then∣∣∣∣∣ 1

Un

n

∑
i=1

uiϕ(xi)−ϕ(x)

∣∣∣∣∣� Q ·∥∥ϕ ′′∥∥
p

holds, where

Q =

⎧⎪⎨
⎪⎩
[∫ β

α

∣∣∣ 1
Un

∑n
i=1 uiGk(xi,s)−Gk(x,s)

∣∣∣q ds
] 1

q
for q �= ∞;

sups∈[α ,β ]

{∣∣∣ 1
Un

∑n
i=1 uiGk(xi,s)−Gk(x,s)

∣∣∣} for q = ∞.

Proof. As we already know (from Lemma 1) how to represent every function ϕ :
[α,β ] → R , ϕ ∈ C2([α,β ]) , in adequate form using previously defined functions Gk

(k = 0,1,2,3,4) , it’s easy to show by some calculation that for every such function ϕ
and for any k ∈ {0,1,2,3,4} it holds:

1
Un

n

∑
i=1

uiϕ(xi)−ϕ(x) =
∫ β

α

(
1

Un

n

∑
i=1

uiGk(xi,s)−Gk(x,s)

)
ϕ ′′(s)ds. (6)

Applying the absolute value on (6), and using the triangle inequality for integrals which
says that for every function f the following is valid∣∣∣∣

∫ b

a
f (x)dx

∣∣∣∣�
∫ b

a
| f (x)|dx,

applying the Hölder inequality we get the following:∣∣∣∣∣ 1
Un

n

∑
i=1

uiϕ(xi)−ϕ(x)

∣∣∣∣∣=
∣∣∣∣∣
∫ β

α

(
1

Un

n

∑
i=1

uiGk(xi,s)−Gk(x,s)

)
ϕ ′′(s)ds

∣∣∣∣∣
�
∫ β

α

∣∣∣∣∣
(

1
Un

n

∑
i=1

uiGk(xi,s)−Gk(x,s)

)
ϕ ′′(s)

∣∣∣∣∣ds

�
(∫ β

α

∣∣∣∣∣ 1
Un

n

∑
i=1

uiGk(xi,s)−Gk(x,s)

∣∣∣∣∣
q

ds

) 1
q

·
(∫ β

α

∣∣ϕ ′′(s)
∣∣p ds

) 1
p

,
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and we get the result given in our theorem. �

REMARK 1. The analogue of the previous theorem for the integral case can be
found in [12].

4. Inequalities for different types of generalized f−divergences

For a function f : R+ → R and positive probability distributions p = (p1, . . . , pn)
and q = (q1, . . . ,qn) , I. Csiszár (in [1], [2]) defined the f -divergence functional by

Cf (q,p) :=
n

∑
i=1

pi f

(
qi

pi

)
. (7)

The undefined expressions can be interpreted as follows

f (0) := lim
t→0+

f (t) ; 0 f

(
0
0

)
:= 0; 0 f

(a
0

)
:= lim

t→0+
t f
(a

t

)
, a > 0.

I. Csiszár studied (7) under assumption that function f is convex. Independently, some
other authors also introduced and studied these divergences, but (7) is widely known as
the Csiszár f−divergence.

The definition of the f -divergence functional can be further generalized, and we
have the following generalization given in [11] which uses weights.

For a function f : R+ → R and p = (p1, . . . , pn) ∈ R
n
+ , q = (q1, . . . ,qn) ∈ R

n
+ ,

r := (r1, . . . ,rn) ∈ R
n
+ , the generalized Csiszár f−divergence is defined by ([11])

Cf (q,p;r) :=
n

∑
i=1

ripi f

(
qi

pi

)
. (8)

We can now apply Theorem 1 on Cf (q,p;r) , and we get our next result.
In order to simplify our results, we introduce the following notation:

Pr =
n

∑
i=1

ri pi, (9)

Qr =
1
Pr

n

∑
i=1

riqi. (10)

THEOREM 2. Let p,q,r ∈ R
n
+ be such that

qi

pi
∈ [a,b] ⊆ [α,β ] for i = 1, . . . ,n; and that Qr ∈ [α,β ],

where Qr is as defined in (10).
Let the functions Gk : [α,β ]× [α,β ]→R (k = 0,1,2,3,4) be as defined in (1)-(5).

Furthermore, let p,q ∈ R , 1 � p,q � ∞ , be such that 1
p + 1

q = 1 .
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(a) If f : [α,β ] → R , f ∈C2 ([α,β ]) , then∣∣∣∣ 1
Pr

Cf (q,p;r)− f
(
Qr

)∣∣∣∣� Q ·∥∥ f ′′
∥∥

p

holds, where Pr and Cf (q,p;r) are as defined in (9) and (8) respectively,

and

Q =

⎧⎪⎨
⎪⎩
[∫ β

α

∣∣∣ 1
Pr

∑n
i=1 ri piGk

(
qi
pi

,s
)
−Gk

(
Qr,s

)∣∣∣q ds
] 1

q
, for q �= ∞;

sups∈[α ,β ]

{∣∣∣ 1
Pr

∑n
i=1 ripiGk

(
qi
pi

,s
)
−Gk

(
Qr,s

)∣∣∣} , for q = ∞.
(11)

(b) If id · f : [α,β ] → R , id · f ∈C2 ([α,β ]) , then∣∣∣∣ 1
Pr

Cid· f (q,p;r)−Qr · f

(
∑n

i=1 qi

∑n
i=1 pi

)∣∣∣∣� Q ·∥∥(id · f )′′
∥∥

p

holds, where id is the identity function, Cid· f (q,p;r) =
n

∑
i=1

riqi f
(

qi
pi

)
and Q is

as defined in (11).

Proof.

(a) The result follows directly from Theorem 1 by substitution ϕ := f ,

ui :=
ri pi
n

∑
i=1

ri pi

, xi :=
qi

pi
, i = 1, . . . ,n.

(b) The result follows from (a) by substitution f := id · f . �

In the following results we consider some of the most important examples of
f−divergences.

For p,q ∈ R
n
+ , the Kullback-Leibler divergence is defined by (see [7], [8])

KL(q,p) =
n

∑
i=1

qi log

(
qi

pi

)
.

It is easy to see that the Kullback-Leibler divergence is in fact Csiszár f -divergence
if we set f (t) = t logt, t > 0.

The generalized Kullback-Leibler divergence is defined by (see [11])

KL(q,p;r) =
n

∑
i=1

riqi log
qi

pi
,

where p,q,r ∈ R
n
+ .
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PROPOSITION 1. Let p,q,r ∈ R
n
+ be such that

qi

pi
∈ [a,b] ⊆ [α,β ] for i = 1, . . . ,n; and that Qr ∈ [α,β ],

where Qr is as defined in (10).
Let the functions Gk : [α,β ]× [α,β ]→R (k = 0,1,2,3,4) be as defined in (1)-(5).

Furthermore, let p,q ∈ R , 1 � p,q � ∞ , be such that 1
p + 1

q = 1 .
Then ∣∣∣∣ 1

Pr
KL(q,p;r)−Qr · log

(
∑n

i=1 qi

∑n
i=1 pi

)∣∣∣∣� Q ·∥∥(id · log)′′
∥∥

p

holds, where Pr is as defined in (9), id is the identity function and Q is as defined in
(11).

Proof. The result follows from Theorem 2 (b) by substitution f := log (i.e. from
Theorem 2 (a) by substitution f (t) := t log(t) , t > 0). �

For p,q ∈ R
n
+ , the Hellinger divergence is defined by (see [3])

He(q,p) =
n

∑
i=1

(
√

qi−√
pi)2.

The Hellinger divergence is also the Csiszár f -divergence where f (t) = (1−√
t)2 ,

t > 0.
The generalization of the Hellinger divergence for r ∈ R

n
+ is defined by ([11])

He(q,p;r) =
n

∑
i=1

ri(
√

qi−√
pi)2.

PROPOSITION 2. Let p,q,r ∈ R
n
+ be such that

qi

pi
∈ [a,b] ⊆ [α,β ] for i = 1, . . . ,n; and that Qr ∈ [α,β ],

where Qr is as defined in (10).
Let the functions Gk : [α,β ]× [α,β ]→R (k = 0,1,2,3,4) be as defined in (1)-(5).

Furthermore, let p,q ∈ R , 1 � p,q � ∞ , be such that 1
p + 1

q = 1 .
Then ∣∣∣∣∣ 1

Pr
He(q,p;r)−

(
1−
√

Qr

)2
∣∣∣∣∣� Q ·∥∥ f ′′

∥∥
p

holds, where Pr is as defined in (9), f (t) = (1−√
t)2 , t > 0 , and Q is as defined in

(11).
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Proof. For f (t) = (1−√
t)2 , t > 0, we have that

Cf (q,p;r)=
n

∑
i=1

ripi

(
1−
√

qi

pi

)2

=
n

∑
i=1

ri(
√

pi−√
qi)2=

n

∑
i=1

ri(
√

qi−√
pi)2=He(q,p;r),

and the statement from our proposition follows from Theorem 2 (a). �
For p,q ∈ R

n
+ , the Rényi divergence is defined by ([15])

Reγ(q,p) =
n

∑
i=1

qγ
i p1−γ

i , γ ∈ 〈1,+∞〉.

Its generalization for r ∈ R
n
+ is defined by ([11])

Reγ(q,p;r) =
n

∑
i=1

riq
γ
i p1−γ

i .

We have the following result.

PROPOSITION 3. Let p,q,r ∈ R
n
+ be such that

qi

pi
∈ [a,b] ⊆ [α,β ] for i = 1, . . . ,n; and that Qr ∈ [α,β ],

where Qr is as defined in (10).
Let the functions Gk : [α,β ]× [α,β ]→R (k = 0,1,2,3,4) be as defined in (1)-(5).

Furthermore, let p,q ∈ R , 1 � p,q � ∞ , be such that 1
p + 1

q = 1 .
Then ∣∣∣∣ 1

Pr
Reγ (q,p;r)−Q

γ
r

∣∣∣∣� Q ·∥∥ f ′′
∥∥

p

holds, where Pr is as defined in (9), f (t) = tγ (t > 0, γ > 1 ), and Q is as defined in
(11).

Proof. The result follows from Theorem 2 (a), as for f (t) = tγ (t > 0, γ > 1) it
holds

Cf (q,p;r) =
n

∑
i=1

ri pi

(
qi

pi

)γ
=

n

∑
i=1

riq
γ
i p1−γ

i = Reγ(q,p;r). �

For p,q ∈ R
n
+ , the χ2−divergence is defined by

Dχ2(q,p) =
n

∑
i=1

(qi − pi)2

pi
.

The generalized χ2 -divergence for r ∈ R
n
+ is defined by ([11])

Dχ2(q,p;r) =
n

∑
i=1

ri
(qi− pi)2

pi
.

The following result holds.
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PROPOSITION 4. Let p,q,r ∈ R
n
+ be such that

qi

pi
∈ [a,b] ⊆ [α,β ] for i = 1, . . . ,n; and that Qr ∈ [α,β ],

where Qr is as defined in (10).
Let the functions Gk : [α,β ]× [α,β ]→R (k = 0,1,2,3,4) be as defined in (1)-(5).

Furthermore, let p,q ∈ R , 1 � p,q � ∞ , be such that 1
p + 1

q = 1 .
Then ∣∣∣∣ 1

Pr
Dχ2 (q,p;r)− (Qr −1)2

∣∣∣∣� Q ·∥∥ f ′′
∥∥

p

holds, where Pr is as defined in (9), f (t) = (t−1)2, t > 0, and Q is as defined in (11).

Proof. For f (t) = (t −1)2 , t > 0, we have that

Cf (q,p;r) =
n

∑
i=1

ripi

(
qi

pi
−1

)2

=
n

∑
i=1

ri
(qi − pi)2

pi
= Dχ2(q,p;r),

so the statement from our proposition follows from Theorem 2 (a). �
The Shannon entropy of a positive probability distribution p = (p1, . . . , pn) is de-

fined by (see [4])

H(p) = −
n

∑
i=1

pi log(pi). (12)

We can see that (12) is a special case of the Csiszár f -divergence Cf (q,p) if we set q =
(1, . . . ,1) ∈ R

n
+ and function f (t) = log t , t > 0. We can also consider the generalized

Shannon entropy which is defined by

H(p;r) = −
n

∑
i=1

ri pi log(pi).

We have the following result.

PROPOSITION 5. Let p,r ∈ R
n
+ be such that

1
pi

∈ [a,b] ⊆ [α,β ] for i = 1, . . . ,n; and that
1
Pr

n

∑
i=1

ri ∈ [α,β ]

where Pr is as defined in (9).
Let the functions Gk : [α,β ]× [α,β ]→R (k = 0,1,2,3,4) be as defined in (1)-(5).

Furthermore, let p,q ∈ R , 1 � p,q � ∞ , be such that 1
p + 1

q = 1 .
Then ∣∣∣∣∣ 1

Pr
H (p;r)− log

(
1
Pr

n

∑
i=1

ri

)∣∣∣∣∣� Q ·∥∥log′′
∥∥

p

holds, where Q is as defined in (11).

Proof. The result follows from Theorem 2 (a) by substitution f := log and q =
(1, . . . ,1) . �
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5. Applications to Zipf-Mandelbrot law

DEFINITION 1. [4] (see also [5]) Zipf-Mandelbrot law is a discrete probability
distribution, depends on three parameters N ∈ {1,2, . . .} , t ∈ [0,∞〉 and v > 0, and it
is defined by

f (i;N,t,v) :=
1

(i+ t)v HN,t,v
, i = 1, . . . ,N,

where

HN,t,v :=
N

∑
j=1

1
( j + t)v

.

When t = 0, then Zipf–Mandelbrot law becomes Zipf’s law.

Now, we can apply our results for distributions on the Zipf-Mandelbrot law, as a
sort of discrete probability distribution.

Let p,q be two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .} , t1 , t2 � 0
and v1 , v2 > 0, respectively. It is

pi = f (i;N,t1,v1) :=
1

(i+ t1)
v1 HN,t1,v1

, i = 1, . . . ,N, (13)

and

qi = f (i;N,t2,v2) :=
1

(i+ t2)
v2 HN,t2 ,v2

, i = 1, . . . ,N, (14)

where

HN,tk ,vk :=
N

∑
j=1

1
( j + tk)

vk
, k = 1,2.

Then the generalized Csiszár divergence for such p,q , and for r ∈ R
n
+ is given by

Cf (q,p;r) =
1

HN,t1,v1

N

∑
i=1

ri

(i+ t1)v1
f

(
(i+ t1)v1HN,t1,v1

(i+ t2)v2HN,t2,v2

)
. (15)

Using (13) and (14), we have the following expressions for (9) and (10)

Pr =
N

∑
i=1

ri

(i+ t1)v1HN,t1,v1

=
1

HN,t1,v1

N

∑
i=1

ri

(i+ t1)v1
, (16)

Qr =
∑N

i=1
ri

(i+t2)v2 HN,t2,v2

∑N
i=1

ri
(i+t1)v1 HN,t1,v1

=
HN,t1 ,v1

HN,t2 ,v2

· ∑N
i=1

ri
(i+t2)v2

∑N
i=1

ri
(i+t1)v1

. (17)

We have the following result.

COROLLARY 1. Let p,q be two Zipf-Mandelbrot laws with parameters N ∈
{1,2, . . .} , t1 , t2 � 0 and v1,v2 > 0 , respectively, and r ∈ R

n
+ such that

qi

pi
:=

(i+ t1)
v1 HN,t1,v1

(i+ t2)
v2 HN,t2,v2

∈ [a,b] ⊆ [α,β ] for i = 1, . . . ,N,
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and that Qr ∈ [α,β ], where Qr is as defined in (17).

Let the functions Gk : [α,β ]× [α,β ] → R (k = 0,1,2,3,4) be as defined in (1)-(5).
Furthermore, let p,q ∈ R , 1 � p,q � ∞ , be such that 1

p + 1
q = 1 .

(a) If f : [α,β ] → R , f ∈C2 ([α,β ]) , then∣∣∣∣ 1
Pr

Cf (q,p;r)− f
(
Qr

)∣∣∣∣� Q ·∥∥ f ′′
∥∥

p

holds, and

(b) if id · f : [α,β ] → R , id · f ∈C2 ([α,β ]) , then

∣∣∣∣ 1
Pr

Cid· f (q,p;r)−Qr · f

(
∑N

i=1 qi

∑N
i=1 pi

)∣∣∣∣� Q ·∥∥(id · f )′′
∥∥

p

holds, where id is the identity function, Q, pi , qi , Pr , Cf (q,p;r) are as defined
in (11), (13), (14), (16), (15) respectively.

If p,q are two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .} , t1 , t2 � 0
and v1 , v2 > 0, respectively, and r ∈ R

n
+ , for the generalized Kullbach-Leibler diver-

gence we have the following representation:

KL(q,p;r) =
1

HN,t2,v2

N

∑
i=1

ri

(i+ t2)v2
log

(
(i+ t1)v1HN,t1,v1

(i+ t2)v2HN,t2,v2

)
. (18)

The following result holds true:

COROLLARY 2. Let p,q be two Zipf-Mandelbrot laws with parameters N ∈
{1,2, . . .} , t1 , t2 � 0 and v1,v2 > 0 , respectively, and r ∈ R

n
+ such that

qi

pi
:=

(i+ t1)
v1 HN,t1,v1

(i+ t2)
v2 HN,t2,v2

∈ [a,b] ⊆ [α,β ] for i = 1, . . . ,N,

and that Qr ∈ [α,β ], where Qr is as defined in (17).

Let the functions Gk : [α,β ]× [α,β ] → R (k = 0,1,2,3,4) be as defined in (1)-(5).
Furthermore, let p,q ∈ R , 1 � p,q � ∞ , be such that 1

p + 1
q = 1 .

Then ∣∣∣∣ 1
Pr

KL(q,p;r)−Qr · log

(
∑n

i=1 qi

∑n
i=1 pi

)∣∣∣∣� Q ·∥∥(id · log)′′
∥∥

p

holds, where id is the identity function, Q, pi , qi , Pr , KL(q,p;r) are as defined in
(11), (13), (14), (16), (18) respectively.
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For p,q two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .} , t1 , t2 � 0
and v1 , v2 > 0, respectively, and r ∈ R

n
+ , the generalized Hellinger divergence has the

following representation:

He(q,p;r) =
1

HN,t1,v1HN,t2,v2

N

∑
i=1

ri

(√
(i+ t1)v1HN,t1,v1 −

√
(i+ t2)v2HN,t2 ,v2

)2
(i+ t1)v1(i+ t2)v2

. (19)

The following result holds true:

COROLLARY 3. Let p,q be two Zipf-Mandelbrot laws with parameters N ∈
{1,2, . . .} , t1 , t2 � 0 and v1,v2 > 0 , respectively, and r ∈ R

n
+ such that

qi

pi
:=

(i+ t1)
v1 HN,t1,v1

(i+ t2)
v2 HN,t2,v2

∈ [a,b] ⊆ [α,β ] for i = 1, . . . ,N,

and that Qr ∈ [α,β ], where Qr is as defined in (17).

Let the functions Gk : [α,β ]× [α,β ] → R (k = 0,1,2,3,4) be as defined in (1)-(5).
Furthermore, let p,q ∈ R , 1 � p,q � ∞ , be such that 1

p + 1
q = 1 .

Then ∣∣∣∣∣ 1
Pr

He(q,p;r)−
(

1−
√

Qr

)2
∣∣∣∣∣� Q ·∥∥ f ′′

∥∥
p

holds, where Q, pi , qi , Pr , He(q,p;r) are as defined in (11), (13), (14), (16), (19)
respectively, and f (t) = (1−√

t)2 , t > 0 .

For p,q two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .} , t1 , t2 � 0
and v1 , v2 > 0, respectively, and r ∈ R

n
+ , the generalized Rényi divergence has the

following representation:

Reγ(q,p;r) =
Hγ−1

N,t1,v1

Hγ
N,t2,v2

N

∑
i=1

ri
(i+ t1)(γ−1)v1

(i+ t2)γv2
. (20)

The following result holds true:

COROLLARY 4. Let p,q be two Zipf-Mandelbrot laws with parameters N ∈
{1,2, . . .} , t1 , t2 � 0 and v1,v2 > 0 , respectively, and r ∈ R

n
+ such that

qi

pi
:=

(i+ t1)
v1 HN,t1,v1

(i+ t2)
v2 HN,t2,v2

∈ [a,b] ⊆ [α,β ] for i = 1, . . . ,N,

and that Qr ∈ [α,β ], where Qr is as defined in (17).

Let the functions Gk : [α,β ]× [α,β ] → R (k = 0,1,2,3,4) be as defined in (1)-(5).
Furthermore, let p,q ∈ R , 1 � p,q � ∞ , be such that 1

p + 1
q = 1 .

Then ∣∣∣∣ 1
Pr

Reγ (q,p;r)−Q
γ
r

∣∣∣∣� Q ·∥∥ f ′′
∥∥

p

holds, where Q, pi , qi , Pr , Reγ(q,p;r) are as defined in (11), (13), (14), (16), (20)
respectively, and f (t) = tγ , (t > 0,γ > 1) .
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For p,q two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .} , t1 , t2 � 0 and
v1 , v2 > 0, respectively, and r∈R

n
+ , the generalized χ2−divergence has the following

representation:

Dχ2(q,p;r) = HN,t1,v1 ·
N

∑
i=1

ri(i+ t1)v1

(
1

(i+ t2)v2HN,t2,v2

− 1
(i+ t1)v1HN,t1,v1

)2

. (21)

The following result holds true:

COROLLARY 5. Let p,q be two Zipf-Mandelbrot laws with parameters N ∈
{1,2, . . .} , t1 , t2 � 0 and v1,v2 > 0 , respectively, and r ∈ R

n
+ such that

qi

pi
:=

(i+ t1)
v1 HN,t1,v1

(i+ t2)
v2 HN,t2,v2

∈ [a,b] ⊆ [α,β ] for i = 1, . . . ,N,

and that Qr ∈ [α,β ], where Qr is as defined in (17).

Let the functions Gk : [α,β ]× [α,β ] → R (k = 0,1,2,3,4) be as defined in (1)-(5).
Furthermore, let p,q ∈ R , 1 � p,q � ∞ , be such that 1

p + 1
q = 1 .

Then ∣∣∣∣ 1
Pr

Dχ2 (q,p;r)− (Qr −1)2

∣∣∣∣� Q ·∥∥ f ′′
∥∥

p

holds, where Q, pi , qi , Pr , Dχ2(q,p;r) are as defined in (11), (13), (14), (16), (21)

respectively, and f (t) = (t−1)2, t > 0 .

If p is the Zipf-Mandelbrot law with parameters N ∈{1,2, . . .} , t1 � 0 and v1 > 0,
and r ∈ R

n
+ , then the generalized Shannon entropy H(p;r) has the following represen-

tation:

H(p;r) =
1

HN,t1,v1

N

∑
i=1

ri

(i+ t1)v1
log [(i+ t1)v1HN,t1,v1 ] . (22)

We have the following result.

COROLLARY 6. Let p be the Zipf-Mandelbrot law with parameters N ∈{1,2, . . .} ,
t1 � 0 and v1 > 0 , and r ∈ R

n
+ such that

1
pi

:= (i+ t1)
v1 HN,t1,v1 ∈ [a,b] ⊆ [α,β ] for i = 1, . . . ,N,

and that
1
Pr

n

∑
i=1

ri ∈ [α,β ], where Pr is as defined in (16).

Let the functions Gk : [α,β ]× [α,β ] → R (k = 0,1,2,3,4) be as defined in (1)-(5).
Furthermore, let p,q ∈ R , 1 � p,q � ∞ , be such that 1

p + 1
q = 1 .

Then ∣∣∣∣∣ 1
Pr

H (p;r)− log

(
1
Pr

n

∑
i=1

ri

)∣∣∣∣∣� Q ·∥∥log′′
∥∥

p

holds, where Q, pi , qi , H(p;r) are as defined in (11), (13), (14), (22) respectively.



ON A JENSEN-TYPE INEQUALITY 1475

RE F ER EN C ES
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